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Abstract: It has been shown that Allee effect can change predator-prey dynamics and impact species
persistence. Allee effect in the prey population has been widely investigated. However, the study on the
Allee effect in the predator population is rare. In this paper, we investigate the spatiotemporal dynamics
of a diffusive predator-prey model with digestion delay and Allee effect in the predator population. The
conditions of stability and instability induced by diffusion for the positive equilibrium are obtained.
The effect of delay on the dynamics of system has three different cases: (a) the delay doesn’t change
the stability of the positive equilibrium, (b) destabilizes and stabilizes the positive equilibrium and
induces stability switches, or (c) destabilizes the positive equilibrium and induces Hopf bifurcation,
which is revealed (numerically) to be corresponding to high, intermediate or low level of Allee effect,
respectively. To figure out the joint effect of delay and diffusion, we carry out Turing-Hopf bifurcation
analysis and derive its normal form, from which we can obtain the classification of dynamics near
Turing-Hopf bifurcation point. Complex spatiotemporal dynamical behaviors are found, including the
coexistence of two stable spatially homogeneous or inhomogeneous periodic solutions and two stable
spatially inhomogeneous quasi-periodic solutions. It deepens our understanding of the effects of Allee
effect in the predator population and presents new phenomena induced be delay with spatial diffusion.

Keywords: Allee effect in predator; digestion delay; stability switches; Turing-Hopf bifurcation;
normal form

1. Introduction

Since the pioneering work of Lotka [1] and Volterra [2], predator-prey models have been studied
in depth by many biologists and mathematicians. Numerous studies have shown that Allee effect will
greatly promote the extinction of the population. Most of the present studies focus on the Allee effect
on prey populations [3–5]. In fact, Allee effect can also occur in predators due to a great variety of
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mechanisms such as cooperative breeding, mating difficulty and sperm limitation [6]. Among them,
mating difficulty mechanism occurs widely across a variety of predatory species, from invertebrates to
vertebrates [7–9], which is a reduced probability of finding mates at low densities.

Zhou et al. [3] considered Lotka-Volterra and Leslie-type predator-prey models with Allee effect
in predators, and found that Allee effect may be a destabilizing factor in predator-prey models. Sen
et al. [10] explored a predator-prey model with Allee effect in predators which affects the numerical
response of predators without affecting its functional responsedN

dT = rN
(
1 − N

K

)
− aNP

1+aqN ,
dP
dT = eψ(P) aNP

1+aqN − µP,
(1.1)

where N and P represent the population densities of the prey and predators respectively, r is the
intrinsic growth rate of the prey and K is the carrying capacity, a is the encounter rate of the prey and
predators, q describes the handling time, eψ(P) is food conversion efficiency of predators, ψ(P)
models the Allee effect in predator and µ is the intrinsic death rate of predators. The bifurcation
structure of the model including saddle-node, Hopf, generalized Hopf and Bogdanov-Takens
bifurcation have been investigated. To describe the Allee effect in predators, different expressions for
ψ(P) are used, such as P

B+P [3,10–12], tan h
(

P
B

)
[10], r(P − B)

(
1 − P

K

)
[13], 1 − e−PB [14] and e−

P
B [15],

where B represents the strength of Allee effect.
Predators and prey tend to move from high-density areas to low-density areas in response to resource

distribution, invasion of natural enemies, human exploitation and natural disasters. Therefore, adding
the diffusion term to the predator-prey model will make the model more reasonable. Time delays
are ubiquitous in the process of predator and prey interaction. After predators consume the prey, the
reproduction of predators is not instantaneous. Rather, it takes a certain amount of time to convert
the prey energy into their own energy, which is known as digestion delay. There is an extensive
literature on predator-prey models with digestion delay [16–18]. It shows that the digestion delay has
very complex effect on the dynamics of a system. For example, it can destabilize the equilibrium and
induce periodic oscillations. Thus, the digestion delay cannot be ignored and should be introduced into
the predator-prey model.

Inspired by Sen et al. [10] and the previous work, we choose P
B+P [3, 12] as the mating difficulty

induced Allee effect term, where B is the Allee effect constant and P
B+P describes the probability that a

female finds and mates with a least one male. Introducing diffusion and digestion delay into
model (1.1), one can obtain the following model

∂N
∂T = D1∆Nxx + rN

(
1 − N

K

)
− aNP

1+aqN , x ∈ Ω,T > 0,
∂P
∂T = D2∆Pxx +

eP
B+P ·

aN(x,T−τ)P(x,T−τ)
1+aqN(x,T−τ) − µP, x ∈ Ω,T > 0,

∂N(x,T )
∂x =

∂P(x,T )
∂x = 0, x ∈ ∂Ω,T > 0,

N(x,T ) = N0(x,T ) ≥ 0, P(x,T ) = P0(x,T ) ≥ 0, x ∈ Ω,T ∈ [−τ, 0],

(1.2)

where τ is the digestion delay and D1 and D2 are diffusion coefficients characterizing the rate of the
spatial dispersion of the prey and predator population, respectively. The homogeneous Neumann
boundary conditions means that predators and the prey live in a self-contained environment (e.g., an
island, lake, pond, etc.) and there is no population flux on the boundary. In reality, there may be a
scenario that the boundary is hostile and no individuals would choose to leave. In this case, the
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homogeneous Dirichlet boundary conditions should be proposed on the boundary, and there is no
positive constant steady state. In this paper, we are interested in the bifurcations from the positive
constant steady state, corresponding to the homogeneous Neumann boundary condition. We consider
the spatial domain Ω = (0, lπ). In fact, one-dimensional space can be used for some biological
scenarios, such as a long river or depth of the water, etc. For general interval (a, b), we can transform
it into (0, lπ) by a translation and rescaling. Moreover, we can calculate the eigenfunctions of the
Laplacian and compute normal forms. The meanings of other parameters in this model are consistent
with those expressed in model (1.1). Since the spatial distributions of predators and the prey are
different and they may have different moving ability and life habits, the diffusion coefficients D1 and
D2 are considered different. For the sake of simplicity, set

u =
N
K
, v =

P
Krq

, t = rT.

Model (1.2) is converted into
∂u
∂t = d1uxx + u(1 − u) − uv

β+u , x ∈ (0, lπ), t > 0,
∂v
∂t = d2vxx +

αu(x,t−τ)v(x,t−τ)
β+u(x,t−τ) · v

δ+v − mv, x ∈ (0, lπ), t > 0,
∂u(x,t)
∂x =

∂v(x,t)
∂x = 0, x = 0, lπ, t > 0,

u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, x ∈ [0, lπ], t ∈ [−τ, 0],

(1.3)

where the new parameters are

α =
e
qr
, β =

1
aqK

, δ =
B

Kqr
, m =

µ

r
, d1 =

D1

r
, d2 =

D2

r
.

To figure out how Allee effect affects the dynamics of system, there has been an extensive
literature investigating the dynamics of predator-prey model with Allee effect from the point of
bifurcation analysis [19–24]. Wang et al. [25] considered a diffusive Holling-Tanner predator-prey
model in which the predator population is subjected to Allee effect and investigated the stability of
positive equilibrium and Turing instability. Numerical simulations revealed that the system exhibits a
variety of Turing patterns, such as holes, stripes and spots. Tyutyunov et al. [26] studied a prey-taxis
model based on nonspatial Rosenzweig-MacArthur model and found that formation of local dense
aggregations caused by prey-taxis will allow predators to overcome the Allee effect in its population
growth, avoiding the extinction that occurs in the model in the absence of spatial effects. Rana et
al. [27] examined a diffusive Leslie-Gower predator-prey model with Allee effect in both predator and
prey populations. They obtained the conditions for Hopf bifurcation, Turing bifurcation and explored
complex dynamical phenomena of the system.

