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Abstract: In this article, a new dynamical system equation named the (3+1)-dimensional Hirota-
bilinear-like equation (HBLE) was constructed. The generalized Hirota bilinear method was applied to
obtain this new HBLE in (3+1) dimensions. This new HBLE possesses a similar bilinear form to the
original (3+1)-dimensional Hirota bilinear equation, but with additional nonlinear terms. A set of high-
order rational solutions is constructed for the given equation, generated from polynomial solutions to
the associated generalized bilinear equation. The analyticity conditions of the resulting solutions were
investigated and six groups of general solutions were derived. In addition, the shape and surface of the
high-order rational function solutions and their dynamic behaviors were studied by utilizing Maple.
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1. Introduction

The study of nonlinear partial differential equations has gained significant attention in various fields
of nonlinear sciences, including physics, biology, chemistry and plasma physics. This is particularly
evident in the areas of nonlinear optics, harbor dynamics, chemical reactions, Bose-Einstein conden-
sates, and coastal structures [1–5]. In recent times, various types of rational function solutions have
demonstrated their significance in interpreting the wave characteristics of appropriate equations.

One important task in mathematical physics is the search for exact solutions to nonlinear partial dif-
ferential equations. There are several important methods for finding exact solutions to nonlinear partial
differential equations, such as the inverse scattering method [6], Bäcklund transformation method [7],
Painlevé analysis method [8], Darboux transformation method [9], the Hirota bilinear method [10], the
extended direct algebraic method [11], the Tikhonov regularization method [12], the adaptive nonlin-
ear numerical method [13] and others. Many types of solutions can be found using these methods.
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Particularly, the solitary wave solutions, the lump solutions and the optical solitons, along with many
other rational solutions that can describe wave motion that have garnered significant attention in the
scientific research community [14–19]. Many kinds of nonlinear differential equations have been stud-
ied, such as fractional evolution equations [20], nonlinear fractional integro-differential equations [21],
the nano-ionic currents equation [22] and the stochastic longitudinal wave equation [23].

The Hirota bilinear method is an important method to deal with complex systems. The Hirota
bilinear equation can be used to describe and analyze some wave systems, electromagnetic fields,
mathematical models and more, including a series of finite difference equations, as well as multidi-
mensional and multi-parameter mathematical models. One of its important features is that it can solve
complex problems involving time-varying systems without requiring additional computation. It also
has been applied to many scientific fields, such as electromagnetic field theory, heat conduction theory,
acoustic theory, fluid mechanics and so on. Its theoretical research can also provide important guid-
ance for application research. Jia investigated the generalized coupled nonlinear Hirota equations with
additional effects using the Hirota method [29]. Dong used the homoclinic test method to obtain the ra-
tional breather wave and rogue wave solutions of the (3+1)-dimensional Hirota bilinear equation [30].
Chen investigated the matrix Riemann-Hilbert problem of the Hirota equation with nonzero boundary
conditions [31].

By extending the Hirota bilinear operators, Ma [24, 25] introduced a novel type of bilinear dif-
ferential equation. Meanwhile, the linear superposition principle is an important principle for solv-
ing generalized bilinear differential equations. The (3+1)-dimensional Boiti-Leon-Manna-Pempinelli-
like equation [26], (3+1)-dimensional Jimbo-Miwa-like equation [27], and Kadomtsev-Petviashvili-
Boussinesq-like equation [28] were derived using Ma’s method. These “like” equations have some
terms in common with the original equations, as well as additional nonlinear terms that can better de-
scribe nonlinear phenomena. However, the study of high-order rational solutions was less extensive.
In this study, our focus is not only to establish the HBLE but to also contribute high-order rational
solutions to this new equation.

The paper will be arranged as follows. In section two, a new equation called the (3+1)-dimensional
HBLE will be derived by introducing the general Hirota bilinear operators and the dependent vari-
able transformation. In section three, some types of the high-order rational solutions of the (3+1)-
dimensional HBLE will be studied. Finally, a few concluding remarks will be provided.

