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Abstract: In this paper, we proposed a dynamic optimization problem involving a two-stage frac-
tional system subjected to both a terminal state inequality constraint and continuous state inequality
constraints in a microbial batch process. The objective function was the productivity of 1,3-propanediol
at the terminal time, while the decision variables were the initial concentrations of biomass and glyc-
erol, and the terminal time of the batch process. We first equivalently transformed the problem with
free terminal time into one with fixed terminal time in a new time horizon by applying a proposed time-
scaling transformation. We then converted the equivalent problem into an optimization problem with
only box constraints by using an exact penalty function method. A novel third-order numerical scheme
was presented for solving the two-stage fractional system. On this basis, we developed an improved
particle swarm optimization algorithm to solve the resulting optimization problem. Finally, numerical
results showed that a significant increase in the productivity of 1,3-propanediol at the terminal time
was obtained compared with the previously reported results.

Keywords: two-stage fractional system; dynamic optimization; numerical scheme; particle swarm
optimization; batch process

1. Introduction

1,3-Propanediol (1,3-PD) is a valuable chemical raw material widely used in various industries, in-
cluding food, cosmetics, and pharmaceuticals [1]. Two commonly used methods for producing 1,3-PD
are chemical synthesis and microbial fermentation [2]. Compared with chemical synthesis, microbial
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fermentation offers distinct advantages, such as operational simplicity and minimal byproduct forma-
tion. These benefits have garnered increasing attention from both academia and industry. Given the
impracticality of conducting numerous laboratory experiments to achieve high 1,3-PD conversion, it is
essential to study dynamic optimization models for microbial fermentation.

There are three modes of glycerol bioconversion to 1,3-PD: batch culture, continuous culture, and
fed-batch culture. In batch culture, the microorganism (Klebsiella pneumoniae) and the substrate (glyc-
erol) are injected into the bioreactor only once at the beginning, with no further additions or removals
during the culture period. In continuous culture, the substrate is continuously injected into the biore-
actor at a specific rate, while the culture fluid is simultaneously removed at the same rate. In fed-batch
culture, the operation alternates between batch and feeding phases. In this paper, we will focus on
batch culture because of its ease of operation and high yield of 1,3-PD, while also laying a theoretical
foundation for continuous and fed-batch culture processes [3]. To enhance the understanding of the
microbial batch process, a nonlinear kinetic system for substrate consumption and product formation is
proposed in [4]. A parameter identification problem with unknown time-delay and system parameters
is introduced in [5]. Based on these mathematical models, a robust dynamic optimization problem with
respect to uncertain system parameters is studied in [6]. A dynamic optimization problem with a cost
sensitivity constraint is developed in [7]. A bi-objective dynamic optimization problem is discussed
in [8], and a stochastic dynamic optimization problem is presented in [9]. More recently, a robust
dynamic optimization problem governed by a nonlinear switched time-delay system involving an un-
known time-varying function is formulated in [10]. A multi-objective dynamic optimization problem
subject to a nonlinear time-delay system aimed at balancing system cost and system sensitivity is con-
sidered in [11]. Furthermore, artificial intelligence methods, such as deep learning and reinforcement
learning, have been explored in various fields; see, for example, [12–14]. In [12], a multifactor pre-
diction model incorporating a combined normalization layer and a codec is proposed to effectively
address data differences and complex nonlinearity in the prediction of industrial wastewater pollutants.
An antimicrobial peptide screening model based on long short-term memory neural networks with an
attention mechanism is presented in [13]. In [14], multi-objective reinforcement learning is employed
to obtain Pareto optimal solution sets for each objective in the control of fed-batch fermentation pro-
cesses. Although the aforementioned results are of interest, they are restricted to dynamical systems
with integer-order derivatives.

Fractional derivatives extend integer-order derivatives to non-integer orders, providing a powerful
tool for modeling and analyzing complex systems [15]. Unlike integer-order derivatives, fractional
derivatives are regarded as nonlocal operators with memory and hereditary because they take into
account a broader range of historical influences. As a result, fractional dynamical systems are well-
suited for representing complex phenomena characterized by memory effects. In recent years, many
successful fractional models have been studied in bioengineering research. For example, in [16], frac-
tional differential equations are used to model biological reactive systems such as tequila production,
bioethanol production, and the thermal hydrolysis process, demonstrating the feasibility and effective-
ness of fractional calculus in modeling biological process systems. A fractional mathematical model
for erythritol and mannitol synthesis is established in [17], which proves to be useful for both pre-
diction and process optimization. In [18], a novel cascaded control strategy based on fractional-order
fuzzy proportional-derivative/proportional-integral control is proposed for temperature regulation in
the fermentation process. A nonlinear fractional Michaelis-Menten enzyme kinetics model is intro-
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duced in [19], and a homotopy perturbation method is developed to effectively solve this biochemical
reaction process. It is worth noting that fractional modeling has also been gaining popularity in the bio-
conversion of glycerol to 1,3-PD. In [20], a fractional parameter identification problem is considered
in the continuous culture, where the dynamical system is solved by applying the trapezoidal method
and the predictor-corrector method. A single-stage fractional dynamical system with unknown kinetic
parameters and fractional orders is proposed to describe the batch culture in [21]. Given that the ki-
netic behavior of the stationary phase described in [21] does not align well with experimental results, a
new parameter identification problem involving a two-stage fractional dynamical system with different
fractional orders and kinetic parameters is introduced in [22]. However, to the best of our knowledge,
no study on the dynamic optimization of a two-stage fractional system in 1,3-PD batch production has
been reported in the literature.

Motivated by this, in this paper, we propose a dynamic optimization problem involving the two-
stage fractional system in [22] to optimize the microbial batch process, aiming to maximize the pro-
ductivity of 1,3-PD at the terminal time. The decision variables of this process include the initial
concentrations of biomass and glycerol, along with the terminal time of the batch process. By applying
a proposed time-scaling transformation, we equivalently transform the problem with free terminal time
into one with fixed terminal time in a new time horizon. By using an exact penalty function method,
we convert the equivalent problem, which involves both a terminal state inequality constraint and con-
tinuous state inequality constraints, into an optimization problem with only box constraints. We then
present a novel third-order numerical scheme to solve the two-stage fractional system. An improved
particle swarm optimization IPSO algorithm is developed to determine the optimal decision variables.
Numerical results demonstrate that the productivity of 1,3-PD at the terminal time is higher than the
previous results, verifying the effectiveness of the proposed optimization strategy.

The rest of the paper is structured as follows. A two-stage fractional system is presented in Sec-
tion 2. In Section 3, a dynamic optimization problem is proposed. Section 4 develops a third-order
numerical scheme and an IPSO algorithm. In Section 5, numerical results are provided. Finally, con-
cluding remarks are given in Section 6.

2. Two-stage fractional system in microbial batch process

Based on the work presented in [22], mass balance equations between biomass, substrate, and
products in the microbial batch process can be modeled by the following two-stage fractional system: C

0 Dα
1

t x(t) = f 1(x(t)), t ∈ (0, t1],
x(0) = x0,

(1) C
t1 Dα

2

t x(t) = f 2(x(t)), t ∈ (t1, t f ],
x(t+1 ) = x(t1),

(2)

where α1 = (α1
1, α

1
2, . . . , α

1
5)⊤ ∈ (0, 1]5 and α2 = (α2

1, α
2
2, . . . , α

2
5)⊤ ∈ (0, 1]5 are given vectors of frac-

tional orders; t is the process time (in hours); x(t) = (x1(t), x2(t), . . . , x5(t))⊤ ∈ R5 is the state vector
representing the concentrations of biomass, glycerol, 1,3-PD, ethanol, and acetate, respectively, with
x1(t) measured in gL−1 and xi(t), i = 2, 3, 4, 5, measured in mmolL−1; t1 is a given switching time; t f

is a free terminal time; x0 ∈ R5 is the initial state vector; x(t+1 ) denotes the righthand limit of x(t1);

Electronic Research Archive Volume 32, Issue 12, 6680–6697.



6683

C
0 Dα

1

t x(t) =
(

C
0 Dα

1
1

t x1(t), . . . , C0 D
α1

5
t x5(t)

)⊤
and C

t1 Dα
2

t x(t) =
(

C
t1 Dα

2
1

t x1(t), . . . , Ct1 D
α2

5
t x5(t)

)⊤
with C

0 Dα
1
i

t xi(t) and
C
t1 Dα

2
i

t xi(t), i = 1, 2, . . . , 5, denoting the α1
i th and α2

i th Caputo fractional derivatives of xi(t) defined by

C
0 Dα

1
i

t xi(t) =
1

Γ(1 − α1
i )

∫ t

0
(t − τ)−α

1
i ẋi(τ)dτ, t ∈ (0, t1], (3)

C
t1 Dα

2
i

t xi(t) =
1

Γ(1 − α2
i )

∫ t

t1
(t − τ)−α

2
i ẋi(τ)dτ, t ∈ (t1, t f ], (4)

with Γ(·) representing the Gamma function and ẋi(τ) denoting the first-order derivative of xi(τ); and
f 1 : R5 → R5 and f 2 : R5 → R5 describe a two-stage dynamical system in the microbial batch process,
as detailed below:

f 1(x(t)) =


c1x1(t)x2(t) − d1x1(t)
−c2x1(t)x2(t) + d2x1(t)
c3x1(t)x2(t) − d3x1(t)
c4x1(t)x2(t) − d4x1(t)
c5x1(t)x2(t) − d5x1(t)


, t ∈ (0, t1],

f 2(x(t)) =


c6x1(t)x2(t) − d6x1(t)
−c7x1(t)x2(t) + d7x1(t)
c8x1(t)x2(t) − d8x1(t)
c9x1(t)x2(t) − d9x1(t)
c10x1(t)x2(t) − d10x1(t)


, t ∈ (t1, t f ].

Here, c j and c j+5, j = 1, 2, . . . , 5, are given kinetic parameters that represent biomass growth, glycerol
consumption, and the formation of 1,3-PD, ethanol, and acetate, respectively. Similarly, d j and d j+5, j =
1, 2, . . . , 5, are given kinetic parameters that represent the inhibitory effects of cell death on these same
processes. Under anaerobic conditions at 37 ◦C and pH 7.0, the values of these fractional orders and
kinetic parameters are listed in Table 1. Furthermore, Figure 1 depicts substrate consumption and
product formation in the microbial batch process.

Table 1. The fractional orders and kinetic parameters of the two-stage system (1) and
(2) [22].

Order Value Parameter Value Parameter Value

α1
1 9.7129E-01 c1 1.5810E-03 d1 1.7613E-01
α1

2 8.8132E-01 c2 1.6807E-01 d2 1.0173E-01
α1

3 7.3170E-01 c3 1.0313E-01 d3 2.0375E-01
α1

4 6.2228E-01 c4 3.0980E-02 d4 3.8488E-02
α1

5 8.6357E-01 c5 3.8031E-02 d5 3.1650E-01
α2

1 9.8758E-01 c6 1.7416E-03 d6 8.6639E-04
α2

2 8.6403E-01 c7 2.0653E-01 d7 2.0154E-01
α2

3 6.9964E-01 c8 1.8939E-01 d8 1.1610E-01
α2

4 9.9958E-01 c9 6.2052E-02 d9 2.2667E-03
α2

5 9.7600E-01 c10 5.2807E-02 d10 8.3421E-04

Electronic Research Archive Volume 32, Issue 12, 6680–6697.



6684

biomass

glycerol

1,3-PD

acetate

ethanol
formationinput

bioreactor

Figure 1. Substrate consumption and product formation in microbial batch process.

In the two-stage fractional system (1) and (2), the initial concentrations of the products (i.e., 1,3-PD,
ethanol, and acetate) are set to x0

i = 0 for i = 3, 4, 5, since no products are presented at the initial time
point. In contrast, the initial concentrations of biomass and glycerol are treated as decision variables to
be optimized. Let θ = (x0

1, x
0
2)⊤ and define

Θ := {θ ∈ R2 : amin
m ≤ θm ≤ amax

m ,m = 1, 2},

where amin
m and amax

m ,m = 1, 2, are given real numbers such that amin
m ≤ amax

m . In addition, the terminal
time t f is also considered as a decision variable. Define

T := {t f ∈ R : bmin ≤ t f ≤ bmax}, (5)

where bmin and bmax are given real numbers such that t1 < bmin ≤ bmax. Any pair (θ, t f ) ∈ Θ × T is
called an admissible pair for the two-stage fractional system (1) and (2).

For the two-stage fractional system (1) and (2), there exists a unique absolutely continuous solution
denoted by x(·|θ, t f ) for each (θ, t f ) ∈ Θ×T [23]. Moreover, in consideration of the practical production
process, it is biologically meaningful to restrict the concentrations of biomass, glycerol, and products
within the specified set W:

x(t|θ, t f ) ∈ W :=
5∏

i=1

[x∗i, x∗i ], t ∈ [0, t f ], (6)

where x∗1 = 0.01 and x∗i = 0, i = 2, 3, 4, 5, represent the lower thresholds for the concentrations of
biomass, glycerol, 1,3-PD, ethanol, and acetate, respectively, which are required for cell growth; and
the corresponding upper concentration thresholds are x∗1 = 10, x∗2 = 2039, x∗3 = 939.5, x∗4 = 360.9, and
x∗5 = 1026 [22].

3. Dynamic optimization problem

In the microbial batch process, glycerol is the substrate and 1,3-PD is the target product. Thus,
we aim to maximize the productivity of 1,3-PD at the terminal time while minimizing the glycerol
consumption rate. To achieve this, we consider the following productivity objective function:

x3(t f |θ, t f )
t f

, (7)
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and the glycerol consumption rate constraint:

θ2 − x2(t f |θ, t f )
t f

≤ Ω, (8)

where θ2 denotes the initial concentration of glycerol, and Ω > 0 is a predefined positive real number
representing the maximum allowable glycerol consumption rate. Therefore, by combining (6)–(8), the
dynamic optimization problem involving the two-stage fractional system (1) and (2) can be stated as
follows:

(P) min J(θ, t f ) = −
x3(t f |θ, t f )

t f

s.t.
θ2 − x2(t f |θ, t f )

t f
≤ Ω,

x(t|θ, t f ) ∈ W, t ∈ [0, t f ],
(θ, t f ) ∈ Θ × T .

Note that Problem (P) is a nonstandard dynamic optimization problem with two notable charac-
teristics: (i) the terminal time t f is free rather than fixed, and (ii) constraints (6) are continuous state
inequality constraints.

To effectively handle the nonstandard characteristic (i), we will transform Problem (P), which is of
a free terminal time, into an equivalent problem with a fixed terminal time in a new time horizon by
employing the following time-scaling transformations. This procedure is implemented in three steps.
Step 1. t ∈ [0, t1]→ s ∈ [0, 1]

Let
t = t(s) = t1s, s ∈ [0, 1].

Clearly, s = 0 and s = 1 correspond to t = 0 and t = t1, respectively. Furthermore, let τ = t1η and
yi(η) = xi(t1η). Then, we rewrite (3) as

C
0 Dα

1
i

t xi(t) =
1

Γ(1 − α1
i )

∫ s

0
(t1s − t1η)−α

1
i
dyi(η)
d(t1η)

t1dη

=
t−α

1
i

1

Γ(1 − α1
i )

∫ s

0
(s − η)−α

1
i ẏi(η)dη = t−α

1
i

1
C
0 Dα

1
i

s yi(s),

for i = 1, 2, . . . , 5. Let y(s) = x(t1s) and C
0 Dα

1

s y(s) =
(

C
0 Dα

1
1

s y1(s), . . . , C0 D
α1

5
s y5(s)

)⊤
. Then, fractional

system (1) becomes  C
0 Dα

1

s y(s) = tα
1

1 ◦ f 1(y(s)), s ∈ (0, 1],
y(0) = x0,

(9)

where tα
1

1 =
(
tα

1
1

1 , t
α1

2
1 , . . . , t

α1
5

1

)⊤
; and ◦ represents the Hadamard product, which denotes element-wise

multiplication between vectors or matrices of the same dimensions.
Step 2. t ∈ (t1, t f ]→ s ∈ (1, 2]

Define
Σ := {σ ∈ R : bmin − t1 ≤ σ ≤ bmax − t1},
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where bmin and bmax are as defined in (5).
Let

t = t(s) = t1 + σ(s − 1), s ∈ (1, 2].

Clearly, s = 2 corresponds to t = t1 + σ = t f . Furthermore, let τ = t1 + σ(η − 1) and yi(η) =
xi(t1 + σ(η − 1)). Then, we rewrite (4) as

C
t1 Dα

2
i

t xi(t) =
1

Γ(1 − α2
i )

∫ s

1
(σs − ση)−α

2
i

dyi(η)
d(t1 + σ(η − 1))

σdη

=
σ−α

2
i

Γ(1 − α2
i )

∫ s

1
(s − η)−α

2
i ẏi(η)dη = σ−α

2
i C

1 Dα
2
i

s yi(s),

for i = 1, 2, . . . , 5. Let y(s) = x(t1 + σ(s − 1)) and C
1 Dα

2

s y(s) =
(

C
1 Dα

2
1

s y1(s), . . . , C1 D
α2

5
s y5(s)

)⊤
. Then,

fractional system (2) becomes  C
1 Dα

2

s y(s) = σα
2
◦ f 2(y(s)), s ∈ (1, 2],

y(1+) = y(1),
(10)

where σα
2
=

(
σα

2
1 , σα

2
2 , . . . , σα

2
5

)⊤
.

Step 3. The restatement of Problem (P)
Let y(·|θ, σ) denote the solution of the two-stage fractional system (9) and (10) for each (θ, σ) ∈

Θ × Σ. Under the time-scaling transformations (Steps 1 and 2), constraints (6) can be rewritten as

y(s|θ, σ) ∈ W, s ∈ [0, 2], (11)

the productivity objective function (7) is transformed into

y3(2|θ, σ)
t1 + σ

, (12)

and the glycerol consumption rate constraint (8) is reformulated as

θ2 − y2(2|θ, σ)
t1 + σ

≤ Ω. (13)

Therefore, Problem (P) can be restated as the following equivalent dynamic optimization problem with
fixed terminal time:

(EP) min Ĵ(θ, σ) = −
y3(2|θ, σ)

t1 + σ

s.t.
θ2 − y2(2|θ, σ)

t1 + σ
≤ Ω,

y(s|θ, σ) ∈ W, s ∈ [0, 2],
(θ, σ) ∈ Θ × Σ.

It is worth noting that Problem (EP) is a dynamic optimization problem subject to the constraints
(11) and (13). Handling constraint (11) is particularly challenging numerically because it must be
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satisfied at an infinite number of points over the entire time horizon. The penalty function method is
a commonly used technique for handing this type of constrained optimization problems. It transforms
a constrained problem into a sequence of unconstrained ones by incorporating a penalty term into the
objective function. In particular, the exact penalty function method only requires a sufficiently large
but finite penalty parameter to obtain a solution that satisfies the constraints and achieves the optimal
objective. Therefore, to surmount the nonstandard characteristic (ii), we will employ an exact penalty
function method to effectively handle these constraints.

Let

hι(y(s|θ, σ)) := yι(s|θ, σ) − x∗ι ,

hι+5(y(s|θ, σ)) := x∗ι − yι(s|θ, σ), ι = 1, 2, . . . , 5.

Then, constraint (11) is equivalent to

10∑
ℓ=1

∫ 2

0
max

{
0, hℓ(y(s|θ, σ))

}
ds = 0. (14)

Furthermore, we rewrite the constraint (13) as

max
{
θ2 − y2(2|θ, σ)

t1 + σ
−Ω, 0

}
= 0. (15)

Combining (14) and (15) yields the following constraint violation function:

Ĥ(θ, σ) :=
10∑
ℓ=1

∫ 2

0
max

{
0, hℓ(y(s|θ, σ))

}
ds +max

{
θ2 − y2(2|θ, σ)

t1 + σ
−Ω, 0

}
. (16)

Obviously, Ĥ(θ, σ) = 0 ensures that the constraints (11) and (13) are satisfied. By incorporating
Ĥ(θ, σ) as a penalty term into the objective function (12), we propose the following penalty problem:

(EPβ) min
(θ,σ)∈Θ×Σ

Ĵβ(θ, σ) = Ĵ(θ, σ) + βĤ(θ, σ), (17)

where β > 0 is a positive penalty parameter. Furthermore, by using a similar derivation as presented
in [26], it can be proved that Ĵβ(θ, σ) is an exact penalty function.

4. Computational approach

In this section, we present a third-order numerical scheme for discretizing the two-stage fractional
system (9) and (10). Based on this scheme, we introduce an IPSO algorithm to determine the optimal
decision variables for Problem (EPβ).

4.1. Numerical scheme

For given positive integers N l, l = 1, 2, we divide the intervals (l−1, l] into N l subintervals (sl
q−1, s

l
q]

with partition points sl
q = (l − 1) + qhl, where q = 1, 2, . . . ,N l, and hl = 1/N l. Specifically, s1

0 = 0
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and s2
0 = 1. Then, the two-stage fractional system (9) and (10) can be transformed into the following

Volterra integral equations [15]:

yl
i(sl

q) = yl,0
i +

δl
i

Γ(αl
i)

q−1∑
j=0

∫ sl
j+1

sl
j

(sl
q − η)

αl
i−1 f l

i (y(η))dη, (18)

for i = 1, 2, . . . , 5, where

yl,0
i :=

 x0
i , if l = 1,

yi(1), if l = 2,

δl
i :=

 tα
1
i

1 , if l = 1,
σα

2
i , if l = 2.

Now, we subdivide the intervals (sl
0, s

l
1] for l = 1, 2, into ℵl subintervals (ϖl

κ−1, ϖ
l
κ] with partition

points ϖl
κ = sl

0 + κℏ
l, κ = 1, 2, . . . ,ℵl, where ℵl =

⌈
1/(hl)

1
2
⌉

with ⌈·⌉ representing the ceiling function,
and ℏl = hl/ℵl. Specifically, ϖl

0 = sl
0. For any l = 1, 2, and i = 1, 2, . . . , 5, we approximate f l

i (y(η))
on the righthand side of (18) in (ϖl

κ−1, ϖ
l
κ] for κ = 1, 2, . . . ,ℵl, by the following second-order Taylor

expansion:
f l
i (y(η)) = Λ0

κ f l
i + Λ

1
κ f l

i (η −ϖl
κ) + Λ

2
κ f l

i (η −ϖl
κ)

2, (19)

where Λ0
κ f l

i and Λ1
κ f l

i are coefficients to be determined, and Λ2
κ f l

i is the remainder term. Omitting
this remainder term, we can use the values of f l

i (y(ϖl
κ−1)) and f l

i (y(ϖl
κ)) to determine Λ0

κ f l
i and Λ1

κ f l
i ,

yielding the following divided differences:

Λ0
κ f l

i = f l
i (y(ϖl

κ)),

Λ1
κ f l

i =
f l
i (y(ϖl

κ)) − f l
i (y(ϖl

κ−1))
ℏl .

Substituting (19) into the first term of the sums of (18), we obtain

δl
i

Γ(αl
i)

∫ sl
1

sl
0

(sl
q − η)

αl
i−1 f l

i (y(η))dη =
ℵl∑
κ=1

[
−

Il,i,q
κ1

ℏl f l
i (y(ϖl

κ−1)) +
(
Il,i,q
κ0 +

Il,i,q
κ1

ℏl

)
f l
i (y(ϖl

κ))
]
+ Rl,q

i0 , (20)

where

Il,i,q
κ0 =

(sl
q −ϖ

l
κ−1)α

l
i − (sl

q −ϖ
l
κ)
αl

i

Γ(αl
i + 1)

,

Il,i,q
κ1 =

−ℏl(sl
q −ϖ

l
κ−1)α

l
i

Γ(αl
i + 1)

+
(sl

q −ϖ
l
κ−1)α

l
i+1 − (sl

q −ϖ
l
κ)
αl

i+1

Γ(αl
i + 2)

,

Rl,q
i0 =

δl
i

Γ(αl
i)

ℵl∑
κ=1

∫ sl
κ

sl
κ−1

(sl
q − η)

αl
i−1Λ2

κ f l
i (η −ϖl

κ)
2dη.

Then, for any l = 1, 2, and i = 1, 2, . . . , 5, we approximate f l
i (y(η)) on the righthand side of (18) in

(sl
j, s

l
j+1] for j = 1, 2, . . . , q − 1, and q = 2, 3, . . . ,N l, by the following third-order Taylor expansion:

f l
i (y(η)) = ∆0

j+1 f l
i + ∆

1
j+1 f l

i (η − sl
j+1) + ∆2

j+1 f l
i (η − sl

j+1)2 + ∆3
j+1 f l

i (η − sl
j+1)3, (21)
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where ∆0
j+1 f l

i ,∆
1
j+1 f l

i , and ∆2
j+1 f l

i are coefficients to be determined; and ∆3
j+1 f l

i is the remainder term.
Omitting this remainder term, we can use the values of f l

i (y(sl
j−1)), f l

i (y(sl
j)), and f l

i (y(sl
j+1)) to deter-

mine ∆0
j+1 f l

i ,∆
1
j+1 f l

i , and ∆2
j+1 f l

i , yielding the following divided differences:

∆0
j+1 f l

i = f l
i (y(sl

j+1)),

∆1
j+1 f l

i =
f l
i (y(sl

j−1))

2hl −
2 f l

i (y(sl
j))

hl +
3 f l

i (y(sl
j+1))

2hl ,

∆2
j+1 f l

i =
f l
i (y(sl

j−1))

2(hl)2 −
f l
i (y(sl

j))

(hl)2 +
f l
i (y(sl

j+1))

2(hl)2 .

Substituting (21) into the ( j + 1)th term of the sums of (18), we obtain

δl
i

Γ(αl
i)

∫ sl
j+1

sl
j

(sl
q − η)

αl
i−1 f l

i (y(η))dη =
hl Īl,i,q

j1 + Īl,i,q
j2

2(hl)2 f l
i (y(sl

j−1)) −
2hl Īl,i,q

j1 + Īl,i,q
j2

(hl)2 f l
i (y(sl

j))

+

[
Īl,i,q

j0 +
3hl Īl,i,q

j1 + Īl,i,q
j2

2(hl)2

]
f l
i (y(sl

j+1)) + Rl,q
i j , (22)

where

Īl,i,q
j0 =

(sl
q − sl

j)
αl

i − (sl
q − sl

j+1)α
l
i

Γ(αl
i + 1)

,

Īl,i,q
j1 =

−hl(sl
q − sl

j)
αl

i

Γ(αl
i + 1)

−
(sl

q − sl
j+1)α

l
i+1 − (sl

q − sl
j)
αl

i+1

Γ(αl
i + 2)

,

Īl,i,q
j2 =

(hl)2(sl
q − sl

j)
αl

i

Γ(αl
i + 1)

−
2hl(sl

q − sl
j)
αl

i+1

Γ(αl
i + 2)

− 2
(sl

q − sl
j+1)α

l
i+2 − (sl

q − sl
j)
αl

i+2

Γ(αl
i + 3)

,

Rl,q
i j =

δl
i

Γ(αl
i)

∫ sl
j+1

sl
j

(sl
q − η)

αl
i−1∆3

j+1 f l
i (η − sl

j+1)3dη.

Combining (18), (20), and (22), and then omitting the truncation errors from all remainder terms,
we obtain the following numerical scheme:

yl,q
i = yl,0

i + δ
l
i

ℵl∑
κ=1

[
−

Il,i,q
κ1

ℏl f l
i (yl,κ−1,0) +

(
Il,i,q
κ0 +

Il,i,q
κ1

ℏl

)
f l
i (yl,κ,0)

]
+ δl

i

q−1∑
j=1

{hl Īl,i,q
j1 + Īl,i,q

j2

2(hl)2 f l
i (yl, j−1)

−
2hl Īl,i,q

j1 + Īl,i,q
j2

(hl)2 f l
i (yl, j) +

[
Īl,i,q

j0 +
3hl Īl,i,q

j1 + Īl,i,q
j2

2(hl)2

]
f l
i (yl, j+1)

}
, (23)

for l = 1, 2, i = 1, 2, . . . , 5, and q = 1, 2, . . . ,N l, where yl,κ,0 and yl,q denote the approximations of y(ϖl
κ)

and y(sl
q) for each feasible l, κ, and q.

Based on (23), it is evident that the aforementioned numerical scheme is implicit and can be effi-
ciently solved using Newton’s method [24], which is a well-established technique for solving nonlinear
equations. The following theorem presents the convergence rate of this numerical scheme.
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Theorem 4.1. Let ŷl,q be the numerical solution of (23) obtained using Newton’s method for l = 1, 2,
and q = 1, 2, . . . ,N l. Then, there exists a positive constant ĥ > 0 such that h < ĥ, and the following
inequality is satisfied:

∥y(sl
q) − ŷl,q∥∞ ≤ Ch3,

where ∥·∥∞ denotes the infinity norm; C > 0 is a positive constant independent of αl; and h := max
l∈{1,2}
{hl}.

Proof. The proof is similar to those given for Theorems 3.1–3.3 in [25]. □

4.2. Optimization algorithm

Problem (EPβ) is a parameter optimization problem with only box constraints. While gradient-based
optimization methods [27, 28] can be used to solve this problem, they are prone to getting trapped in
local optima. Therefore, in this subsection, we will develop an IPSO algorithm to solve Problem (EPβ).

PSO, a global heuristic algorithm inspired by the social behavior of bird flocking and fish schooling
during food searches, is widely regarded as one of the most successful nature-inspired optimization
algorithms. Compared to other heuristic algorithms, such as the genetic algorithm, bat algorithm, ant
colony optimization, and ecosystem based optimization, PSO is highly efficient and adaptable to a
variety of dynamic environments. Due to its simple structure and minimal algorithmic parameters,
PSO has gained widespread popularity across diverse fields such as power systems, control systems,
networking, image segmentation, and more [29]. However, the standard PSO (SPSO) algorithm [30]
is susceptible to falling into local optima. To enhance both its local and global search capabilities,
we introduce a new strategy [31, 32] for updating particle velocity and position by adjusting algorithm
parameters, including inertia weight, cognitive factor, and social factor. For the box constraints in
Problem (EPβ), we also propose a new strategy to handle constraint violations. For brevity, let ϱ =
(θ1, θ2, σ)⊤ ∈ R3 represent the decision vector of Problem (EPβ) in the IPSO algorithm. The main steps
of the IPSO algorithm are given in Algorithm 1.

Algorithm 1 IPSO algorithm to solve Problem (EPβ).

Step 1. Initialize the total number of particles N̄, the maximum number of iterations Imax, the
tolerance parameter ζ, the lower and upper bounds of the decision vector ϱlow and ϱupp, the minimum
and maximum inertia weights ωmin and ωmax, and the penalty parameter β.

Step 2. Initialize the variables:

(i) Set the iteration index p := 1.

(ii) Randomly generate N̄ decision vectors within the range [ϱlow, ϱupp] and N̄ particle velocities
within the range [0, 1], denoted by ϱk(p − 1) and vk(p − 1) for k = 1, 2, . . . , N̄.

(iii) Initialize the individual optimal position and the individual fitness value as pbestk := 0 and
Ĵβ(pbestk(p− 1)) := +∞ for k = 1, 2, . . . , N̄. Also, initialize the global optimal position and the
global optimal fitness value as gbest := 0 and Ĵmin

β := +∞.

Step 3. For each k = 1, 2, . . . , N̄, perform the following operations:
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(i) Solve the two-stage fractional system (9) and (10) using the numerical scheme outlined in Sec-
tion 4.1. Then, calculate the objective function (17) and update Ĵβ(pbestk(p)) and pbestk(p) by

Ĵβ(pbestk(p)) =

 Ĵβ(ϱk(p)), if Ĵβ(ϱk(p)) ≤ Ĵβ(ϱk(p − 1)),
Ĵβ(pbestk(p − 1)), otherwise,

pbestk(p) =

 ϱk(p), if Ĵβ(ϱk(p)) ≤ Ĵβ(ϱk(p − 1)),
pbestk(p − 1), otherwise.

(ii) Update Ĵmin
β and gbest by

Ĵmin
β = min

k∈{1,...,N̄}

{
Ĵβ(pbestk(p))

}
, gbest = arg min

k∈{1,...,N̄}

{
Ĵβ(pbestk(p))

}
.

Step 4. If p ≥ Imax or Ĵmin
β ≤ ζ, then ϱ∗β = gbest and stop. Otherwise, go to Step 5.

Step 5. Update vk(p + 1) and ϱk(p + 1) by

vk
ς(p + 1) = ω(p)vk

ς(p) + c1(p)rk,1
ς (pbestk

ς(p) − ϱk
ς(p)) + c2(p)rk,2

ς (gbestς − ϱk
ς(p)),

ϱk
ς(p + 1) = rk,3

ς ϱ
k
ς(p) + (1 − rk,3

ς )vk
ς(p + 1),

for k = 1, 2, . . . , N̄, and ς = 1, 2, 3, where rk,1
ς , r

k,2
ς , and rk,3

ς are random numbers within the range
[0, 1]; and ω(p), c1(p), and c2(p) are defined as

ω(p) = ωmax − (ωmax − ωmin)
(

p
Imax

)2

,

c1(p) = sin2
(
π(Imax − p)

2Imax

)
, c2(p) = sin2

(
πp

2Imax

)
.

Step 6. If ϱk
ς violates the bound constraint, then apply the following formula:

ϱk
ς(p + 1) =

 2ϱlow,ς − ϱ
k
ς(p + 1), if ϱk

ς(p + 1) < ϱlow,ς,

2ϱupp,ς − ϱ
k
ς(p + 1), if ϱk

ς(p + 1) > ϱlow,ς,

for k = 1, 2, . . . , N̄, and ς = 1, 2, 3. Set p := p + 1, and go to Step 3.

5. Numerical results

In the numerical simulation, Algorithm 1 is implemented in a Matlab program to solve Problem
(EPβ), with all computations performed on a personal computer equipped with a 2.80 GHz CPU and
16.0 GB of RAM. To solve Problem (EPβ), the initial decision vector, switching time, maximum al-
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lowable glycerol consumption rate, and number of subintervals for systems (9) and (10) are set as
(0.2245 gL−1, 509.8913 mmolL−1, 2.0 h)⊤, t1 = 5.75 h, Ω = 100 mmolL−1h−1, N1 = 500, and N2 = 100,
respectively. In Algorithm 1, the parameters N̄, Imax, ξ, ωmin, ωmax, ϱlow, ϱupp, and β are set as 50, 100,
10−4, 0.4, 0.9, (0.05, 200, 0.01)⊤, (1, 1700, 5)⊤, and 100, respectively. It should be noted that the param-
eters in Algorithm 1 are empirically determined through numerous numerical experiments. By running
Algorithm 1, we obtain the optimal decision vector (0.05 gL−1, 765.2177 mmolL−1, 0.8576 h)⊤. As a
result, the terminal time of the batch process is reduced to 6.6076 h, representing a 14.7406% decrease
compared with the experimental data of 7.75 h in [4].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

1

2

3

4

5

6

B
io

m
a

s
s
 (

g
L

-1
)

Two-stage fractional system in this work.

Single-stage integer-order system in [6].

Experimental data in [4].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

100

200

300

400

500

600

700

800

G
ly

c
e

ro
l 
(m

m
o

lL
-1

)

Two-stage fractional system in this work.

Single-stage integer-order system in [6].

Experimental data in [4].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

50

100

150

200

250

300

350

400

450

1
,3

-P
D

 (
m

m
o

lL
-1

)

Two-stage fractional system in this work.

Single-stage integer-order system in [6].

Experimental data in [4].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

20

40

60

80

100

120

E
th

a
n

o
l 
(m

m
o

lL
-1

)

Two-stage fractional system in this work.

Single-stage integer-order system in [6].

Experimental data in [4].

0 1 2 3 4 5 6 7 8

Fermentation time (h)

0

50

100

150

A
c
e

ta
te

 (
m

m
o

lL
-1

)

Two-stage fractional system in this work.

Single-stage integer-order system in [6].

Experimental data in [4].

Figure 2. Changes in biomass, glycerol, and products concentrations over fermentation time.
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Table 2. Computational results by using IPSO and SPSO algorithms.

Algorithm Optimal cost Worst cost Average cost Average iteration time (s)

IPSO -61.8505 -61.8456 -61.8479 0.7702
SPSO -61.8480 -56.6654 -61.1935 0.7666

Based on the obtained optimal decision vector, the productivity of 1,3-PD at the terminal time
is determined to be 61.8505 mmolL−1h−1, showing a 79.3694% improvement compared with the
34.4822 mmolL−1h−1 observed in the experimental data from [4], and a 19.1495% improvement com-
pared with the 51.91 mmolL−1h−1 achieved by the single-stage integer-order system in [6]. The glyc-
erol consumption rate in our optimization model is 100 mmolL−1h−1, which is comparable to the
100.8 mmolL−1h−1 reported in [6]. Figure 2 illustrates the corresponding changes in the concentra-
tions of biomass, glycerol, 1,3-PD, ethanol, and acetate under the optimal decision vector. Figure 3
depicts the curve of 1,3-PD productivity obtained by using the optimal decision vector. For comparison,
changes in 1,3-PD productivity based on the experimental data [4] and the single-stage integer-order
system [6] are also plotted in Figure 3, from which we observe that our optimization model achieves
the highest productivity of 1,3-PD at the terminal time.

To further evaluate the performance of the IPSO algorithm, the SPSO algorithm is also developed to
solve Problem (EPβ), with the inertia weight, cognitive factor, and social factor set to be 0.5, 2, and 2,
respectively. We conduct 50 independent tests for both the IPSO and SPSO algorithms. The obtained
optimal cost, worst cost, average cost, and average iteration time are listed in Table 2, from which
we see that the IPSO algorithm outperforms the SPSO algorithm in terms of optimal cost, worst cost,
and average cost. The average iteration time of the IPSO algorithm is comparable to that of the SPSO
algorithm. The convergence curves of the objective function for both the IPSO and SPSO algorithms
are depicted in Figure 4. From Figure 4, we observe that the IPSO algorithm converges significantly
faster than the SPSO algorithm.
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Figure 3. Changes in 1,3-PD productivity over fermentation time.
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Figure 4. Convergence curves of IPSO and SPSO algorithms.

6. Conclusions

In this paper, we have proposed the dynamic optimization problem involving the two-stage frac-
tional system subject to the terminal state inequality constraint and continuous state inequality con-
straints. The objective function is the productivity of 1,3-PD at the terminal time, while the decision
variables are the initial concentrations of biomass and glycerol, as well as the terminal time of the
batch process. The main contributions of our work include: i) the dynamic optimization problem
under consideration is equivalently transformed into the one with fixed terminal time and only box
constraints by applying the time-scaling transformation and the exact penalty function method; ii) we
present the novel third-order numerical scheme to solve the two-stage fractional system; and iii) we
develop the highly effective IPSO algorithm to determine the optimal decision variables. The numer-
ical results show a significant increase in the productivity of 1,3-PD at the terminal time compared
to previously reported outcomes, providing robust support for practical 1,3-PD batch production. In
future research, we will validate the findings of this work in the real-world fermentation process. It is
worth noting that, in this paper, the switching time between the two-stage fractional system is fixed. In
the future, we will extend our developed method to solve the dynamic optimization of switched sys-
tems in the microbial batch process. Additionally, integrating the third-order numerical scheme with
deep reinforcement learning could be a promising approach for solving large-scale fractional dynamic
optimization problems.
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