Most existing physiological testing systems broadly classify monitored physiological data into three categories: normal, abnormal, and highly abnormal, but do not consider differences in the importance of data within the same category, which may result in the loss of data of higher importance. In addition, the purpose of physiological monitoring is to detect health abnormalities in patients earlier and faster, thus enabling risk avoidance and real-time rescue. Therefore, we designed a system called the adaptive physiological monitoring and rescue system (APMRS) that innovatively incorporates emergency rescue functions into traditional physiological monitoring systems using the rescue of modified-MAC (RM-MAC) protocol. The relay selection (RS) algorithm of APMRS can select the appropriate relay to forward based on the importance of the physiological data, thus ensuring priority transmission of more important monitoring data. In addition, we apply deep learning target trajectory prediction technology to the indoor rescue module (IRM) of APMRS to provide high-performance scheduling of location tracking nodes in advance by trajectory prediction. It reduces network energy consumption and ensures perceptual tracking accuracy. When APMRS monitors abnormal physiological data that may endanger a patient's life, IRM can implement effective and fast location rescue to avoid risks.
Citation: Kezhou Chen, Xu Lu, Rongjun Chen, Jun Liu. Wireless wearable biosensor smart physiological monitoring system for risk avoidance and rescue[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1496-1514. doi: 10.3934/mbe.2022069
Most existing physiological testing systems broadly classify monitored physiological data into three categories: normal, abnormal, and highly abnormal, but do not consider differences in the importance of data within the same category, which may result in the loss of data of higher importance. In addition, the purpose of physiological monitoring is to detect health abnormalities in patients earlier and faster, thus enabling risk avoidance and real-time rescue. Therefore, we designed a system called the adaptive physiological monitoring and rescue system (APMRS) that innovatively incorporates emergency rescue functions into traditional physiological monitoring systems using the rescue of modified-MAC (RM-MAC) protocol. The relay selection (RS) algorithm of APMRS can select the appropriate relay to forward based on the importance of the physiological data, thus ensuring priority transmission of more important monitoring data. In addition, we apply deep learning target trajectory prediction technology to the indoor rescue module (IRM) of APMRS to provide high-performance scheduling of location tracking nodes in advance by trajectory prediction. It reduces network energy consumption and ensures perceptual tracking accuracy. When APMRS monitors abnormal physiological data that may endanger a patient's life, IRM can implement effective and fast location rescue to avoid risks.
[1] | A. Haleem, M. Javaid, R. P. Singh, R. Suman, S. Rab, Biosensors applications in medical field: A brief review, Sens. Int., 2021 (2021), 100100. doi: 10.1016/j.sintl.2021.100100. doi: 10.1016/j.sintl.2021.100100 |
[2] | C. Chakraborty, B. Gupta, S. K. Ghosh, A review on telemedicine-based WBAN framework for patient monitoring, Telemed. e-Health, 19 (2013), 619-626. doi: 10.1089/tmj.2012.0215. doi: 10.1089/tmj.2012.0215 |
[3] | P. Kassal, M. D. Steinberg, I. M. Steinberg, Wireless chemical sensors and biosensors: A review, Sens. Actuators B Chem., 266 (2018), 228-245. doi: 10.1016/j.snb.2018.03.074. doi: 10.1016/j.snb.2018.03.074 |