Although there has some literature on predator-prey model with Allee effect on predator and
diffusion, no work has been done to reveal the joint impact of Allee effect, diffusion and digestion
delay on the population dynamics. Our goal in this paper is to investigate the complex spatiotemporal
patterns induced by delay and diffusion in predator-prey model with Allee effect in predators. For the
non delayed system, we obtain the conditions for the stability and instability induced by diffusion for
the positive equilibrium E3(u3, v3). For the delayed system, we find that there are three different cases
of the occurrence of Hopf bifurcation. Combining with numerical simulations, we find that when the
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strength of Allee effect δ is low, delay τ will destabilize E3(u3, v3) and induce Hopf bifurcation; when
δ is at an intermediate value, delay τ will induce Hopf bifurcation and stability switches and when δ is
high, Hopf bifurcation will not occur. To reveal the spatiotemporal dynamics, Turing-Hopf
bifurcation analysis is carried out, from which the clarification of dynamics near Turing-Hopf
bifurcation point is obtained, including the existence of spatially homogeneous and inhomogeneous
periodic solutions and spatially inhomogeneous quasi-periodic solutions.

The present paper is organized as follows. In Section 2, we first give the existence and local
stability of positive equilibria. Then, we derive the conditions for Turing instability, Hopf bifurcation
and Turing-Hopf bifurcation. In Section 3, the normal form of Turing-Hopf bifurcation is derived.
Some numerical simulations are carried out to illustrate our theoretical results in Section 4. Finally, a
summary of our findings is presented in Section 5.

2. Stability of positive equilibria and bifurcation analysis

In this section, we will study the existence of Turing, Hopf and Turing-Hopf bifurcation by linear
stability analysis.

2.1. Existence of equilibria

First, we consider the existence of equilibria for system (1.3). In this subsection, we focus on the
spatially homogeneous model (1.1), which is a model of ordinary differential equations corresponding
to the system (1.3). Obviously, system (1.3) always has a trivial equilibrium E1(0, 0) and a predator-
free equilibrium E2(1, 0). The coexistence equilibrium will be the intersection of the following two
non trivial nullclines in the interior of the first quadrant f (u, v) ≡ 1 − u − v

β+u = 0,

g(u, v) ≡ αuv
(β+u)(δ+v) − m = 0,

(2.1)

which can be written as

v1(u) = (1 − u)(β + u), v2(u) =
(β + u)δm

αu − (β + u)m
. (2.2)

The biological feasibility of vi yields that βm
α−m < ui < 1 with α > m. Solving v1(u) = v2(u) leads to

A1u2 + A2u + A3 = 0, (2.3)

where
A1 = α − m, A2 = m(1 − β) − α, A3 = m(β + δ).

The number of interior equilibria is consistent with that of positive roots of Eq (2.3), which depends on
the signs of ∆ = A2

2−4A1A3 and A2. A direct calculation yields that when ∆ = 0, we have δ = [α−(1+β)m]2

4m(α−m) .
Therefore, one can get the existence of equilibria for system (1.3).

Theorem 2.1. Suppose that α > m.
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(i) If 0 < δ < [α−(1+β)m]2

4m(α−m) and m(1 − β) < α, system (1.3) has two equilibria E3(u3, v3) and E4(u4, v4),
where

u3 =
−A2 −

√
A2

2 − 4A1A3

2A1
, v3 =

(β + u3)δm
αu3 − (β + u3)m

,

u4 =
−A2 +

√
A2

2 − 4A1A3

2A1
, v4 =

(β + u4)δm
αu4 − (β + u4)m

.

(2.4)

(ii) If δ = [α−(1+β)m]2

4m(α−m) and m(1 − β) < α, system (1.3) has a unique positive equilibrium E5(u5, v5),
where

u5 = −
A2

2A1
, v5 =

(β + u5)δm
αu5 − (β + u5)m

.

(iii) If δ > [α−(1+β)m]2

4m(α−m) , system (1.3) has no positive equilibria.

Remark 2.2. From Theorem 2.1, we obtain that system (1.3) may have no, one or two equilibria with
different values of the strength of Allee effect δ (see Figure 1(a)). Figure 1(b) gives the relationship
between ui (vi) and δ. When δ ≤ δ∗ = 0.1383, predators and the prey can coexist. However, when
δ > 0.1383, predators and the prey cannot coexist. If δ < 0.1383, u3 (v3) is increasing (decreasing)
when δ increases and u4 (v4) is decreasing (increasing) when δ increases.
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Figure 1. (a) The black curve is the figure of f (u, v) = 0, where f (u, v) is defined in (2.1).
The blue, red and green curves are the figures for g(u, v)=0 for δ = 0.1000, δ = 0.1383,
and δ = 0.1683, respectively. (b) The curves of ui and vi (i = 3, 4) with varying δ. Other
parameters are α = 1.2, β = 0.3 and m = 0.58.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19372–19400.



19377

2.2. Turing instability for the non delayed system

In this subsection, we consider the stability and diffusion-driven instability of the positive equilibria
Ei(ui, vi) (i = 3, 4) when τ = 0, i.e., the non delayed system corresponding to system (1.3)

∂u
∂t = d1uxx + u(1 − u) − uv

β+u , x ∈ (0, lπ), t > 0,
∂v
∂t = d2vxx +

αuv2

(β+u)(δ+v) − mv, x ∈ (0, lπ), t > 0,
∂u(x,t)
∂x =

∂v(x,t)
∂x = 0, x = 0, lπ, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ].

(2.5)

In the rest of this paper, we assume that

(H1) 0 < δ <
[α − (1 + β)m]2

4m(α − m)
and m(1 − β) < α

holds for the existence of positive equilibria.
The linearization of system (2.5) at the positive equilibria Ei(ui, vi) (i = 3, 4) can be expressed by

∂

∂t

(
u
v

)
= D

(
∆u
∆v

)
+

(
a11 a12

a21 a22

) (
u
v

)
, (2.6)

where D = diag(d1, d2) and

a11 =u fu(u, v)|Ei =
u(1 − β − 2u)

β + u

∣∣∣∣∣
Ei

, a12 =u fv(u, v)|Ei = −
u

β + u

∣∣∣∣∣
Ei

< 0,

a21 =vgu(u, v)|Ei =
mβv

(β + u)u

∣∣∣∣∣
Ei

> 0, a22 =vgv(u, v)|Ei =
mδ
δ + v

∣∣∣∣∣
Ei

> 0,
(2.7)

with i = 3, 4. It is well known that the eigenvalue problem

∆ϕ(x) = λϕ(x), x ∈ (0, lπ),
∂ϕ(0)
∂x
=
∂ϕ(lπ)
∂x

= 0

has eigenvalues λn = −
n2

l2 (n ∈ N0), with the corresponding eigenfunctions

βn(x) =
cos n

l x∥∥∥cos n
l x

∥∥∥
L2

=


√

1
lπ , n = 0,√
2
lπ cos n

l x, n ≥ 1.

The characteristic equation for the linearized system (2.6) is

λ2 + Tnλ + Dn = 0, n ∈ N0, (2.8)

where

Tn =(d1 + d2)
n2

l2 + T0, Dn = d1d2
n4

l4 − (d1a22 + d2a11)
n2

l2 + D0, (2.9)

with T0 = −(a11 + a22), D0 = a11a22 − a12a21.
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Lemma 2.3. Suppose that (H1) holds. For E3(u3, v3), D0 = a11a22 − a12a21 > 0 and for E4(u4, v4)
D0 < 0.

Proof. From (2.1) and (2.2), we have

fu(u, v) = − fv(u, v)
dv1(u)

du
, gu(u, v) = −gv(u, v)

dv2(u)
du

.

Thus, D0 can be written as

D0 =

[
uv fv(u, v)gv(u, v)

(
dv2(u)

du
−

dv1(u)
du

)]
(ui,vi)

.

From the qualities of nullclines, we can easily get(
dv2(u)

du
−

dv1(u)
du

)∣∣∣∣∣∣
(u3,v3)

< 0 and
(
dv2(u)

du
−

dv1(u)
du

)∣∣∣∣∣∣
(u4,v4)

> 0.

From (2.7), we have fv(u, v) < 0 and gv(u, v) > 0, which lead to D0|(u3,v3) > 0 and D0|(u4,v4) < 0. □

From Lemma 2.3, we have D0|E4 < 0, which indicates that E4(u4, v4) is unstable. To investigate the
stability of E3(u3, v3), denote

(H2) u3 >
1
2

[
1 − β +

mδ(β + u3)
u3(δ + v3)

]
.