2. The (3+1)-dimensional HBLE

In this paper, we primarily focus on the following dynamical model, which can be utilized to de-
scribe certain intriguing (3+1)-dimensional physical wave models:

uyt − uxxxy − 3(uxuy)x − 3uxx + 3uzz = 0, (2.1)

where u = u(x, y, z, t). The (3+1)-dimensional Hirota bilinear equation (HBE) (2.1) is an extension of
the Korteweg-de Vries equation, which serves as a mathematical model for waves on shallow water
surfaces [30]. The model has been mentioned to be completely integrable and possess N-soliton. If we
substitute t with T , x with X, y with X, z with X, and u with U, then Eq (2.1) reduces to the classical
KdV equation.
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Under the transformation

u = 2[ln F(x, y, z, t)]x =
2Fx(x, y, z, t)
F(x, y, z, t)

, (2.2)

where F = F(x, y, z, t) is an unknown real function that will be determined later.
Substituting (2.2) into (2.1) and integrating once with respect to x yields

FtyF − FtFy − FxxxyF + 3FxxyFx − 3FxxFxy + FxxxFy − 3FxxF + 3Fx + 3FzzF − 3F2
z = 0. (2.3)

Equation (2.3) can be rewritten as

(DtDy − D3
xDy − 3D2

x + 3D2
z )F · F = 0, (2.4)

under the definition of the bilinear derivative operators as follows

(Dm
x Dn

yDr
zD

s
t ) = (∂x − ∂x′)m(∂y − ∂y′)n(∂z − ∂z′)r(∂t − ∂t′)s|x′=x,y′=y,z′=z,t′=t. (2.5)

Using the same form of (2.4), the (3+1)-dimensional HBE (2.1) can be transformed into the gener-
alized Hirota bilinear form

(Dp,tDp,y − D3
p,xDp,y − 3D2

p,x + D2
p,z)F · F = 0. (2.6)

The generalized bilinear differential operator Dp is introduced as follows [24]

(Dm
p,xDn

p,yDr
p,zD

s
p,t)F · F =(∂x + αp∂x′)m(∂y + αp∂y′)n(∂z + αp∂z′)r(∂t + αp∂t′)s

F(x, y, z, t)F(x′, y′, z′, t′)|x′=x,y′=y,z′=z,t′=t,
(2.7)

where m, n, r, s ≥ 0, αµp = (−1)νp(µ), µ ≡ rp(µ) mod p.
While taking p = 3, the operator Dp,i could be expressed as a prime order bilinear operator

D3,x, D3,y, D3,z, D3,t correspondingly, and

α3 = −1, α2
3 = 1, α3

3 = 1, α4
3 = −1, α5

3 = 1, α6
3 = 1, . . . (2.8)

which leads to

D3,xD3,tF · F = 2FxtF − 2FxFt, D3,xD3,yF · F = 2FxyF − 2FxFy,

D3,tD3,yF · F = 2FtyF − 2FtFy, D3
3,xDyF · F = 6FxyFxx,

D2
3,xF · F = 2FxxF − 2F2

x , D2
3,zF · F = 2FzzF − 2F2

z .

(2.9)

By submitting (2.9) into (2.6), the generalized HBE is obtained

(D3yD3t − D3
3xD3y − 3D2

3x + D2
3z)F · F

= FytF − FyFt − 3FxyFxx − 3FxxF + 3F2
x + 3FzzF − 3F2

z = 0.
(2.10)

Based on the Bell polynomial theory and linear superposition principle, a new nonlinear equation
is formed from the bilinear equation (2.10). Under the inverse transformation of (2.2) F = e

∫
1
2 udx,

Eq (2.10) could be changed into a nonlinear partial equation about the dependent variable u, and
three independent variables x, y, z, t. The nonlinear wave equation could be called (3+1)-dimensional
generalized HBLE

8vt − 12uxuy − 6u2uy − 3u3v − 6uvux − 24ux + 24wz = 0, (2.11)

where vx = uy, wx = uz.
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3. Rational solutions of the (3+1)-dimensional HBLE

In this section, we will search for some higher-order rational function solutions to the (3+1)-
dimensional HBLE (2.11). Although it is often difficult to find exact polynomial solutions to nonlinear
partial differential equations while overcoming the problem by solving the enormous and complex
algebra equations, fortunately some mathematical software can help to overcome this difficulty. To
obtain the high-order polynomial function solution, F is constructed as

F =
2∑

i=0

4∑
j=0

2∑
k=0

1∑
l=0

ci, j,k,lxiy jzktl, (3.1)

where ci, j,k,l are arbitrary constants. F solves the generalized bilinear equation (2.10), when implies
u = 2(ln F)x and solves the HBLE (2.11). By using Maple to perform calculations, we obtained the
following six sets of polynomial solutions to Eq (2.10):