[4] | E. M. Green, R. van Mourik, C. Wolfus, S. B. Heitner, O. Dur, M. J. Semigran, Machine learning detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor, NPJ Digit. Med., 2 (2019), 1-4. doi: 10.1038/s41746-019-0130-0. doi: 10.1038/s41746-019-0130-0 |
[5] | R. Karthickraja, R. Kumar, S. Kirubakaran, R. Manikandan, COVID-19 prediction and symptom analysis using wearable sensors and IoT, in International Journal of Pervasive Computing and Communications, (2020). doi: 10.1108/IJPCC-09-2020-0146. |
[6] | Y. Mao, W. Yue, T. Zhao, M. Shen, B. Liu, S. Chen, A self-powered biosensor for monitoring maximal lactate steady state in sport training, Biosensors, 10 (2020), 75. doi: 10.3390/bios10070075. doi: 10.3390/bios10070075 |
[7] | A. Salim, S. Lim, Recent advances in noninvasive flexible and wearable wireless biosensors, Biosen. Bioelectron., 141 (2019), 111422. doi: 10.1016/j.bios.2019.111422. doi: 10.1016/j.bios.2019.111422 |
[8] | Y. Song, J. Min, Y. Yu, H. Wang, Y. Yang, H. Zhang, et al, Wireless battery-free wearable sweat sensor powered by human motion, Sci. Adv., 6 (2020), eaay9842. doi: 10.1126/sciadv.aay9842. doi: 10.1126/sciadv.aay9842 |
[9] | K. S. Kwak, S. Ullah, N. Ullah, An overview of IEEE 802.15.6 standard, in 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, (2010). doi: 10.1109/ISABEL.2010.5702867. |
[10] | S. Ullah, M. Mohaisen, M. A. Alnuem, A review of IEEE 802.15. 6 MAC, PHY and security specifications, Int. J. Distrib. Sens. Netw., 9 (2013), 950704. doi: 10.1155/2013/950704. doi: 10.1155/2013/950704 |
[11] | D. Yuan, G. Zheng, H. Ma, J. Shang, J. Li, An adaptive MAC protocol based on IEEE802.15.6 for wireless body area networks, Wirel. Commun. Mob. Comput., 2019 (2019). doi: 10.1155/2019/3681631. doi: 10.1155/2019/3681631 |
[12] | A. A. Ibrahim, O. Bayat, O. N. Ucan, S. Salisu, Weighted energy and QoS based multi-hop transmission routing algorithm for WBAN, in 2020 6th International Engineering Conference "Sustainable Technology and Development", (2020). doi: 10.1109/IEC49899.2020.9122909. |
[13] | T. Samal, M. R. Kabat, A prioritized traffic scheduling with load balancing in wireless body area networks, J. King Saud Univ. Comput. Inf. Sci., 2021 (2021). doi: 10.1016/j.jksuci.2020.12.023. doi: 10.1016/j.jksuci.2020.12.023 |
[14] | Y. Zhang, B. Zhang, S. Zhang, An adaptive energy-aware relay mechanism for IEEE 802.15. 6 wireless body area networks, Wirel. Pers. Commun., 115 (2020), 2363-2389. doi: 10.1007/s11277-020-07686-4. doi: 10.1007/s11277-020-07686-4 |
[15] | R. C. Tseng, C. C. Chen, S. M. Hsu, H. S. Chuang, Contact-lens biosensors, Sensors, 18 (2018), 2651. doi: 10.3390/s18082651. doi: 10.3390/s18082651 |
[16] | J. Hu, D. Liu, Z. Yan, H. Liu, Experimental analysis on weight K-nearest neighbor indoor fingerprint positioning, IEEE Internet Things J., 6 (2018), 891-897. doi: 10.1109/JIOT.2018.2864607. doi: 10.1109/JIOT.2018.2864607 |
[17] | L Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, et al., SGCN: Sparse graph convolution network for pedestrian trajectory prediction, preprint, arXiv: 2104.01528v1. |
[18] | J. I. Bangash, A. H. Abdullah, M. H. Anisi, A. W. Khan, A survey of routing protocols in wireless body sensor networks, Sensors, 14 (2014), 1322-1357. doi: 10.3390/s140101322. doi: 10.3390/s140101322 |
[19] | J., Anand, D. Sethi, Comparative analysis of energy efficient routing in WBAN, in 2017 3rd International Conference on Computational Intelligence and Communication Technology, (2017). doi: 10.1109/CIACT.2017.7977373. |