It is easy to get that if (H2) holds, T0 > 0. We have Tn ≥ T0 > 0, for n ∈ N0.
To have diffusion-driven instability, we need to find at least one positive integer n, such that Dn < 0.

We choose diffusion coefficient d1 as the bifurcation parameter to analyze the Turing bifurcation. For
E3(u3, v3), we easily obtain from Dn = 0 that

d1

(
n2

)
=

(
a11d2n2 − D0l2

)
l2

n2 (
d2n2 − a22l2) , (2.10)

where a11, a22 and D0 are defined in (2.7) and (2.9).
Denote

d∗1 = min
n∈N

d1(n2). (2.11)

Thus, we have the following results.

Lemma 2.4. Assume that (H1) and (H2) hold. For E3(u3, v3), we have
(i) If d1 < d∗1, Dn > 0 for all n ∈ N.
(ii) If d1 > d∗1, there exist n ∈ N such that Dn < 0.

Proof. Since (H2) holds, we have u3 >
1−β

2 . Thus, a11 < 0 and (a11d2n2 − D0l2)l2 < 0. Therefore, we
can deduce that d1(n2) > 0 if n2 < a22l2

d2
. For n2 < a22l2

d2
, we obtain

Dn


> 0, d1 < d1(n2),
= 0, d1 = d1(n2),
< 0, d1 > d1(n2).

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19372–19400.



19379

Let q = n2. Equation (2.10) can be written as

d1(q) =

(
a11d2q − D0l2

)
l2

q
(
d2q − a22l2) . (2.12)

Differentiating both sides of Eq (2.12) with respect to q yields

d′1(q) =
l2

(
−a11d2

2q2 + 2D0d2l2q − D0a22l4
)

q2 (
d2q − a22l2)2

≤ 0, 0 < q ≤ q∗,

> 0, q > q∗,

where

q∗ =

(
D0 −

√
D2

0 − D0a11a22

)
l2

a11d2
.

d1(q) reaches its minimum at q = q∗. To sum up, the range of wave numbers for the occurrence for
Turing instability is n2 < a22l2/d2, and when d1 > d1

(
n2

)
, Dn < 0. Now, we need to find the critical

wave number N∗ such that d1

(
n2

)
reaches its minimum at n = N∗. In fact,

N∗ =

N0, d1

(
N2

0

)
≤ d1

(
(N0 + 1)2

)
,

N0 + 1, d1

(
N2

0

)
> d1

(
(N0 + 1)2

)
,

here N0 = ⌊
√

q∗⌋, where ⌊·⌋ is the floor function. Thus, we have d∗1 ≜ d1

(
N2
∗

)
= min

n∈N
d1(n2). □

From the above analysis, we get the following conclusion.

Theorem 2.5. Assume that (H1) and (H2) hold and d∗1 is defined in (2.11). For non delayed system (2.5),
we have

(i) If d1 < d∗1, E3(u3, v3) is locally asymptotically stable.
(ii) If d1 > d∗1, E3(u3, v3) is unstable.
(iii) System (2.5) undergoes a Turing bifurcation at E3(u3, v3) when d1 = d∗1.

2.3. Hopf and Turing-Hopf bifurcation for the delayed system

In this section, we investigate the effect of delay τ on the dynamics for system (1.3).
For Neumann boundary condition, we define the real-valued Hilbert space

X :=
{

(u, v) ∈ H2(0, lπ) × H2(0, lπ)
∣∣∣∣∣∂u(x, t)

∂x
=
∂v(x, t)
∂x

= 0 at x = 0, lπ
}

and the corresponding complexification space XC := X ⊕ iX = {U1 + iU2|U1,U2 ∈ X} with the general
complex-value L2 inner product ⟨U1,U2⟩ =

∫ lπ

0
(ū1u2 + v̄1v2)dx, where Ui = (ui, vi)T ∈ XC, i = 1, 2.

Let Cτ := C([−τ, 0], XC) denote the phase space with the sup norm |ϕ| = sup
−τ≤θ≤0

|ϕ(θ)|. The linearization

system of (1.3) at E3(u3, v3) can be rewritten in the space Cτ as

dU(t)
dt
= D∆U(t) + L

(
U t) , (2.13)
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where D = diag(d1, d2), U(t) = (u(x, t), v(x, t))T , U t ∈ Cτ and L(·) : Cτ → XC is a bounded linear
operator defined by

L(ϕ) = L1ϕ(0) + L2ϕ(−τ),

where

L1 =

(
a11 a12

0 ã22

)
, L2 =

(
0 0

b21 m

)
, (2.14)

with a11, a12 are defined in (2.7) and

ã22 = −
mv3

δ + v3
< 0, b21 =

mβv3

(β + u3)u3
> 0.

The characteristic equation of (2.13) is

λ2 + Anλ + Bn + (Cn − mλ)e−λτ = 0, n ∈ N0, (2.15)

where

An =(d1 + d2)
n2

l2 − a11 − ã22,

Bn =d1d2
n4

l4 − (d1ã22 + d2a11)
n2

l2 + a11ã22,

Cn = − a12b21 − m
(
n2

l2 d1 − a11

)
.

When τ = 0, Eq (2.15) can be written as (2.8), where Tn = An − m, Dn = Bn + Cn. To investigate
the effect of delay τ, we assume that E3(u3, v3) is stable for non delayed system. From the previous
section, we assume that (H1), (H2) and d1 < d∗1 hold for the stability of E3(u3, v3) when τ = 0.

If ±iω0 (ω0 > 0) is a pair of roots of (2.15), then we have

−ω2
0 + iω0An + Bn + (−iω0m +Cn) [cos (ω0τ) − i sin (ω0τ)] = 0. (2.16)

Separating the real and imaginary parts of (2.16), we haveω2
0 − Bn = Cn cos(ω0τ) − mω0 sin(ω0τ),

ω0An = Cn sin(ω0τ) + mω0 cos(ω0τ).
(2.17)

which is equivalent to sin(ω0τ) = ω0(AnCn+mBn−mω2
0)

m2ω2
0+C2

n
≜ Sn(ω0),

cos(ω0τ) = Cnω
2
0+mAnω

2
0−BnCn

m2ω2
0+C2

n
≜ Cn(ω0).

(2.18)

Squaring and adding both sides of (2.17) gives us

ω4
0 + Pnω

2
0 + Qn = 0, (2.19)

where
Pn = A2

n − 2Bn − m2, Qn = B2
n −C2

n.
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Denote Rn = P2
n − 4Qn and sn = ω

2
0, we can write (2.19) as

G(s) ≡ s2
n + Pnsn + Qn = 0. (2.20)

Obviously, the existence of purely imaginary roots of (2.15) depends on the existence of positive roots
of (2.20). Since the number of positive roots of (2.20) may be zero, one or two. In the following, we
discuss in three cases and make the following assumptions.

(H3) (i) Rn < 0 or (ii) Rn ≥ 0, Pn > 0 and Bn −Cn > 0.
(H4) Bn −Cn < 0.
(H5) Rn > 0, Pn < 0 and Bn −Cn > 0.
If (H3) holds, Eq (2.20) has no positive roots, which indicates that Eq (2.15) has no purely imaginary

roots. Therefore, E3(u3, v3) is always locally asymptotically stable for all τ > 0.
If (H4) holds, Eq (2.20) has a unique positive root

s+n =
1
2

(−Pn +
√

Rn).

Correspondingly, Eq (2.15) has a pair of purely imaginary roots ±iωn = ±i
√

s+n . From (2.18), we have

τn, j =

 1
ωn

arccosCn(ωn) + 2 jπ
ωn
, Sn(ωn) > 0,

− 1
ωn

arccosCn(ωn) + 2( j+1)π
ωn

, Sn(ωn) < 0,
(2.21)

for n ∈ N0, j ∈ N0. Now, we verify the transversality conditions. Differentiating (2.15) with respect to
τ, we obtain

sign
{

d(Reλ)
dτ

}∣∣∣∣∣∣
λ=iωn

= sign
{

2ω2
n + Pn

m2ω2
n +C2

n

}
= sign

{ √
Rn

m2ω2
n +C2

n

}
> 0.

Denote
S1 = {n ∈ N0| (H4) holds}.

For any n ∈ S1, define τ∗ = min
n∈S1
{τn,0} as the smallest τ such that Hopf bifurcation occurs.

If (H5) holds, Eq (2.20) has two positive roots

s±n =
1
2

(
−Pn ±

√
Rn

)
and Eq (2.15) has two pairs of purely imaginary roots ±iω±n = ±i

√
s±n . We have

τ±n, j =

 1
ω±n

arccosCn(ω±n ) + 2 jπ
ω±n
, Sn(ω±n ) > 0,

− 1
ω±n

arccosCn(ω±n ) + 2( j+1)π
ω±n

, Sn(ω±n ) < 0,
(2.22)

for n ∈ N0, j ∈ N0. Differentiating Eq (2.15) with respect to τ, we obtain

sign
{

d(Reλ)
dτ

}∣∣∣∣∣∣
λ=iω±n

= sign

 2ω±
2

n + Pn

m2ω±2
n +C2

n

 = sign
{
±
√

Rn

m2ω±2
n +C2

n

}
,
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then we have

sign

 d(Reλ)
dτ

∣∣∣∣∣
τ=τ−n, j

 < 0, sign

 d(Reλ)
dτ

∣∣∣∣∣
τ=τ+n, j

 > 0.

Denote
S2 = {n ∈ N0| (H5) holds}.

For any n ∈ S2, define τ∗ = min
n∈S2

{
τ+n,0, τ

−
n,0

}
.

Theorem 2.6. Assume that (H1) and (H2) hold and d1 < d∗1. Then, the following statements are true.
(i) If (H3) holds, E3(u3, v3) is locally asymptotically stable for all τ > 0.
(ii) If (H4) holds, E3(u3, v3) is locally asymptotically stable when τ ∈ [0, τ∗) and it is unstable when

τ > τ∗. System (1.3) undergoes Hopf bifurcation at E3(u3, v3) when τ = τn, j (n ∈ S1).
(iii) If (H5) holds, E3(u3, v3) is locally asymptotically stable when

τ ∈ [0, τ∗)
⋃

(τ1, τ2)
⋃
· · ·

⋃
(τm−1, τm)

and unstable when
τ ∈ (τ∗, τ1)

⋃
(τ2, τ3)

⋃
· · ·

⋃
(τm,+∞),

where m ∈ N and τ∗ < τ1 < τ2 < · · · < τm ∈
{
τ±n, j

∣∣∣ n ∈ S2, j ∈ N0

}
. System (1.3) undergoes Hopf

bifurcation at E3(u3, v3) when τ = τ±n, j (n ∈ S2).

Combining Theorem 2.5 and Theorem 2.6, one can obtain the existence of Turing-Hopf bifurcation.

Theorem 2.7. Assume that (H1) and (H2) hold. E3(u3, v3) is locally asymptotically stable when τ < τ∗
and d1 < d∗1. System (1.3) undergoes a Turing-Hopf bifurcation at E3(u3, v3) when (τ, d1) = (τ∗, d∗1).

3. Normal form of Turing-Hopf bifurcation

In this section, we calculate the normal form of system (1.3) when a Turing-Hopf bifurcation occurs
at (τ, d1) = (τ∗, d∗1).

Let û(x, t) = u(x, τt) − u3, v̂(x, t) = v(x, τt) − v3 and drop the hats. System (1.3) can be written as

∂

∂t

(
u(x, t)
v(x, t)

)
= τ

[
(D∆ + L1)

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − 1)
v(x, t − 1)

)
+

(
f1

g1

)]
, (3.1)

where

f1(ϕ1, ϕ2) =
1
2

[
a1ϕ

2
1(0) + 2a2ϕ1(0)ϕ2(0)

]
+

1
6

[
a3ϕ

3
1(0) + 3a4ϕ

2
1(0)ϕ2(0)

]
+ O(4),

g1(ϕ1, ϕ2) =
1
2

[
b1ϕ

2
1(−1) + 2b2ϕ1(−1)ϕ2(0) + 2b3ϕ1(−1)ϕ2(−1) + b4ϕ

2
2(0) + 2b5ϕ2(0)ϕ2(−1)

]
+

1
6

[
b6ϕ

3
1(−1) + 3b7ϕ

2
1(−1)ϕ2(0) + 3b8ϕ

2
1(−1)ϕ2(−1) + 3b9ϕ1(−1)ϕ2

2(0)

+6b10ϕ1(−1)ϕ2(0)ϕ2(−1) + b11ϕ
3
2(0) + 3b12ϕ

2
2(0)ϕ2(−1)

]
+ O(4),
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with ϕ1, ϕ2 ∈ C := C([−1, 0], XC),

a1 =
2βv3

(β + u3)3 − 2, a2 = −
β

(β + u3)2 , a3 = −
6βv3

(β + u3)4 , a4 =
2β

(β + u3)3 ,

b1 =
−2αβv2

3

(β + u3)3(δ + v3)
, b2 =

αβδv3

(β + u3)2(δ + v3)2 , b3 =
αβv3

(β + u3)2(δ + v3)
, b4 =

−2αδu3v3

(β + u3)(δ + v3)3 ,

b5 =
αδu3

(β + u3)(δ + v3)2 , b6 =
6αβv2

3

(β + u3)4(δ + v3)
, b7 =

−2αβδv3

(β + u3)3(δ + v3)2 , b8 =
−2αβv3

(β + u3)3(δ + v3)
,

b9 =
−2αβδv3

(β + u3)2(δ + v3)3 , b10 =
αβδ

(β + u3)2(δ + v3)2 , b11 =
6αδu3v3

(β + u3)(δ + v3)4 , b12 =
−2αδu3

(β + u3)(δ + v3)3 .

(3.2)
Setting (τ, d1) =

(
τ∗ + α1, d∗1 + α2

)
, system (3.1) undergoes a Turing-Hopf bifurcation when

(α1, α2) = (0, 0). System (3.1) can be rewritten as

dU(t)
dt
= D0∆U(t) + L0U t + F̃

(
α,U t) , (3.3)

where

D0 = τ∗

(
d∗1

d2

)
, L0U t = τ∗

[
L1U t(0) + L2U t(−1)

]
,

F̃
(
α,U t) = (

α1D(1,0)
1 + α2D(0,1)

1

)
∆U(t) +

(
α1L(1,0)

1 + α2L(0,1)
1

)
U t + F

(
α,U t) .

Here

D(1,0)
1 =

(
d∗1

d2

)
, D(0,1)

1 =

(
τ∗

0

)
, L(1,0)

1 U t = L1U t(0) + L2U t(−1),

L(0,1)
1 U t = 0, F

(
α,U t) = (τ∗ + α1)

(
f1(ϕ1, ϕ2)
g1(ϕ1, ϕ2)

)
,

with L1, L2 are defined in (2.14). Consider the linearized system of (3.3)

dU(t)
dt
= D0∆U(t) + L0U t. (3.4)

Extend the phase space C to

BC :=
{
ψ : [−1, 0]→ XC|ψ is continuous on [−1, 0),∃ lim

θ→0−
ψ(θ) ∈ XC

}
.

Equation (3.4) can be rewritten as an abstract ordinary differential equation on BC

dU(t)
dt
= AU t + X0F

(
α,U t) , (3.5)

where

X0 =

0, θ ∈ [−1, 0),
I, θ = 0,

and A is the infinitesimal generator of the semigroup of solution maps of the linear Eq (3.4), defined
by A : C1

0
⋂
BC → BC, Aφ = φ̇ + X0[D0∆φ(0) + L0(φ) − φ̇(0)] with
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dom(A) = {φ ∈ C| φ̇ ∈ C, φ(0) ∈ dom(∆)}. Denote ηk ∈ BV([−1, 0],C2×2) to be the function of
bounded variation defined on [−1, 0], such that

−
n2

k

l2 D0ψ(0) + L0ψ =

∫ 0

−1
dηk(θ)ψ(θ), ψ ∈ C.