F1 =
1

c2
0,0,0,1

(c3
0,0,0,1t +

(
(x + z)2 c2,0,0,0 + c1,0,0,0x + c0,0,1,0z + c0,0,0,0

)
c2

0,0,0,1

− 12
(
(x + z) c2,0,0,0 +

c0,0,1,0

4
+

c1,0,0,0

4

)
y
(
c0,0,1,0 − c1,0,0,0

)
c0,0,0,1

+ 36
(
2c2,0,0,0 + y

(
c0,0,1,0 − c1,0,0,0

))
c2,0,0,0y

(
c0,0,1,0 − c1,0,0,0

)
),

(3.2)

F2 =
1

c2
1,0,0,1

(t (x − z) c3
1,0,0,1 + ((x + 3z) (x − z) c2,0,0,0 + c0,3,0,1y3t + c0,1,0,1yt

+ c0,0,0,1t − c0,0,1,0x + c0,0,1,0z)c2
1,0,0,1 + ((6 + (−24x + 24z) y) c2

2,0,0,0

+
(
c0,3,0,1 (x + 3z) y3 + c0,1,0,1 (x + 3z) y + 4xc0,0,0,1

)
c2,0,0,0

− c0,0,1,0

(
y3c0,3,0,1 + yc0,1,0,1 + c0,0,0,1

)
)c1,0,0,1

− 24
(
yc2,0,0,0 −

c0,0,0,1

8

) (
y3c0,3,0,1 + yc0,1,0,1 + c0,0,0,1

)
c2,0,0,0),

(3.3)

F3 =
1

c2
1,0,0,1

(t (x + z) c3
1,0,0,1 + ((x + z)2 c2,0,0,0 + c0,2,0,1y2t

+ c0,1,0,1yt + c0,0,0,1t + c0,0,1,0x + c0,0,1,0z)c2
1,0,0,1

+ (6c2
2,0,0,0 + y

(
yc0,2,0,1 + c0,1,0,1

)
(x + z) c2,0,0,0

+ c0,0,1,0

(
y2c0,2,0,1 + yc0,1,0,1 + c0,0,0,1

)
)c1,0,0,1

− c0,0,0,1c2,0,0,0

(
y2c0,2,0,1 + yc0,1,0,1 + c0,0,0,1

)
),

(3.4)

F4 =
1

c2
1,0,0,1

(t (x + z) c3
1,0,0,1 + ((x + z) (x − 3z) c2,0,0,0 + c0,2,0,1y2t

+ c0,1,0,1yt + c0,0,0,1t + c0,0,1,0x + c0,0,1,0z)c2
1,0,0,1

+ ((6 + (−24x − 24z) y) c2
2,0,0,0 + (c0,2,0,1 (x − 3z) y2

+ c0,1,0,1 (x − 3z) y + 4xc0,0,0,1)c2,0,0,0

+ c0,0,1,0

(
y2c0,2,0,1 + yc0,1,0,1 + c0,0,0,1

)
)c1,0,0,1

− 24
(
y2c0,2,0,1 + yc0,1,0,1 + c0,0,0,1

)
c2,0,0,0

(
yc2,0,0,0 −

c0,0,0,1

8

)
),

(3.5)
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F5 =
1

c2
1,0,0,1

(t (x + z) c3
1,0,0,1 + (

(
24ty + x2 − 2xz − 3z2

)
c2,0,0,0

+ c0,0,0,1t + xc0,0,1,0 + c0,0,1,0z + c0,0,0,0)c2
1,0,0,1

+ 4c2,0,0,0
(
−24yzc2,0,0,0 + xc0,0,0,1 + 6yc0,0,1,0

)
c1,0,0,1

− 576c3
2,0,0,0y2 + 48yc0,0,0,1c2

2,0,0,0),

(3.6)

F6 =
1

c2
1,0,0,1

(t (x + z) c3
1,0,0,1 + ((x + z)2 c2,0,0,0 + c0,3,0,1y3t

+ c0,1,0,1yt + c0,0,0,1t + c0,0,1,0x + c0,0,1,0z)c2
1,0,0,1

+ (6c2
2,0,0,0 + y

(
y2c0,3,0,1 + c0,1,0,1

)
(x + z) c2,0,0,0

+ c0,0,1,0

(
y3c0,3,0,1 + yc0,1,0,1 + c0,0,0,1

)
)c1,0,0,1

− c0,0,0,1c2,0,0,0

(
y3c0,3,0,1 + yc0,1,0,1 + c0,0,0,1

)
),

(3.7)

where ci, j,k,l is an arbitrary constant, subject to the given condition, and F is ensured to have signifi-
cance.

