Research article

Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level

  • Received: 13 September 2021 Accepted: 28 November 2021 Published: 08 December 2021
  • In this paper, a mathematical model describing the dynamical of the spread of hepatitis C virus (HCV) at a cellular level with a stochastic noise in the transmission rate is developed from the deterministic model. The unique time-global solution for any positive initial value is served. The Ito's Formula, the suitable Lyapunov function, and other stochastic analysis techniques are used to analyze the model dynamics. The numerical simulations are carried out to describe the analytical results. These results highlight the impact of the noise intensity accelerating the extinction of the disease.

    Citation: Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo. Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070

    Related Papers:

  • In this paper, a mathematical model describing the dynamical of the spread of hepatitis C virus (HCV) at a cellular level with a stochastic noise in the transmission rate is developed from the deterministic model. The unique time-global solution for any positive initial value is served. The Ito's Formula, the suitable Lyapunov function, and other stochastic analysis techniques are used to analyze the model dynamics. The numerical simulations are carried out to describe the analytical results. These results highlight the impact of the noise intensity accelerating the extinction of the disease.



    加载中


    [1] C. J. Burrell, C. R. Howard, F. A. Murphy, Viral Syndromes, Fenner White Med. Virol., 2017 (2017), 537–556. doi: 10.1016/B978-0-12-375156-0.00039-4. doi: 10.1016/B978-0-12-375156-0.00039-4
    [2] World Health Organization (WHO), Guidelines for the Screening Care and Treatment of Persons with Chronic Hepatitis C Infection Updated Version April 2016: Guidelines, 2016. Available from: https://apps.who.int/iris/handle/10665/205035.
    [3] S. W. Wibawa, Mengenal hepatitis C, Infeksi Bisu Yang Menghantui Indonesia, 2017. Available from: https://sains.kompas.com/read/2017/08/16/221249323/mengenal-hepatitis-c-infeksi-bisu-yang-menghantui-indonesia?page=all.
    [4] Ministry of Health Republic of Indonesia, Guidelines for Controlling Viral Hepatitis, 2012. Available from: http://hukor.kemkes.go.id/.
    [5] World Health Organization (WHO), Hepatitis C, 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c.
    [6] Alhawaris, Hepatitis C: Epidemiologi, Etiologi, dan Patogenitas, Jurnal Sains Dan Kesehatan, 2 (2019), 139–150. doi: 10.25026/jsk.v2i2.132. doi: 10.25026/jsk.v2i2.132
    [7] R. Sanjuán, P. Domingo-Calap, Mechanisms of viral mutation, Cell. Mol. Life Sci., 73 (2016), 4433–4448. doi: 10.1007/s00018-016-2299-6. doi: 10.1007/s00018-016-2299-6
    [8] I. Dontwi, N. Frempong, D. Bentil, I. Adetunde, E. Owusu-Ansah, Mathematical modeling of hepatitis C virus transmission among injecting drug users and the impact of vaccination, Am. J. Sci. Ind. Res., 1 (2010), 41–46.
    [9] D. Lestari, L. Candrawati, Global stability of SACR epidemic model for hepatitis C on injecting drug users, in Proceeding of 3rd International Conference on Research, Implementation and Education of Mathematics and Science, 2016. Available from: http://seminar.uny.ac.id/icriems/sites/seminar.uny.ac.id.icriems/files/prosiding/M-21.pdf.
    [10] M. Imran, M. Hassan, M. Dur-E-Ahmad, A. Khan, A comparison of a deterministic and stochastic model for hepatitis C with an isolation stage, J. Biol. Dyn., 7 (2013), 276–301. doi: 10.1080/17513758.2013.859856. doi: 10.1080/17513758.2013.859856
    [11] A. B. Pitcher, A. Borquez, B. Skaathun, N. K. Martin, Mathematical modeling of hepatitis C virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, J. Theor. Biol., 481 (2019), 194–201. doi: 10.1016/j.jtbi.2018.11.013. doi: 10.1016/j.jtbi.2018.11.013