The adjoint bilinear form on C∗ × BC is defined by

(ψ, φ)k = ψ(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ(ξ − θ)ηk(θ)φ(ξ)dξ, ψ ∈ C∗, φ ∈ BC,

where k = 1, 2, and C∗ ≜ C([0, 1];C2).
From Theorem 2.7, system (3.4) has a pair of pure imaginary eigenvalues ±iω0τ∗ and a zero

eigenvalue at the Turing-Hopf bifurcation point, and all the other eigenvalues have negative real parts.
Choose

Φ1(θ) =
(
ϕ1(θ), ϕ1(θ)

)
, Φ2(θ) = ϕ2(θ), Ψ1(s) =

(
ψ1(s), ψ1(s)

)T
, Ψ2(s) = ψ2(s)

as the basis of the generalized eigenspace of Ai and A∗i (i = 1, 2), satisfying

AiΦi = ΦiBi, A∗iΨi = BiΨi, (Ψi,Φi)i = I, i = 1, 2,

where B1 = diag{iω0τ∗,−iω0τ∗}, B2 = 0. Denote

Φ(θ) = (Φ1(θ),Φ2(θ)), Ψ(s) = (Ψ1(s),Ψ2(s))T .

By some calculations, we have

ϕ1(θ) = eiω0τ∗θ(1, k1)T , ϕ2(θ) = (1, k3)T , θ ∈ [−1, 0),
ψ1(s) = e−iω0τ∗sM1(1, k2), ψ2(s) = M3(1, k4), s ∈ [0, 1],

where

k1 =
iω0τ∗ − a11

a12
, k2 =

iω0τ∗ − a11

b21e−iω0τ∗
, k3 =

d1n2
2 − a11l2

a12l2 , k4 =
d1n2

2 − a11l2

b21l2 ,

M1 =
eiω0τ∗

eiω0τ∗(k1k2 + 1) + τ∗k2 [b21 + mk1]
, M2 =

1
k3k4 + 1 + τ∗k4 (mk3 + b21)

.

Decomposing BC into a center subspace P and its orthocomplement space kerπ:

BC = P ⊕ kerπ,

where
P = span{ϕ1(θ)βn1 , ϕ1(θ)βn1 , ϕ2(θ)βn2},

and π : BC → P is the projection operator defined by

πφ =

2∑
k=1

Φk(Ψk, ⟨φ(·), βnk⟩)kβnk ,
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where β1
nk
=

(
βnk , 0

)T , β2
nk
=

(
0, βnk

)T and
〈
·, βnk

〉
=

〈
·, β1

nk
+ β2

nk

〉
. Therefore, U t ∈ BC can be composed

as
U t(θ) = ϕ1(θ)z1(t)βn1 + ϕ1(θ)z̄1(t)βn1 + ϕ2(θ)z2(t)βn2 + yt(θ) ≜ Φ(θ)zx(t) + yt(θ), (3.6)

where
zk(t) = (Ψk, ⟨U t(·), βnk⟩)k, yt(θ) ∈ C1

0

⋂
kerπ := Q1.

System (3.4) on BC can be expressed as a system on C3 × kerπ
ż1 = iω0τ∗z1 + ψ1(0)

〈
F (α,Φ(θ)zx(t) + yt(θ)) , βn1

〉
,

˙̄z1 = −iω0τ∗z̄1 + ψ̄1(0)
〈
F (α,Φ(θ)zx(t) + yt(θ)) , βn1

〉
,

ż2 = ψ2(0)
〈
F (α,Φ(θ)zx(t) + yt(θ)) , βn2

〉
,

ẏ = A1y + (I − π)X0F (α,Φ(θ)zx(t) + yt(θ)) ,

where A1 is the restriction of A on Q1 ⊂ kerπ→ kerπ, A1φ = Aφ for φ ∈ Q1.
In the following, we apply the algorithm given by An and Jiang [19] and obtain normal form

truncated to the third order for the Turing-Hopf bifurcation
ż1 = iω0τ∗z1 +

1
2 f 11

α1z1
α1z1 +

1
2 f 11

α2z1
α2z1 +

1
6g11

210z2
1z̄1 +

1
6g11

102z1z2
2,

˙̄z1 = −iω0τ∗z̄1 +
1
2 f 11

α1z1
α1z̄1 +

1
2 f 11

α2z1
α2z̄1 +

1
6g11

210z1z̄2
1 +

1
6g11

102z̄1z2
2,

ż2 =
1
2 f 13

α1z2
α1z2 +

1
2 f 13

α2z2
α2z2 +

1
6g13

111z1z̄1z2 +
1
6g13

003z3
2.

(3.7)

The coefficients of quadratic and cubic terms in (3.7) are in Appendix.
Making the cylindrical coordinate transformation by

z1 = R cos θ + iR sin θ1, z1 = R cos θ − iR sin θ1, z2 = V,

where R > 0 andV > 0. Re-scaling the variables with

ρ =

√
|Re(g11

210)|
6

R, η =

√
|g13

003|

6
V, t̂ =

t
ε
, ε = sign

(
Re

(
g11

210

))
and dropping the hats, system (3.7) is transformed intoρ̇ = ρ[ϵ1(α1, α2) + ρ2 + b0η

2],
η̇ = η[ϵ2(α1, α2) + c0ρ

2 + d0η
2],

(3.8)

where
ϵ1(α1, α2) =

ε

2

[
Re( f 11

α1z1
)α1 + Re( f 11

α2z1
)α2

]
,

ϵ2(α1, α2) =
ε

2

[
f 13
α1z2

α1 + f 13
α2z2

α2

]
,

b0 =
εRe(g11

102)

|g13
003|

, c0 =
εg13

111

|Re(g11
210)|

, d0 =
εg13

003

|g13
003|
= ±1.

According to Guckenheimer and Holmes [28], there are twelve distinct types of unfoldings for system
(3.8) according to the signs of b0, c0, d0 and d0 − b0c0 (see Table 1).
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Table 1. The twelve unfoldings of system (3.7).

Case Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII
d0 +1 +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1
c0 + + + − − − + + + − − −

d0 + + − + − − + − − + + −

d0 − b0c0 + − + + + − − + − + − −

4. Numerical simulations

In the following, we carry out numerical simulations to support our theoretical results obtained in
the previous sections and symbolic mathematical software Matlab is used to plot numerical graphs.
The delayed reaction-diffusion system (1.3) is numerically solved by transforming the continuous
system to discrete system using discretization of time and space. In the discrete system, the Laplacian
describing diffusion is calculated by using finite differences scheme with central differences, and the
time evolution is solved by using the forward (explicit) Euler method (with the
Courant-Friedrichs-Lewy (CFL) condition satisfied) [29].

For the numerical simulations, we choose hypothetical parameter data to verify the theoretical
results and demonstrate possible dynamical behaviours. Thus, we vary the parameters to verify the
conditions for the occurrence of bifurcations, such as Turing bifurcation, Hopf bifurcation and
Turing-Hopf bifurcation. Meanwhile, we observe the effect of varying diffusive coefficient, delay and
Allee effect constant on the dynamics of system. Therefore, similar to Sen et al. [10] and Ghosh et
al. [30], we choose the parameters in some range (see Table 2).

Table 2. Value of the parameters for numerical simulations.

Parameter Turing bifurcation Hopf bifurcation Turing-Hopf bifurcation
α 1.2 1.2 1.2
β 0.3 0.3 0.3
d1 [18.7, 19.2] 10 [15, 18.4]
d2 0.5 0.5 0.5
δ 0.1 [0.1, 0.11] 0.1
l 6 6 6
m 0.58 0.58 0.58
τ / [0, 30] [0.15, 0.75]

4.1. Turing instability

In this subsection, we choose δ = 0.1 such that (H1) and (H2) hold. Taking d1 as the bifurcation
parameter, we carry out numerical simulations for non delayed system (2.5) and illustrate the pattern
formulations induced by Turing bifurcation.

By direct calculation, we have a22l2/d2 = 8.1517. Thus, d1(n2) > 0 if n2 < 8.1517. Figure 2 shows
the relationship between d1 and n according to (2.10). It indicates that q∗ ≈ 1.9898, N∗ = 2. Thus,
from (2.11), we have d∗1 = d1

(
N∗

2
)
= d1(22) = 18.7569. Therefore, from Theorem 2.5, we conclude
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that E3(0.4511, 0.4123) of non delayed system (2.5) is stable when d1 < d∗1 and unstable when d1 > d∗1.
Figure 3 demonstrates that E3 is stable for d1 = 18.7 < d∗1. For d1 = 19.2 > d∗1, E3(0.4511, 0.4123) is
unstable, which is shown in Figure 4.