By applying the transformation (2.2), we obtain six groups of rational solutions for the (3+1)-
dimensional HBLE, where ui = 2Fix/Fi for i = 1, 2, 3, 4, 5, 6.

(i) The first group of solutions is given by u1 =
2c0,0,0,1 f1

F1
, where

f1 = 4
((

(x + z) c2,0,0,0 +
c1,0,0,0

2

)
c0,0,0,1 − 6c2,0,0,0y

(
c0,0,1,0 − c1,0,0,0

))
c0,0,0,1. (3.8)

(ii) The second group of solutions is given by u2 =
2c1,0,0,1 f2

F2
, where

f2 =2(tc2
1,0,0,1 +

(
(2x + 2z) c2,0,0,0 − c0,0,1,0

)
c1,0,0,1 + c2,0,0,0(y3c0,3,0,1 + yc0,1,0,1

− 24yc2,0,0,0 + 4c0,0,0,1))c1,0,0,1.
(3.9)

(iii) The third group of solutions is given by u3 =
2c1,0,0,1 f3

F3
, where

f3 = 2tc3
1,0,0,1 + 2

(
2 (x + z) c2,0,0,0 + c0,0,1,0

)
c2

1,0,0,1 + 2y
(
yc0,2,0,1 + c0,1,0,1

)
c2,0,0,0c1,0,0,1. (3.10)

(iv) The fourth group of solutions is given by u4 =
2c1,0,0,1 f4

F4
, where

f4 =2(tc2
1,0,0,1 +

(
(2x − 2z) c2,0,0,0 + c0,0,1,0

)
c1,0,0,1 + c2,0,0,0(y2c0,2,0,1 + yc0,1,0,1

− 24yc2,0,0,0 + 4c0,0,0,1))c1,0,0,1.
(3.11)

(v) The fifth group of solutions is given by u5 =
2c1,0,0,1 f5

F5
, where

f5 = 2c1,0,0,1

(
tc2

1,0,0,1 +
(
(2x − 2z) c2,0,0,0 + c0,0,1,0

)
c1,0,0,1 + 4c0,0,0,1c2,0,0,0

)
. (3.12)
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(vi) The sixth group of solutions is given by u6 =
2c1,0,0,1 f6

F6
, where

f6 = 2c1,0,0,1

(
tc2

1,0,0,1 +
(
(2x + 2z) c2,0,0,0 + c0,0,1,0

)
c1,0,0,1 + y

(
y2c0,3,0,1 + c0,1,0,1

)
c2,0,0,0

)
. (3.13)

To illustrate the high-order rational solutions of HBLE (2.11), random parameters are selected as
follows.

(1) c0,0,0,0 = 1, c0,0,0,1 = 1, c0,0,1,0 = 2, c1,0,0,0 = 1, c2,0,0,0 = 1,

u1 =
4x + 4z + 2 − 24y

x2 + (−12y + 2z + 1) x + 36y2 + (−12z + 63) y + z2 + t + 2z + 1
, (3.14)

(a) (b)

Figure 1. 3D plot (a) and density plot (b) of u1 (3.14) at t = 1, y = 1.

(2) c0,0,0,1 = 1, c0,0,1,0 = 1, c0,1,0,1 = 1, c0,3,0,1 = 1, c1,0,0,1 = 1, c2,0,0,0 = 1,

u2 =
2y3 + 2t + 4x − 46y + 4z + 6

−24y4 + (t + x + 3z + 2) y3 − 24y2 + (t − 23x + 27z − 22) y + x2 + (t + 2z + 3) x − 3z2 + (−t + 1) z + t + 8
, (3.15)

(3) c0,0,0,0 = 1, c0,0,0,1 = 1, c0,0,1,0 = 1, c0,1,0,1 = 1, c0,2,0,1 = 1, c1,0,0,0 = 1, c1,0,0,1 = 1, c2,0,0,0 = 1,

u3 =
2y2 + 2t + 4x + 2y + 4z + 2

(t + x + z) y2 + (t + x + z) y + x2 + (t + 2z + 1) x + z2 + (t + 1) z + t + 6
, (3.16)

(4) c0,0,0,1 = 1, c0,0,1,0 = 1, c0,1,0,1 = 1, c0,2,0,1 = 1, c1,0,0,1 = 1, c2,0,0,0 = 1,

u4 =
2y2 + 2t + 4x − 46y − 4z + 10

−24y3 + (t + x − 3z − 20) y2 + (t − 23x − 27z − 20) y + x2 + (t − 2z + 5) x − 3z2 + (t + 1) z + t + 10
, (3.17)
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(a) (b)

Figure 2. 3D plot (a) and density plot (b) of u2 (3.15) at t = 0.2, y = 1.