    [12] E. H. Elbasha, Model for hepatitis C virus transmissions, Math. Biosci. Eng., 10 (2013), 1045–1065. doi: 10.3934/mbe.2013.10.1045. doi: 10.3934/mbe.2013.10.1045
    [13] A. G. Lim, H. Qureshi, H. Mahmood, S. Hamid, C. F. Davies, A. Trickey, et.al., Curbing the hepatitis C virus epidemic in Pakistan: the impact of scaling up treatment and prevention for achieving elimination, Int. J. Epidemiol., 47 (2018), 550–560. doi: 10.1093/ije/dyx270. doi: 10.1093/ije/dyx270
    [14] M. Shen, Y. Xiao, W. Zhou, Z. Li, Global dynamics and applications of an epidemiological model for hepatitis c virus transmission in China, Discrete Dyn. Nat. Soc., 2015 (2015), 1–13. doi: 10.1155/2015/543029. doi: 10.1155/2015/543029
    [15] J. Khodaei-Mehr, S. Tangestanizadeh, M. Sharifi, R. Vatankhah, M. Eghtesad, Hepatitis C virus epidemic control using a nonlinear adaptive strategy, preprint, arXiv: 2007.13522.
    [16] R. Avendan¯o, L. Esteva, J. Flores, J. F. Allen, G. G'omez, J. L'opez-Estrada, A mathematical model for the dynamics of hepatitis C, J. Theor. Med., 4 (2002), 109–118. doi: 10.1080/10273660290003777. doi: 10.1080/10273660290003777
    [17] H. Dahari, J. E. Layden-Almer, E. Kallwitz, R. M. Ribeiro, S. J. Cotler, T. J. Layden, et al., A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease, Gastroenterology, 136 (2009), 1402–1409. doi: 10.1053/j.gastro.2008.12.060. doi: 10.1053/j.gastro.2008.12.060
    [18] J. Guedj, L. Rong, H. Dahari, A. S. Perelson, A perspective on modelling hepatitis C virus infection, J. Viral Hepatitis, 17 (2010), 825–833. doi: 10.1111/j.1365-2893.2010.01348.x. doi: 10.1111/j.1365-2893.2010.01348.x
    [19] I. Zada, M. N. Jan, N. Ali, D. Alrowail, K. S. Nisar, G. Zaman, Mathematical analysis of hepatitis B epidemic model with optimal control, Adv. Differ. Equations, 1 (2021), 1–29. doi: 10.1186/s13662-021-03607-2. doi: 10.1186/s13662-021-03607-2
    [20] T. S. Shaikh, N. Fayyaz, N. Ahmed, N. Shahid, M. Rafiq, I. Khan, et al., Numerical study for epidemic model of hepatitis-B virus, Eur. Phys. J. Plus, 136 (2021), 1–22. doi: 10.1140/epjp/s13360-021-01248-8. doi: 10.1140/epjp/s13360-021-01248-8
    [21] J. E. Pearson, P. Krapivsky, A. S. Perelson, Stochastic theory of early viral infection: continuous versus burst production of virions, PLoS Comput. Biol., 7 (2011), e1001058. doi: 10.1371/journal.pcbi.1001058. doi: 10.1371/journal.pcbi.1001058
    [22] T. Nguyen, J. Guedj, HCV kinetic models and their implications in drug development, CPT Pharmacometrics Syst. Pharmacol., 4 (2015), 231–242. doi: 10.1002/psp4.28. doi: 10.1002/psp4.28
    [23] Indonesian Heart Research Association (Perhimpunan Peneliti Hati Indonesia/PPHI), Consensus on the Management of Hepatitis C in Indonesia, Jakarta: PPHI, 2017.
    [24] A. U. Neumann, N. P. Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden, et al., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282 (1998), 103–107. doi: 10.1126/science.282.5386.103. doi: 10.1126/science.282.5386.103
    [25] L. J. S. Allen, G. E. Lahodny, Extinction thresholds in deterministic and stochastic epidemic models, J. Biol. Dyn., 6 (2012), 590–611. doi: 10.1080/17513758.2012.665502. doi: 10.1080/17513758.2012.665502
    [26] T. Feng, Z. Qiu, X. Meng, Dynamics of a stochastic hepatitis C virus system with host immunity, Discrete Contin. Dyn. Syst. B, 24 (2019), 6367–6385. doi: 10/3934/dcdsb.2019143.
    [27] C. J. Mode, C. K. Sleeman, Stochastic processes in epidemiology: HIV/AIDS, other infectious diseases and computers, in World Scientific, (2000).
    [28] M. Merdan, Z. Bekiryazici, T. Kesemen, T. Khaniyev, Deterministic stability and random behavior of a hepatitis C model, PloS One, 12 (2017), e0181571. doi: 10.1371/journal.pone.0181571. doi: 10.1371/journal.pone.0181571