[20] | Y. Qu, G. Zheng, H. Ma, X. Wang, B. Ji, H. Wu, A survey of routing protocols in WBAN for healthcare applications, Sensors, 19 (2019), 1638. doi: 10.3390/s19071638. doi: 10.3390/s19071638 |
[21] | A. S. Alzahrani, K. Almotairi, Performance comparison of WBAN routing protocols, in 2019 2nd International Conference on Computer Applications and Information Security, (2019). doi: 10.1109/CAIS.2019.8769594. |
[22] | Z. Ullah, I. Ahmed, F. A. Khan, M. Asif, M. Nawaz, T. Ali, et al., Energy-efficient harvested-aware clustering and cooperative routing protocol for WBAN (E-HARP), IEEE Access, 7 (2019), 100036-100050. doi: 10.1109/ACCESS.2019.2930652. doi: 10.1109/ACCESS.2019.2930652 |
[23] | Z. Qi, Y. Y. Xin, Study on WBAN-based efficient and energy saving access mechanisms, Int. J. Multimed Ubiquitous Eng., 11 (2016), 35-42. doi: 10.14257/ijmue.2016.11.6.04. doi: 10.14257/ijmue.2016.11.6.04 |
[24] | Y. Peng, S. Zhang, A power optimization routing algorithm for wireless body area network, Electron. Sci. Technol., 7 (2018), 34-37. |
[25] | Z. Ullah, I. Ahmed, K. Razzaq, M. K. Naseer, N. Ahmed, DSCB: Dual sink approach using clustering in body area network, Peer Peer Netw. Appl., 12 (2019), 357-370. doi: 10.1007/s12083-017-0587-z. doi: 10.1007/s12083-017-0587-z |
[26] | B. Abidi, A. Jilbab, E. H. Mohamed, An energy efficiency routing protocol for wireless body area networks, J. Med. Eng. Technol., 42 (2018), 290-297. doi: 10.1080/03091902.2018.1483440. doi: 10.1080/03091902.2018.1483440 |
[27] | Q. Nadeem, N. Javaid, S. N. Mohammad, M. Y. Khan, S. Sarfraz, M. Gull, Simple: Stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks, in 2013 eighth international conference on broadband and wireless computing, communication and applications, (2013). doi: 10.1109/BWCCA.2013.42. |
[28] | S. R. Chavva, R. S. Sangam, An energy-efficient multi-hop routing protocol for health monitoring in wireless body area networks, Netw. Model. Anal. Health Inform. Bioinform., 8 (2019), 1-10. doi: 10.1007/s13721-019-0201-9. doi: 10.1007/s13721-019-0201-9 |
[29] | Q. Huang, J. Tan, W. Jiang, A new load balancing routing scheme for wireless body area networks, in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, (2019). doi: 10.1109/ITNEC.2019.8729343. |
[30] | M. A. Kumar, C. V. Raj, On designing lightweight qos routing protocol for delay-sensitive wireless body area networks, in International Conference on Advances in Computing, Communications and Informatics, (2017). |
[31] | S. Vetale, A. V. Vidhate, Hybrid data-centric routing protocol of wireless body area network, in 2017 International Conference on Advances in Computing, Communication and Control, (2017). doi: 10.1109/ICAC3.2017.8318793. |
[32] | P. S. Banerjee, S. N. Mandal, D. De, B. Maiti, iSleep: Thermal entropy aware intelligent sleep scheduling algorithm for wireless sensor network, Microsyst. Technol., 26 (2020), 2305-2323. doi: 10.1007/s00542-019-04706-7. doi: 10.1007/s00542-019-04706-7 |
[33] | S. Radhika, P. Rangarajan, Fuzzy based sleep scheduling algorithm with machine learning techniques to enhance energy efficiency in wireless sensor networks, Wirel. Pers. Commun., 118 (2021), 3025-3044. doi: 10.1007/s11277-021-08167-y. doi: 10.1007/s11277-021-08167-y |
[34] | J. Amirian, J. B. Hayet, J. Pettré, Social ways: Learning multi-modal distributions of pedestrian trajectories with gans, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, (2019). |
[35] | A. Mohamed, K. Qian, M. Elhoseiny, C. Claudel, Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020). |