1.85 1.90 1.95 2.00 2.05 2.10
18.72

18.76

18.80

18.84

18.88

18.92

Figure 2. The diagram of d1(n2) on the (n, d1) plane.

(a) (b)

Figure 3. The positive equilibrium E3(u3, v3) is stable when d1 = 18.5 < d∗1.

(a) (b)

Figure 4. The positive equilibrium E3(u3, v3) is unstable induced by Turing bifurcation when
d1 = 19.2 > d∗1.
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For the numerical simulations in Figures 3 and 4, the initial value functions are both u(x, 0) =
0.45 − 0.05 cos

(
1
3 x

)
, v(x, 0) = 0.41 + 0.04 cos

(
1
3 x

)
.

4.2. Hopf bifurcation

In this section, we reveal the effect of τ on the dynamics of system (1.3). Thus, we fix d1 = 10 < d∗1
such that E3(u3, v3) is stable for τ = 0. We find that the strength of Allee effect has an important role in
the occurrence of Hopf bifurcation.

Choose δ = 0.1 such that the strength of Allee effect is low. We can verify that (H1) and (H2)
hold. Moreover, (H4) holds only for n = 0. Then, Eq (2.20) has a unique positive root s+0 . From
(2.21), the critical value of Hopf bifurcation is τ∗ = 0.1571 = τ0,0. From Theorem 2.6 (ii), the positive
equilibrium E3(0.4511, 0.4123) is locally asymptotically stable when τ = 0.15 < τ∗ and unstable when
τ = 1.5 > τ∗.

Table 3. Critical values of Hopf bifurcation τ±n, j.

j = 0 j = 1 j = 2 j = 3
n = 0 τ+0,0 = 0.7921 τ+0,1 = 24.2091 τ+0,2 = 47.6261 τ+0,3 = 71.0431
n = 0 τ−0,0 = 3.7313 τ−0,1 = 38.7605 τ−0,2 = 73.7898 τ−0,3 = 108.8190

When δ increases to δ = 0.105, (H1) and (H2) hold. (H5) holds only for n = 0, Eq (2.20) has two
positive roots s±0 . The critical value of Hopf bifurcation can be obtained (see Table 3), and we can get
from (2.22) that

τ+0,0 < τ
−
0,0 < τ

+
0,1 < τ

−
0,1 < τ

+
0,2 < τ

+
0,3 < τ

−
0,2 < τ

−
0,3.

From Theorem 2.6 (iii), the positive equilibrium E3(0.4639, 0.4095) is locally asymptotically stable
when τ ∈

[
0, τ+0,0

)⋃ (
τ−0,0, τ

+
0,1

)
and unstable when τ ∈

(
τ+0,0, τ

−
0,0

)⋃ (
τ+0,1,+∞

)
. The delay τ may lead

to stability switches with an intermediate strength of Allee effect, and there are two stability switches
for system (1.3). Figures 5 and 7 show that E3(0.4639, 0.4095) is stable for τ = 0.5 ∈

[
0, τ+0,0

)
and

τ = 10 ∈
(
τ−0,0, τ

+
0,1

)
, respectively. For τ = 3 ∈

(
τ+0,0, τ

−
0,0

)
and τ = 30 ∈

(
τ+0,1,+∞

)
, E3(0.4639, 0.4095) is

unstable (see Figures 6 and 8).
When δ is further increased to δ = 0.11, we can verify (H1), (H2) and (H3) hold. From Theorem 2.6

(i), E3(0.4776, 0.4062) is locally asymptotically stable for all τ > 0.

4.3. Spatiotemporal patterns near the Turing-Hopf bifurcation point

In this section, we reveal the complex spatiotemporal dynamics near the Turing-Hopf bifurcation
point (τ∗, d∗1). Fix δ = 0.1, and choose d1 and τ as bifurcation parameters.

From (2.11) and (2.21), we have τ∗ = 0.1571, d∗1 = 18.7569. System (1.3) undergoes a Turing-Hopf
bifurcation at E3(u3, v3) when (τ, d1) = (τ∗, d∗1).

After calculation, we can obtain the coefficients in (3.8), where

ϵ1 = − 3.4272 × 10−3α1, ϵ2 = −4.3221 × 10−4α2,

b0 =4.576563, c0 = −0.714188, d0 = −1, d0 − b0c0 = 2.268527.
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(a) (b)

Figure 5. The positive equilibrium E3(u3, v3) is locally asymptotically stable when τ = 0.5 ∈[
0, τ+0,0

)
.

(a) (b)

Figure 6. There is a bifurcating periodic solution when τ = 3 ∈
(
τ+0,0, τ

−
0,0

)
.

(a) (b)

Figure 7. The positive equilibrium E3(u3, v3) is locally asymptotically stable when τ = 10 ∈(
τ−0,0, τ

+
0,1

)
.
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(a) (b)

Figure 8. There is a bifurcating periodic solution when τ = 30 ∈
(
τ+0,1,+∞

)
.

From Table 1, the unfolding system is of type VIa. System (3.8) can be written asρ̇ = ρ
(
−3.4272 × 10−3α1 + ρ

2 + 4.576563η2
)
,

η̇ = η
(
−4.3221 × 10−4α2 − 0.714188ρ2 − η2

)
.

(4.1)

By some simple calculations, we find that the system admits the following equilibria

A0 =(0, 0),

A1 =
( √

3.4272 × 10−3α1, 0
)
, for α1 > 0,

A±2 =
(
0,±

√
−4.3221 × 10−4α2

)
, for α2 < 0,

A±3 =
( √
−1.5110 × 10−3α1 − 8.7194 × 10−4α2,±

√
1.0790 × 10−3α1 + 1.9052 × 10−4α2

)
,

for − 1.5110 × 10−3α1 − 8.7194 × 10−4α2 > 0 and 1.0790 × 10−3α1 + 1.9052 × 10−4α2 > 0.

Since α1 = τ − τ∗, α2 = d1 − d∗1, the detailed bifurcation diagram in (τ, d1) plane can be drawn (see
Figure 9). There are six partial bifurcation curves:

L1 : τ = 0.1571, L2 : d1 = 18.7569,
T1 : d1 = −5.6634(τ − 0.1571) + 18.7569, (τ > 0.1571),
T2 : d1 = −5.6634(τ − 0.1571) + 18.7569 + o(τ − 0.1571), (τ > 0.1571),
T3 : d1 = −2.4377(τ − 0.1571) + 18.7569, (τ > 0.1571),
T4 : d1 = −1.7329(τ − 0.1571) + 18.7569, (τ > 0.1571),

which divide (τ, d1) plane into eight regions D1-D8. Furthermore, the spatiotemporal dynamics near
the Turing-Hopf bifurcation point in D1-D8 can be described by Figure 10.

Notice that the zero equilibrium A0 of (4.1) corresponds to the positive equilibrium E3(u3, v3) of the
original system (1.3). A1 in (4.1) corresponds to the spatially homogeneous periodic solution of the
original system (1.3). The equilibria A±2 in (4.1) correspond to the steady state solutions of the original
system (1.3). A±3 corresponds to spatially inhomogeneous periodic solutions. Periodic orbit of (4.1)
corresponds to spatially inhomogeneous quasi-periodic solutions.
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Figure 9. The bifurcation curves and partial bifurcation set near Turing-Hopf bifurcation
point “TH” on the (τ, d1) plane.

Figure 10. Distinct phase portrait near TH in D1-D8 corresponding to Figure 9.

In region D1, system (4.1) has three equilibria: A0 and A±2 . A0 is stable while other equilibria are
unstable. This means that the positive equilibrium E3(u3, v3) is locally asymptotically stable as shown
in Figure 11, when τ = 0.15 and d1 = 15 are chosen in D1. The steady state solutions of (1.3) are
unstable.

In region D2, there are four equilibria of (4.1): A0, A1 and A±2 . A1 is stable while other equilibria are
unstable. This means that system (1.3) has a stable spatially homogeneous periodic solution. Figure 12
illustrates the existence of a stable spatially homogeneous periodic solution when (τ, d1) passes through
Hopf bifurcation curve L2 into D2.

In region D3, system (4.1) has six equilibria: A0, A1, A±2 and A±3 . A±3 are stable while other
equilibria are unstable. This means that there are two stable spatially inhomogeneous periodic
solutions. Figure 13 illustrates the coexistence of two stable spatially inhomogeneous periodic
solutions when (τ, d1) enters D3 from D2.

In region D4, there are six equilibria and two periodic orbit of system (4.1). This means that system
(1.3) has two stable spatially inhomogeneous quasi-periodic solutions (see Figure 14).

In region D5, system (4.1) has six equilibria: A0, A1, A±2 and A±3 , which are all unstable. When the
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parameter enters region D5, two stable spatially inhomogeneous quasi-periodic solutions disappears.
This means that the positive equilibrium E3(u3, v3), the spatially homogeneous periodic solution, two
steady state solutions and two stable spatially inhomogeneous periodic solutions of system (1.3) are all
unstable.

In region D6, system (4.1) has four equilibria: A0, A1 and A±2 , which are all unstable. This means
that the positive equilibrium E3(u3, v3), the spatially homogeneous periodic solution and two steady
state solutions of system (1.3) are all unstable.

In region D7, there are two unstable equilibria A0 and A1 of system (1.3). This means that the
positive equilibrium E3(u3, v3) and the spatially homogeneous periodic solution are all unstable.

In region D8, system (4.1) has only one equilibrium A0, which is a saddle. This means that the
positive equilibrium E3(u3, v3) of system (1.3) is unstable.

For the numerical simulations, in Figures 11 and 12, the initial conditions are all u(x, 0) = u3 −

0.05 cos
(

1
3 x

)
, v(x, 0) = v3 + 0.04 cos

(
1
3 x

)
; the initial conditions are all u(x, 0) = u3 − 0.05 cos

(
1
3 x

)
,

v(x, 0) = v3+0.04 cos
(

1
3 x

)
in Figures 13(a)–(c) and 14(a)–(c) and the initial conditions are all u(x, 0) =

u3 + 0.05 cos
(

1
3 x

)
, v(x, 0) = v3 − 0.04 cos

(
1
3 x

)
in Figures 13(d)–(f) and 14(d)– (f).

(a) (b)

Figure 11. The constant steady state for (τ, d1) = (0.15, 15) ∈ D1.

(a) (b)

Figure 12. The spatially homogeneous periodic solution for (τ, d1) = (0.75, 15) ∈ D2.
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Figure 13. The spatially inhomogeneous periodic solutions coexist for (τ, d1) = (0.35, 18) ∈
D3.

5. Conclusions and discussion

In this paper, we have considered a diffusive predator-prey model with digestion delay and Allee
effect in predators.

First, we investigate the existence of equilibria. We find that the strength of Allee effect will affect
the number of positive equilibria. When the strength of Allee effect 0 < δ < [α−(1−β)m]2

4m(α−m) , system (1.3) has
two positive equilibria E3(u3, v3) and E4(u4, v4). When the strength of Allee effect increases to a certain
critical level δ = [α−(1−β)m]2

4m(α−m) , system (1.3) has a unique positive equilibrium E5(u5, v5) and undergoes
saddle-node bifurcation. If the strength of Allee effect exceeds the critical value, system (1.3) has
no positive equilibria. It is found that Allee effect in predators has a crucial role on the dynamical
behavior of our system. From Theorem 2.1, we find that the Allee effect may impact the coexistence
of predators and the prey. When the strength of Allee effect is high, the predators and the prey can
not coexist, resulting in the extinction of the predator populations at low population densities, which
is consistent with the findings of Li et al. [11]. Remark 2.2 tells us that the strength of Allee effect
also influences the densities of the species. From the analysis of the stable equilibrium E3(u3, v3), the
densities of predators and prey increases and decreases with the increasing strength of Allee effect.

For the non delayed system, we obtain the conditions for the stability and instability induced by
diffusion of the positive equilibrium E3(u3, v3). For the delayed system, there are three distinct cases
for the occurrence of Hopf bifurcation with different levels of Allee effect strength. If the strength of
the Allee effect δ is low, digestion delay τ will alter the stability of the positive equilibrium E3(u3, v3)
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Figure 14. The spatially inhomogeneous quasi-periodic solutions coexist for (τ, d1) =
(0.25, 18.4) ∈ D4.

and induce Hopf bifurcation. When the strength of Allee effect δ increases to an intermediate value,
digestion delay τ will induce Hopf bifurcation and stability switches. Finally, when the strength of
Allee effect δ is high, Hopf bifurcation will not occur and the stability of the positive equilibrium
E3(u3, v3) will not be changed.

Furthermore, we determine the conditions of Turing-Hopf bifurcation and calculate its normal
form. Taking d1 and τ as bifurcation parameters, the effects of diffusion and digestion delay are
investigated. We derive normal forms truncated to the third order near Turing-Hopf bifurcation point
(τ∗, d∗1) and obtain the classification of dynamics. The parameter plane near the Turing-Hopf
bifurcation can be divided into eight regions, each with clear dynamics. When the parameter (τ, d1) is
in region D1, the positive equilibrium E3(u3, v3) is locally asymptotically stable. If (τ, d1) ∈ D2, there
is a stable spatially homogeneous periodic solution. When (τ, d1) enters D3 from D2, there exist two
stable spatially inhomogeneous periodic solutions. Two stable spatially inhomogeneous
quasi-periodic solutions appear in D4 and disappear in D5. Using Turing-Hopf bifurcation, we can
easily qualitatively classify dynamics on a two-parameter plane and understand the combined effects
of diffusion and digestion delay on predator-prey interactions, which has important theoretical
significance for environmental protection, endangered species protection and biodiversity protection.

In this paper, we explore the spatiotemporal dynamics of a predator-prey model with Allee effect in
predators, applying the normal form theory of Turing-Hopf bifurcation extended by An et al. [19] and
Jiang et al. [23]. Li et al. [11] mainly discussed the effect of delay on the dynamics, and it is shown
that the model can possess multiple stability switches and a stable spatially heterogeneous periodic
solution with mode-4 as delays vary. Wang et al. [25] studied local and global stability of the positive
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equilibrium as well as Turing instability, and the rich Turing patterns are demonstrated by numerical
simulations, including holes, stripes and spots patterns. In our paper, we focus on the joint effect
of diffusion, delay and Allee effect on the dynamics through Turing bifurcation, Hopf bifurcation and
Turing-Hopf bifurcation analysis. The findings of this study reveal the possibility of two stable spatially
inhomogeneous periodic solutions and a spatially quasi-periodic solution, with different dynamics from
those observed when both predator and prey populations exhibit Allee effect [27].

Most present research on prey-predator models has assumed that the biological parameters are
exact. However, in reality, biological parameters can vary due to various reasons, which make the
exact estimation of these parameters difficult. Ghosh et al. [30] considered interval number biological
parameters in their study, which can capture the complex dynamics of predator-prey systems and
enable simulation of the effect of different environmental factors. In this article, we carry out detailed
bifurcation analysis on continuous-time model, such as Turing bifurcation, Hopf bifurcation and
Turing-Hopf bifurcation. For discrete-time model, Naik et al. [31, 32] investigate the one-parameter
and two-parameter bifurcations of a discrete-time prey-predator model, including the flip
(period-doubling), generalized flip, Neimark-Sacker and strong resonance bifurcations.

We consider two species in the model and only consider interspecific competition for resources.
When we consider a system with more species, prey species can sometimes indirectly depress each
other by increasing the abundance of a shared natural enemy, which is called apparent competition
[33, 34]. Taking these into account, the influence of the apparent competition on the spatiotemporal
dynamics of the predator-prey model with Allee effect would be worth for further study. In addition,
other ecological phenomena, such as hydra effects [35] and harvesting [36, 37], could offer intriguing
possibilities for future research.
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Appendix: The coefficient of quadratic and cubic terms

The expressions of the coefficients in (3.7) are as follows.
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Here f 12
mnk = f 11

mnk,

f 11
mnk =

1
√

lπ
ψ1(0)Fmnk, f 13

mnk =
1
√

lπ
ψ2(0)Fmnk, m + n + k = 2,

f 11
210 =

1
lπ
ψ1(0)F210, f 11

102 =
1
lπ
ψ1(0)F102, f 13

111 =
1
lπ
ψ2(0)F111, f 13

003 =
3

2lπ
ψ2(0)F003.

⟨h200(θ)βn1 , βn1⟩ =
e2iω0τ∗θ

lπ

[
2iω0τ∗ − L0

(
e2iω0τ∗·Id

)]−1
F200 −

1

iω0τ∗
√

lπ

[
f 11
200ϕ1(θ) +

1
3

f 12
200ϕ1(θ)

]
,

⟨h110(θ)βn1 , βn1⟩ = −
1
lπ

[L0(Id)]−1 F110 +
1

iω0τ∗
√

lπ

[
f 11
110ϕ1(θ) − f 12

110ϕ1(θ)
]
,

⟨h110(θ)βn2 , βn2⟩ = ⟨h110(θ)βn1 , βn1⟩,

⟨h101(θ)βn2 , βn1⟩ =
eiω0τ∗θ

lπ

[
iω0τ∗ +

n2
2

l2 D0 − L0

(
eiω0τ∗·Id

)]−1

F101 −
1

iω0τ∗
√

lπ
f 13
101ϕ2(0),

⟨h011(θ)βn1 , βn2⟩ =
e−iω0τ∗θ

lπ

[
−iω0τ∗ +

n2
2

l2 D0 − L0

(
e−iω0τ∗·Id

)]−1

F011 +
1

iω0τ∗
√

lπ
f 13
011ϕ2(0),

⟨h002(θ)βn1 , βn1⟩ = −
1
lπ

[L0(Id)]−1 F002 +
1

iω0τ∗
√

lπ

[
f 11
002ϕ1(θ) − f 12

002ϕ1(θ)
]
,

⟨h002(θ)βn2 , βn2⟩ =
1

2lπ

[
4n2

2

l2 D0 − L0(Id)
]−1

F002 + ⟨h002(θ)βn1 , βn1⟩,

with

F200 =Fuu + 2k1

(
Fuv + Fvvτk1e−iω0τ∗ + Fuτvτe

−2iω0τ∗ + Fuτve
−iω0τ∗

)
+ Fvvk2

1 + Fuτuτe
−2iω0τ∗ ,

F110 =2
[
Fuu + Fvvk1k1 + Fuτuτ + Fuv

(
k1 + k1

)
+ Fuτv

(
k1e−iω0τ∗ + k1eiω0τ∗

)
+ Fvvτk1k1

(
e−iω0τ∗ + eiω0τ∗

)
+Fuτvτ

(
k1 + k1

)]
,

F101 =2
[
Fuu + Fvvk1k3 + Fuτuτe

−iω0τ∗ + Fuv (k1 + k3) + Fuτv

(
k1 + k3e−iω0τ∗

)
+ Fvvτk1k3

(
1 + e−iω0τ∗

)
+Fuτvτ (k1 + k3) e−iω0τ∗

]
,

F002 =Fuu + Fvvk2
3 + Fuτuτ + 2

(
Fuvk3 + Fuτvk3 + Fvvτk

2
3 + Fuτvτk3

)
,

F002 =F200, F011 = F101,

F210 =3
[
Fuuu + Fuuv

(
2k1 + k1

)
+ Fvvvk2

1k1 + Fuτvvk1

(
2k1e−iω0τ∗ + k1eiω0τ∗

)
+ Fvvvτk

2
1k1

(
2e−iω0τ∗ + eiω0τ∗

)
+Fuτuτv

(
2k1 + k1e−2iω0τ∗

)
+ 2Fuτvvτk1

(
k1 + k1e−2iω0τ∗ + k1

)
+ Fuτuτvτ

(
2k1e−iω0τ∗ + k1e−iω0τ∗

)
+Fuτuτuτe

−iω0τ∗
]
,

F102 =3
[
Fuuu + Fuuv (k1 + 2k3) + Fvvvk1k2

3 + Fuτvvk3

(
k3e−iω0τ∗ + 2k1

)
+ Fvvvτk1k2

3

(
2 + e−iω0τ∗

)
+Fuτuτv

(
k1 + 2k3e−iω0τ∗

)
+ 2Fuτvvτk3

(
k1 + k3e−iω0τ∗ + k1e−iω0τ∗

)
+ Fuτuτvτ

(
k1e−iω0τ∗ + 2k3e−iω0τ∗

)
+Fuτuτuτe

−iω0τ∗
]
,
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F111 =6
{
Fuuv

(
k1 + k3 + k1

)
+ Fuτvv

(
k1k1 + k1k3e−iω0τ∗ + k1k3eiω0τ∗

)
+ Fvvvτk1k1k3

(
1 + e−iω0τ∗ + eiω0τ∗

)
+Fuτuτv

(
k3 + k1eiω0τ∗ + e−iω0τ∗k1

)
+ Fuuu + Fuτuτuτ + Fuτuτvτ

(
k1 + k3 + k1

)
+ Fvvvk1k1k3

+Fuτvvτ

[
k1k3

(
1 + eiω0τ∗

)
+ k1k1

(
e−iω0τ∗ + eiω0τ∗

)
+ k1k3

(
1 + e−iω0τ∗

)]}
,

F003 =Fuuu + Fvvvk3
3 + Fuτuτuτ + 3k3

(
Fuuv + Fuτuτvτ + Fuτuτv + Fuτvvk3 + 2Fuτvvτk3 + Fvvvτk

2
3

)
,

and the linear operators S yzi(i = 1, 2) from Q1 to XC are defined as follow:

S yzi(φ) =
(
Fy1(0)zi , Fy2(0)zi

)
φ(0) +

(
Fy1(−1)zi , Fy2(−1)zi

)
φ(−1),

S yz̄1(φ) =
(
Fy1(0)z1 , Fy2(0)z1

)
φ(0) +

(
Fy1(−1)z1 , Fy2(−1)z1

)
φ(−1),

where

Fy1(0)z1 = 2 (Fuu + Fuvk1) , Fy2(0)z1 = 2
(
Fuv + Fvvk1 + Fuτve

−iω0τ
∗

+ Fvvτk1e−iω0τ∗
)
,

Fy2(−1)z1 = 2
(
Fvvτk1 + Fuτvτe

−iω0τ
∗
)
, Fy1(−1)z1 = 2

(
Fuτvk1 + Fuτuτe

−iω0τ∗ + Fuτvτk1e−iω0τ∗
)
,

Fy1(0)z2 = 2 (Fuu + Fuvk3) , Fy1(−1)z2 = 2
(
Fuτvk3 + Fuτuτ + Fuτvτk3

)
,

Fy2(0)z2 = 2
(
Fuv + Fvvk3 + Fuτv + Fvvτk3

)
, Fy2(−1)z2 = 2

(
Fvvτk3 + Fuτvτ

)
.

The above expressions still needs the second and third derivatives of F
(
α,U t) with respect to u(t),

v(t), u(t − 1), v(t − 1) at
(
α,U t) = (0, 0). Denote by u(t), v(t), u(t − 1), v(t − 1) the simplified form of u,

v, uτ, vτ, respectively. Through direct calculation, one can see that the nonzero partial derivatives are

Fuu =

(
a1τ∗

0

)
, Fuv =

(
a2τ∗

0

)
, Fuτuτ =

(
0

b1τ∗

)
, Fuτv =

(
0

b2τ∗

)
,

Fuτvτ =

(
0

b3τ∗

)
, Fvv =

(
0

b4τ∗

)
, Fvvτ =

(
0

b5τ∗

)
, Fuuu =

(
a3τ∗

0

)
,

Fuuv =

(
a4τ

∗

0

)
, Fuτuτuτ =

(
0

b6τ∗

)
, Fuτuτv =

(
0

b7τ∗

)
, Fuτuτvτ =

(
0

b8τ∗

)
,

Fuτvv =

(
0

b9τ∗

)
, Fuτvvτ =

(
0

b10τ∗

)
, Fvvv =

(
0

b11τ∗

)
, Fvvvτ =

(
0

b12τ∗

)
,

where ai, b j (i = 1, · · · , 4, j = 1, 2, · · · , 12) are defined in (3.2).
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