    [29] Z. U. A. Zafar, N. Ali, S. Younas, S. F. Abdelwahab, K. S. Nisar, Numerical investigations of stochastic HIV/AIDS infection model, Alexandria Eng. J., 60 (2021), 5341–5363. doi: 10.1016/j.aej.2021.04.027. doi: 10.1016/j.aej.2021.04.027
    [30] M. A. Noor, A. Raza, M. S. Arif, M. Rafiq, K. S. Nisar, I. Khan, et al., Non-standard computational analysis of the stochastic Covid-19 pandemic model: an application of computational biology, Alexandria Eng. J., 61 (2022), 619–630. doi: 10.1016/j.aej.2021.06.039. doi: 10.1016/j.aej.2021.06.039
    [31] K. Hattaf, M. Mahrouf, J. Adnani, N. Yousfi, Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity, Phys. A, 490 (2018), 591–600. doi: 10.1016/j.physa.2017.08.043. doi: 10.1016/j.physa.2017.08.043
    [32] M. Mahrouf, K. Hattaf, N. Yousfi, Dynamics of a stochastic viral infection model with immune response, Math. Modell. Nat. Phenom., 12 (2017), 15–32.
    [33] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6. doi: 10.1016/S0025-5564(02)00108-6
    [34] B. Øksendal, Stochastic differential equations: an introduction with applications, Springer, 2003.
    [35] G. Hu, K. Wang, Existence and uniqueness theorem for stochastic differential equations with self-exciting switching, Discrete Dyn. Nat. Soc., 2011 (2011), 1–12. doi: 10.1155/2011/549651. doi: 10.1155/2011/549651
    [36] Y. Zhou, W. Zhang, S. Yuan, Survival dan stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. doi: 10.1016/j.amc.2014.06.100. doi: 10.1016/j.amc.2014.06.100
    [37] X. Mao, G. Marion, E. Renshaw, Environmental brownian noise suppresses explosions in population dynamics, Stochastic Processes Their Appl., 97 (2002), 95–110. doi: 10.1016/S0304-4149(01)00126-0. doi: 10.1016/S0304-4149(01)00126-0
    [38] L. Wang, H. Huang, A. Xu, W. Wang, Stochastic extinction in an SIRS epidemic model incorporating media coverage, Abstr. Appl. Anal., 2013 (2013), 1–8. doi: 10.1155/2013/891765. doi: 10.1155/2013/891765
    [39] F. Rao, Dynamics analysis of a stochastic SIR epidemic model, Abstr. Appl. Anal., 2014 (2014), 1–9. doi: 10.1155/2014/356013. doi: 10.1155/2014/356013
    [40] Y. Zhang, Y. Li, Q. Zhang, A. Li, Behavior of a stochastic SIR epidemic model with saturated incidence and vaccination rules, Phys. A, 501 (2018), 178–187. doi: 10.1016/j.physa.2018.02.191. doi: 10.1016/j.physa.2018.02.191
    [41] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
    [42] T. Feng, Z. Qiu, Global analysis of a stochastic TB model with vaccination and treatment, Discrete Contin. Dyn. Syst. B, 24 (2019), 2923–2939. doi: 10.3934/dcdsb.2018292. doi: 10.3934/dcdsb.2018292
    [43] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Dynamics of a stochastic tuberculosis model with constant recruitment and varying total population size, Phys. A, 469 (2017), 518–530. doi: 10.1016/j.physa.2016.11.053. doi: 10.1016/j.physa.2016.11.053
    [44] B. Boukanjime, M. E. Fatini, A stochastic hepatitis B epidemic model driven by Lévy noise, Phys. A, 521 (2019), 796–806. doi: 10.1016/j.physa.2019.01.097. doi: 10.1016/j.physa.2019.01.097
    [45] L. Rong, R. M. Ribeiro, A. S. Perelson, Modeling quasispecies and drug resistance in hepatitis C patients treated with a protease inhibitor, Bull. Math. Biol., 74 (2012), 1789–1817. doi: 10.1007/s11538-012-9736-y. doi: 10.1007/s11538-012-9736-y
    [46] D. Wodarz, Hepatitis c virus dynamics and pathology: the role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743–1750. doi: 10.1099/vir.0.19118-0
    [47] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. doi: 10.3390/computation8020049. doi: 10.3390/computation8020049
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2132) PDF downloads(132) Cited by(3)

Article outline

Figures and Tables

Figures(11)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog