Research article Special Issues

Dynamic optimization of a two-stage fractional system in microbial batch process

  • Received: 27 September 2024 Revised: 25 November 2024 Accepted: 04 December 2024 Published: 12 December 2024
  • In this paper, we proposed a dynamic optimization problem involving a two-stage fractional system subjected to both a terminal state inequality constraint and continuous state inequality constraints in a microbial batch process. The objective function was the productivity of 1,3-propanediol at the terminal time, while the decision variables were the initial concentrations of biomass and glycerol, and the terminal time of the batch process. We first equivalently transformed the problem with free terminal time into one with fixed terminal time in a new time horizon by applying a proposed time-scaling transformation. We then converted the equivalent problem into an optimization problem with only box constraints by using an exact penalty function method. A novel third-order numerical scheme was presented for solving the two-stage fractional system. On this basis, we developed an improved particle swarm optimization algorithm to solve the resulting optimization problem. Finally, numerical results showed that a significant increase in the productivity of 1,3-propanediol at the terminal time was obtained compared with the previously reported results.

    Citation: Xiaopeng Yi, Huey Tyng Cheong, Zhaohua Gong, Chongyang Liu, Kok Lay Teo. Dynamic optimization of a two-stage fractional system in microbial batch process[J]. Electronic Research Archive, 2024, 32(12): 6680-6697. doi: 10.3934/era.2024312

    Related Papers:

  • In this paper, we proposed a dynamic optimization problem involving a two-stage fractional system subjected to both a terminal state inequality constraint and continuous state inequality constraints in a microbial batch process. The objective function was the productivity of 1,3-propanediol at the terminal time, while the decision variables were the initial concentrations of biomass and glycerol, and the terminal time of the batch process. We first equivalently transformed the problem with free terminal time into one with fixed terminal time in a new time horizon by applying a proposed time-scaling transformation. We then converted the equivalent problem into an optimization problem with only box constraints by using an exact penalty function method. A novel third-order numerical scheme was presented for solving the two-stage fractional system. On this basis, we developed an improved particle swarm optimization algorithm to solve the resulting optimization problem. Finally, numerical results showed that a significant increase in the productivity of 1,3-propanediol at the terminal time was obtained compared with the previously reported results.