(a) (b)

Figure 3. 3D plot (a) and density plot (b) of u3 (3.16) at t = 0.2, y = 3.

(5) c0,0,0,0 = 1, c0,0,0,1 = 1, c0,0,1,0 = 1, c1,0,0,1 = 1, c2,0,0,0 = 1,

u5 =
2t + 4x − 4z + 10

−3z2 + (t − 2x − 96y + 1) z + (x + 24y + 1) t + x2 − 576y2 + 5x + 72y + 1
, (3.18)
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(a) (b)

Figure 4. 3D plot (a) and density plot (b) of u4 (3.17) at t = 1, z = 60.

(a) (b)

Figure 5. 3D plot (a) and density plot (b) of u5 (3.18) at t = 1, y = 1.

(6) c0,0,0,1 = 1, c0,0,1,0 = 1, c0,1,0,1 = 1, c0,3,0,1 = 1, c1,0,0,1 = 1, c2,0,0,0 = 1,

u6 =
2y3 + 2t + 4x + 2y + 4z + 2

(t + x + z) y3 + (t + x + z) y + x2 + (t + 2z + 1) x + z2 + (t + 1) z + t + 6
, (3.19)

Six sets of the high-order rational solutions of the (3+1)-dimensional HBLE were obtained from
the polynomial solution of the bilinear equation with the link u = 2(lnF)x.
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(a) (b)

Figure 6. 3D plot (a) and density plot (b) of u6 (3.19) at t = 1, x = 1.

4. Conclusions

Using the generalized bilinear method with the prime number p = 3 and applying the linear su-
perposition principle, a new equation called the (3+1)-dimensional HBLE was constructed. The new
equation possesses a similar bilinear form to the bilinear equation of the (3+1)-dimensional HBE,
but it includes additional nonlinear terms and higher nonlinearity. In addition, the study investigated
the highest-order rational function solutions and their dynamic motion of the high-dimensional HBLE
using the mathematical software Maple. The analyticity conditions of the resulting solutions were in-
vestigated, and six groups of high-order rational-type solutions which were set by the highest degree of
x, y, z, t to be 2–4–2–1, were derived. By observing the above solutions, it can be seen that the highest
power of x is second and the highest power of y is fourth. However, the highest order of z and t are
two and one respectively. It is hard to say that the HBLE does not have any other types of high-order
solutions. Due to the fact that all six groups of solutions are rational types, the solutions ui(i = 1, ...6)
are computed and plotted as examples, using specific values of the parameters. It is easy to see that
the rational-type solutions can have various shapes. Figures 1–6 showed the physical appearance of
the rational solution ui(i = 1, ...6) (3.14–3.19) under some appropriate parameter selection. 3D plots
and density plots of these solutions were presented with special values respectively. We also observed
that rational solutions can exhibit various forms. Significantly, all of these rational solutions have the
property that limx→∞ u = 0, limy→∞ u = 0, limz→∞ u = 0. This means that the rational component of
the wave will gradually diminish as it propagates. Figure 1 represented a kink soliton solution. Fig-
ures 2 and 5 both depicted two cross solitons solutions. Figure 3 showed a periodic-singular soliton
solution. Figure 4 resembled optical soliton solutions. In Figure 6, the rational solutions demonstrated
the interaction between two cross solitons and one lump. Some interactive phenomena may occur in
all three dimensions over a period of time. It could be assumed that two waves collided and separated,
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maintaining similar shapes in a very short time. There are many other types of solutions to the (3+1)-
dimensional HBLE that are worth studying, such as N-solitons, lump solutions, rogue wave solutions,
and so on. These solutions will be explored in the next work. It is hoped that the results obtained in
this paper can be helpful in explaining the nonlinear phenomenon in the field of mathematical physics
and engineering.
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