    加载中


    [1] V. S. Bisaria, A. Kondo, Bioprocessing of Renewable Resources to Commodity Bioproducts, John Wiley & Sons Inc., New Jersey, 2014.
    [2] C. S. Lee, M. K. Aroua, W. M. A. W. Daud, P. Cognet, Y. Pérès-Lucchese, P. Fabre, et al., A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method, Renew. Sustain. Energy Rev., 42 (2015), 963–972. https://doi.org/10.1016/j.rser.2014.10.033 doi: 10.1016/j.rser.2014.10.033
    [3] Y. Sun, J. Shen, L. Yan, J. Zhou, L. Jiang, Y. Chen, et al., Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges, Process Biochem., 71 (2018), 134–146. https://doi.org/10.1016/j.procbio.2018.05.009 doi: 10.1016/j.procbio.2018.05.009
    [4] Z. Xiu, A. Zeng, L. An, Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1,3-propanediol, J. Dalian Univ. Technol., 40 (2000), 428–433.
    [5] C. Liu, Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation, Appl. Math. Model., 37 (2013), 6899–6908. https://doi.org/10.1016/j.apm.2013.02.021 doi: 10.1016/j.apm.2013.02.021
    [6] G. Cheng, L. Wang, R. Loxton, Q. Lin, Robust optimal control of a microbial batch culture process, J. Optim. Theory Appl., 167 (2015), 342–362. https://doi.org/10.1007/s10957-014-0654-z doi: 10.1007/s10957-014-0654-z
    [7] J. Yuan, C. Liu, X. Zhang, J. Xie, E. Feng, H. Yin, et al., Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint, J. Process Control, 44 (2016), 41–52. https://doi.org/10.1016/j.jprocont.2016.05.001 doi: 10.1016/j.jprocont.2016.05.001
    [8] C. Liu, Z. Gong, K. L. Teo, R. Loxton, E. Feng, Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process, Optim. Lett., 12 (2018), 1249–1264. https://doi.org/10.1007/s11590-016-1105-6 doi: 10.1007/s11590-016-1105-6
    [9] L. Wang, J. Yuan, C. Wu, X. Wang, Practical algorithm for stochastic optimal control problem about microbial fermentation in batch culture, Optim. Lett., 13 (2019), 527–541. https://doi.org/10.1007/s11590-017-1220-z doi: 10.1007/s11590-017-1220-z
    [10] J. Yuan, L. Wang, J. Zhai, K. L. Teo, C. Yu, M. Huang, et al., Robust optimal control for a batch nonlinear enzyme-catalytic switched time-delayed process with noisy output measurements, Nonlinear Anal. Hybrid Syst., 41 (2021), 101059. https://doi.org/10.1016/j.nahs.2021.101059 doi: 10.1016/j.nahs.2021.101059
    [11] L. Wang, J. Yuan, L. Meng, S. Zhao, J. Xie, M. Huang, et al., Multi-objective optimization of a nonlinear batch time-delay system with minimum system sensitivity, J. Nonlinear Var. Anal., 6 (2022), 35–64. https://doi.org/10.23952/jnva.6.2022.2.04 doi: 10.23952/jnva.6.2022.2.04
    [12] C. Xu, J. Zhang, L. Kong, X. Jin, J. Kong, Y. Bai, et al., Prediction model of wastewater pollutant indicators based on combined normalized codec, Mathematics, 10 (2022), 4283. https://doi.org/10.3390/math10224283 doi: 10.3390/math10224283
    [13] Y. Liu, X. Jin, C. Xu, H. Ma, Q. Wu, H. Liu, et al., Antimicrobial peptide screening from microbial genomes in sludge based on deep learning, Appl. Sci., 14 (2024), 1936. https://doi.org/10.3390/app14051936 doi: 10.3390/app14051936
    [14] D. Li, F. Zhu, X. Wang, Q. Jin, Multi-objective reinforcement learning for fed-batch fermentation process control, J. Process Control, 115 (2022), 89–99. https://doi.org/10.1016/j.jprocont.2022.05.003 doi: 10.1016/j.jprocont.2022.05.003
    [15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [16] R. Toledo-Hernandez, V. Rico-Ramirez, G. A. Iglesias-Silva, U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part Ⅰ: Fractional models for biological reactions, Chem. Eng. Sci., 117 (2014), 217–228. https://doi.org/10.1016/j.ces.2014.06.034 doi: 10.1016/j.ces.2014.06.034
    [17] E. Dulf, D. C. Vodnar, A. Danku, C. Muresan, O. Crisan, Fractional-order models for biochemical processes, Fractal Fract., 4 (2020), 12. https://doi.org/10.3390/fractalfract4020012 doi: 10.3390/fractalfract4020012
    [18] V. Mohan, N. Pachauri, B. Panjwani, D. V. Kamath, A novel cascaded fractional fuzzy approach for control of fermentation process, Bioresour. Technol., 357 (2022), 127337. https://doi.org/10.1016/j.biortech.2022.127377 doi: 10.1016/j.biortech.2022.127377
    [19] B. Radhakrishnan, P. Chandru, J. J. Nieto, A study of nonlinear fractional-order biochemical reaction model and numerical simulations, Nonlinear Anal.-Model. Control, 29 (2024), 588–605. https://doi.org/10.15388/namc.2024.29.35109 doi: 10.15388/namc.2024.29.35109
    [20] D. Wang, J. Zhai, E. Feng, Fractional order modeling and parameter identification for a class of continuous fermentation, J. Syst. Sci. Math. Sci., 40 (2020), 1517–1530. https://doi.org/10.12341/jssms13961 doi: 10.12341/jssms13961
    [21] P. Mu, L. Wang, Y. An, Y. Ma, A novel fractional microbial batch culture process and parameter identification, Differ. Equ. Dyn. Syst., 26 (2018), 265–277. https://doi.org/10.1007/s12591-017-0381-7 doi: 10.1007/s12591-017-0381-7
    [22] C. Liu, X. Yi, Y. Feng, Modelling and parameter identification for a two-stage fractional dynamical system in microbial batch process, Nonlinear Anal.-Model. Control, 27 (2022), 350–367. https://doi.org/10.15388/namc.2022.27.26234 doi: 10.15388/namc.2022.27.26234
    [23] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [24] P. Deuflhard, Newton Methods for Nonlinear Problems, Springer, Berlin, 2011. https://doi.org/10.1007/978-3-642-23899-4
    [25] X. Yi, C. Liu, H. T. Cheong, K. L. Teo, S. Wang, A third-order numerical method for solving fractional ordinary differential equations, AIMS Math., 9 (2024), 21125–21143. https://doi.org/10.3934/math.20241026 doi: 10.3934/math.20241026
    [26] A. Xing, Z. Chen, C. Wang, Y. Yao, Exact penalty function approach to constrained optimal control problems, Optim. Control Appl. Methods, 10 (1989), 173–180. https://doi.org/10.1002/oca.4660100207 doi: 10.1002/oca.4660100207
    [27] K. L. Teo, B. Li, C. Yu, V. Rehbock, Applied and Computational Optimal Control, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-69913-0
    [28] J. Yuan, D. Yang, D. Xun, K. L. Teo, C. Wu, A. Li, et al., Sparse optimal control of cyber-physical systems via PQA approach, Pac. J. Optim., 2025, in Press.
    [29] J. Nayak, H. Swapnarekha, B. Naik, G. Dhiman, S. Vimal, 25 years of particle swarm optimization: Flourishing voyage of two decades, Arch. Comput. Methods Eng., 30 (2023), 1663–1725. https://doi.org/10.1007/s11831-022-09849-x doi: 10.1007/s11831-022-09849-x
    [30] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [31] C. Liu, M. Han, Time-delay optimal control problem in microbial fed-batch fermentation process, Control Decis., 35 (2020), 2407–2414. https://doi.org/10.13195/j.kzyjc.2019.0254 doi: 10.13195/j.kzyjc.2019.0254
    [32] C. Liu, M. Han, Time-delay optimal control of a fed-batch production involving multiple feeds, Discrete Contin. Dyn. Syst. - Ser. S, 13 (2020), 1697–1709. https://doi.org/10.3934/dcdss.2020099 doi: 10.3934/dcdss.2020099
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(337) PDF downloads(26) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog