Research article Special Issues

Securing cloud-enabled smart cities by detecting intrusion using spark-based stacking ensemble of machine learning algorithms

  • Received: 27 February 2023 Revised: 28 May 2023 Accepted: 06 July 2023 Published: 31 January 2024
  • With the use of cloud computing, which provides the infrastructure necessary for the efficient delivery of smart city services to every citizen over the internet, intelligent systems may be readily integrated into smart cities and communicate with one another. Any smart system at home, in a car, or in the workplace can be remotely controlled and directed by the individual at any time. Continuous cloud service availability is becoming a critical subscriber requirement within smart cities. However, these cost-cutting measures and service improvements will make smart city cloud networks more vulnerable and at risk. The primary function of Intrusion Detection Systems (IDS) has gotten increasingly challenging due to the enormous proliferation of data created in cloud networks of smart cities. To alleviate these concerns, we provide a framework for automatic, reliable, and uninterrupted cloud availability of services for the network data security of intelligent connected devices. This framework enables IDS to defend against security threats and to provide services that meet the users' Quality of Service (QoS) expectations. This study's intrusion detection solution for cloud network data from smart cities employed Spark and Waikato Environment for Knowledge Analysis (WEKA). WEKA and Spark are linked and made scalable and distributed. The Hadoop Distributed File System (HDFS) storage advantages are combined with WEKA's Knowledge flow for processing cloud network data for smart cities. Utilizing HDFS components, WEKA's machine learning algorithms receive cloud network data from smart cities. This research utilizes the wrapper-based Feature Selection (FS) approach for IDS, employing both the Pigeon Inspired Optimizer (PIO) and the Particle Swarm Optimization (PSO). For classifying the cloud network traffic of smart cities, the tree-based Stacking Ensemble Method (SEM) of J48, Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) are applied. Performance evaluations of our system were conducted using the UNSW-NB15 and NSL-KDD datasets. Our technique is superior to previous works in terms of sensitivity, specificity, precision, false positive rate (FPR), accuracy, F1 Score, and Matthews correlation coefficient (MCC).

    Citation: Mohd. Rehan Ghazi, N. S. Raghava. Securing cloud-enabled smart cities by detecting intrusion using spark-based stacking ensemble of machine learning algorithms[J]. Electronic Research Archive, 2024, 32(2): 1268-1307. doi: 10.3934/era.2024060

    Related Papers:

  • With the use of cloud computing, which provides the infrastructure necessary for the efficient delivery of smart city services to every citizen over the internet, intelligent systems may be readily integrated into smart cities and communicate with one another. Any smart system at home, in a car, or in the workplace can be remotely controlled and directed by the individual at any time. Continuous cloud service availability is becoming a critical subscriber requirement within smart cities. However, these cost-cutting measures and service improvements will make smart city cloud networks more vulnerable and at risk. The primary function of Intrusion Detection Systems (IDS) has gotten increasingly challenging due to the enormous proliferation of data created in cloud networks of smart cities. To alleviate these concerns, we provide a framework for automatic, reliable, and uninterrupted cloud availability of services for the network data security of intelligent connected devices. This framework enables IDS to defend against security threats and to provide services that meet the users' Quality of Service (QoS) expectations. This study's intrusion detection solution for cloud network data from smart cities employed Spark and Waikato Environment for Knowledge Analysis (WEKA). WEKA and Spark are linked and made scalable and distributed. The Hadoop Distributed File System (HDFS) storage advantages are combined with WEKA's Knowledge flow for processing cloud network data for smart cities. Utilizing HDFS components, WEKA's machine learning algorithms receive cloud network data from smart cities. This research utilizes the wrapper-based Feature Selection (FS) approach for IDS, employing both the Pigeon Inspired Optimizer (PIO) and the Particle Swarm Optimization (PSO). For classifying the cloud network traffic of smart cities, the tree-based Stacking Ensemble Method (SEM) of J48, Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) are applied. Performance evaluations of our system were conducted using the UNSW-NB15 and NSL-KDD datasets. Our technique is superior to previous works in terms of sensitivity, specificity, precision, false positive rate (FPR), accuracy, F1 Score, and Matthews correlation coefficient (MCC).



    加载中


    [1] Z. Ullah, F. Al-Turjman, L. Mostarda, R. Gagliardi, Applications of artificial intelligence and machine learning in smart cities, Comput. Commun., 154 (2020), 313–323. https://doi.org/10.1016/j.comcom.2020.02.069 doi: 10.1016/j.comcom.2020.02.069
    [2] Urbanization, 2023. Available from: https://www.unfpa.org/urbanization.
    [3] R. Petrolo, V. Loscrì, N. Mitton, Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms, Trans. Emerg. Telecommun. Technol., 28 (2017). https://doi.org/10.1002/ETT.2931 doi: 10.1002/ETT.2931
    [4] U. Aguilera, O. Peña, O. Belmonte, D. López-de-Ipiña, Citizen-centric data services for smarter cities, Future Gener. Comput. Syst., 76 (2017), 234–247. https://doi.org/10.1016/j.future.2016.10.031 doi: 10.1016/j.future.2016.10.031
    [5] P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, F. Scorrano, Current trends in smart city initiatives: some stylised facts, Cities, 38 (2014), 25–36. https://doi.org/10.1016/j.cities.2013.12.010 doi: 10.1016/j.cities.2013.12.010
    [6] H. Habibzadeh, B. H. Nussbaum, F. Anjomshoa, B. Kantarci, T. Soyata, A survey on cybersecurity, data privacy, and policy issues in cyber-physical system deployments in smart cities, Sustain. Cities Soc., 50 (2019), 101660. https://doi.org/10.1016/J.SCS.2019.101660 doi: 10.1016/J.SCS.2019.101660
    [7] M. Pouryazdan, C. Fiandrino, B. Kantarci, T. Soyata, D. Kliazovich, P. Bouvry, Intelligent gaming for mobile crowd-sensing participants to acquire trustworthy big data in the Internet of Things, IEEE Access, 5 (2017), 22209–22223. https://doi.org/10.1109/ACCESS.2017.2762238 doi: 10.1109/ACCESS.2017.2762238
    [8] K. Liao, Z. Zhao, A. Doupe, G. J. Ahn, Behind closed doors: measurement and analysis of CryptoLocker ransoms in Bitcoin, in 2016 APWG Symposium on Electronic Crime Research (eCrime), 2016 (2016), 1–13. https://doi.org/10.1109/ECRIME.2016.7487938
    [9] K. Cabaj, W. Mazurczyk, Using software-defined networking for ransomware mitigation: the case of cryptowall, IEEE Netw., 30 (2016), 14–20. https://doi.org/10.1109/MNET.2016.1600110NM doi: 10.1109/MNET.2016.1600110NM
    [10] C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle, Black Hat USA, 2015. Available from: https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-1.pdf.
    [11] A. Greenberg, Hackers remotely kill a jeep on the highway—with me in it, Wired, 7 (2015), 21–22.
    [12] N. Moustafa, M. Keshk, K. K. R. Choo, T. Lynar, S. Camtepe, M. Whitty, DAD: a distributed anomaly detection system using ensemble one-class statistical learning in edge networks, Future Gener. Comput. Syst., 118 (2021), 240–251. https://doi.org/10.1016/J.FUTURE.2021.01.011 doi: 10.1016/J.FUTURE.2021.01.011
    [13] T. Alam, Cloud-based IoT applications and their roles in smart cities, Smart Cities, 4 (2021), 1196–1219. https://doi.org/10.3390/smartcities4030064 doi: 10.3390/smartcities4030064
    [14] Y. Liu, C. Yang, L. Jiang, S. Xie, Y. Zhang, Intelligent edge computing for IoT-based energy management in smart cities, IEEE Netw., 33 (2019), 111–117. https://doi.org/10.1109/MNET.2019.1800254. doi: 10.1109/MNET.2019.1800254
    [15] Z. Allam, Z. A. Dhunny, On big data, artificial intelligence and smart cities, Cities, 89 (2019), 80–91. https://doi.org/10.1016/j.cities.2019.01.032 doi: 10.1016/j.cities.2019.01.032
    [16] H. Habibzadeh, T. Soyata, B. Kantarci, A. Boukerche, C. Kaptan, Sensing, communication and security planes: a new challenge for a smart city system design, Comput. Netw., 144 (2018), 163–200. https://doi.org/10.1016/J.COMNET.2018.08.001 doi: 10.1016/J.COMNET.2018.08.001
    [17] M. A. Rahman, A. T. Asyhari, L. S. Leong, G. B. Satrya, M. H. Tao, M. F. Zolkipli, Scalable machine learning-based intrusion detection system for IoT-enabled smart cities, Sustain. Cities Soc., 61 (2020), 102324. https://doi.org/10.1016/J.SCS.2020.102324 doi: 10.1016/J.SCS.2020.102324
    [18] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, K. K. R. Choo, A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks, IEEE Trans. Emerging Top. Comput., 7 (2019), 314–323. https://doi.org/10.1109/TETC.2016.2633228 doi: 10.1109/TETC.2016.2633228
    [19] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. Yoo, K. Kim, Deep abstraction and weighted feature selection for Wi-Fi impersonation detection, IEEE Trans. Inf. Forensics Secur., 13 (2017), 621–636. https://doi.org/10.1109/TIFS.2017.2762828 doi: 10.1109/TIFS.2017.2762828
    [20] C. F. Tsai, Y. F. Hsu, C. Y. Lin, W. Y. Lin, Intrusion detection by machine learning: a review, Expert Syst. Appl., 36 (2009), 11994–12000. https://doi.org/10.1016/j.eswa.2009.05.029 doi: 10.1016/j.eswa.2009.05.029
    [21] A. L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection, IEEE Commun. Surv. Tutorials, 18 (2015), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502 doi: 10.1109/COMST.2015.2494502
    [22] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, et al., Machine learning and deep learning methods for cybersecurity, IEEE Access, 6 (2018), 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950 doi: 10.1109/ACCESS.2018.2836950
    [23] L. Tian, Design and implementation of a distributed intelligent network intrusion detection system, in 2010 Int. Conf. Electr. Control Eng., 2010 (2010), 683–686. https://doi.org/10.1109/ICECE.2010.174
    [24] C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in 802.11 networks: empirical evaluation of threats and a public dataset, IEEE Commun. Surv. Tutorials, 18 (2016), 184–208. https://doi.org/10.1109/COMST.2015.2402161. doi: 10.1109/COMST.2015.2402161
    [25] A. A. Aryachandra, Y. F. Arif, S. N. Anggis, Intrusion Detection System (IDS) server placement analysis in cloud computing, in 2016 4th Int. Conf. Inform. Commun. Technol. (ICoICT), 2016 (2016). https://doi.org/10.1109/ICOICT.2016.7571954
    [26] D. B. Rawat, K. Z. Ghafoor, Smart Cities Cybersecurity and Privacy, Elsevier, 2018.
    [27] N. Sengupta, Designing cyber security system for smart cities, in Smart Cities Symposium 2018, 2018 (2018). https://doi.org/10.1049/cp.2018.1418
    [28] E. Vasilomanolakis, S. Karuppayah, M. Muhlhauser, M. Fischer, Taxonomy and survey of collaborative intrusion detection, ACM Comput. Surv., 47 (2015), 1−33. https://doi.org/10.1145/2716260 doi: 10.1145/2716260
    [29] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Springer Science & Business Media, 2012. https://doi.org/10.1007/978-1-4615-5689-3
    [30] X. Tang, Y. Dai, Y. Xiang, Feature selection based on feature interactions with application to text categorization, Expert Syst. Appl., 120 (2019), 207–216. https://doi.org/10.1016/j.eswa.2018.11.018 doi: 10.1016/j.eswa.2018.11.018
    [31] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, H. Karimipour, Cyber intrusion detection by combined feature selection algorithm, J. Inf. Secur. Appl., 44 (2019), 80–88. https://doi.org/10.1016/j.jisa.2018.11.007 doi: 10.1016/j.jisa.2018.11.007
    [32] S. Maza, M. Touahria, Feature selection algorithms in intrusion detection system: a survey, KSII Trans. Internet Inf. Syst., 12 (2018), 5079–5099. https://doi.org/10.3837/tiis.2018.10.024 doi: 10.3837/tiis.2018.10.024
    [33] A. Al Shorman, H. Faris, I. Aljarah, Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection, J. Ambient Intell. Hum. Comput., 11 (2020), 2809–2825. https://doi.org/10.1007/s12652-019-01387-y doi: 10.1007/s12652-019-01387-y
    [34] H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer, Expert Syst. Appl., 148 (2020), 113249. https://doi.org/10.1016/J.ESWA.2020.113249 doi: 10.1016/J.ESWA.2020.113249
    [35] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell., 1 (2007), 33–57. https://doi.org/10.1007/s11721-007-0002-0 doi: 10.1007/s11721-007-0002-0
    [36] A. Jain, V. Sharma, V. Sharma, Big data mining using supervised machine learning approaches for Hadoop with Weka distribution, Int. J. Comput. Intell. Res., 13 (2017), 2095–2111.
    [37] M. R. Ghazi, D. Gangodkar, Hadoop, MapReduce and HDFS: a developers perspective, Procedia Comput. Sci., 48 (2015), 45–50. https://doi.org/10.1016/j.procs.2015.04.108 doi: 10.1016/j.procs.2015.04.108
    [38] M. R. Ghazi, N. S. Raghava, MapReduce based analysis of sample applications using hadoop, in Int. Conf. Appl. Comput. Commun. Technol., Springer, 899 (2018), 34–44. https://doi.org/10.1007/978-981-13-2035-4_4
    [39] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with working sets, 10 (2010), 1−7.
    [40] A. G. Shoro, T. R. Soomro, Big data analysis: apache spark perspective, Global J. Comput. Sci. Technol., 15 (2015), 7–14.
    [41] A. K. Saxena, S. Sinha, P. Shukla, General study of intrusion detection system and survey of agent based intrusion detection system, in 2017 Int. Conf. Comput., Commun. Automation (ICCCA), 2017 (2017), 421–471. https://doi.org/10.1109/CCAA.2017.8229866
    [42] I. H. Sarker, Y. B. Abushark, F. Alsolami, A. I. Khan, Intrudtree: a machine learning based cyber security intrusion detection model, Symmetry, 12 (2020), 754. https://doi.org/10.3390/sym12050754 doi: 10.3390/sym12050754
    [43] L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 993–1001. https://doi.org/10.1109/34.58871 doi: 10.1109/34.58871
    [44] N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, H. F. M. Lahza, Improving performance of intrusion detection system using ensemble methods and feature selection, in Proceedings of the Australasian Computer Science Week Multiconference, 2018 (2018), 1–6. https://doi.org/10.1145/3167918.3167951
    [45] M. Rashid, J. Kamruzzaman, T. Imam, S. Wibowo, S. Gordon, A tree-based stacking ensemble technique with feature selection for network intrusion detection, Appl. Intell., 52 (2022), 9768–9781. https://doi.org/10.1007/s10489-021-02968-1 doi: 10.1007/s10489-021-02968-1
    [46] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, A. Ng, Cybersecurity data science: an overview from machine learning perspective, J. Big Data, 7 (2020), 41. https://doi.org/10.1186/s40537-020-00318-5 doi: 10.1186/s40537-020-00318-5
    [47] Y. Zhou, G. Cheng, S. Jiang, M. Dai, Building an efficient intrusion detection system based on feature selection and ensemble classifier, Comput. Netw., 174 (2020), 107247. https://doi.org/10.1016/j.comnet.2020.107247 doi: 10.1016/j.comnet.2020.107247
    [48] E. Frank, M. A. Hall, I. H. Witten, The WEKA Workbench, Online appendix for "data mining: practical machine learning tools and techniques", Morgan Kaufmann, 2016. Available from: https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf.
    [49] J. R. Quinlan, C4.5: Programs for Machine Learning, Elsevier, 2014. Available from: https://books.google.com/books/about/C4_5.html?id = b3ujBQAAQBAJ.
    [50] L. Breiman, Random Forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324
    [51] T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016 (2016), 785–794. https://doi.org/10.1145/2939672.2939785
    [52] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set), in 2015 Military Communications and Information Systems Conference (MilCIS), 2015 (2015). https://doi.org/10.1109/MILCIS.2015.7348942.
    [53] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009 (2009). https://doi.org/10.1109/CISDA.2009.5356528
    [54] L. P. Qian, Y. Wu, B. Ji, L. Huang, D. H. K. Tsang, HybridIoT: integration of hierarchical multiple access and computation offloading for IoT-based smart cities, IEEE Netw., 33 (2019), 6–13. https://doi.org/10.1109/MNET.2019.1800149 doi: 10.1109/MNET.2019.1800149
    [55] S. Garg, A. Singh, S. Batra, N. Kumar, L. T. Yang, UAV-empowered edge computing environment for cyber-threat detection in smart vehicles, IEEE Netw., 32 (2018), 42–51. https://doi.org/10.1109/MNET.2018.1700286 doi: 10.1109/MNET.2018.1700286
    [56] M. Dener, The role of cloud computing in smart cities, in The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 7 (2019), 39–43.
    [57] M. Chen, W. Liu, T. Wang, S. Zhang, A. Liu, A game-based deep reinforcement learning approach for energy-efficient computation in MEC systems, Knowl.-Based Syst., 235 (2022), 107660. https://doi.org/10.1016/j.knosys.2021.107660 doi: 10.1016/j.knosys.2021.107660
    [58] X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, S. Zhang, A deep reinforcement learning-based resource management game in vehicular edge computing, IEEE Trans. Intell. Transp. Syst., 23 (2022), 2422–2433. https://doi.org/10.1109/TITS.2021.3114295 doi: 10.1109/TITS.2021.3114295
    [59] H. A. Khattak, H. Farman, B. Jan, I. U. Din, Toward integrating vehicular clouds with IoT for smart city services, IEEE Netw., 33 (2019), 65–71. https://doi.org/10.1109/MNET.2019.1800236 doi: 10.1109/MNET.2019.1800236
    [60] M. Kaur, P. Maheshwari, Building smart cities applications using IoT and cloud-based architectures, in 2016 Int. Conf. Ind. Inform. Comput. Syst. (CIICS), 2016 (2016), 1–5. https://doi.org/10.1109/ICCSII.2016.7462433
    [61] R. Massobrio, S. Nesmachnow, A. Tchernykh, A. Avetisyan, G. Radchenko, Towards a cloud computing paradigm for big data analysis in smart cities, Program. Comput. Software, 44 (2018), 181–189. https://doi.org/10.1134/S0361768818030052. doi: 10.1134/S0361768818030052
    [62] L. A. B. Pacheco, E. A. P. Alchieri, P. A. S. M. Barreto, Device-based security to improve user privacy in the Internet of Things, Sensors, 18 (2018). https://doi.org/10.3390/s18082664 doi: 10.3390/s18082664
    [63] S. Chawla, Deep learning based intrusion detection system for Internet of Things, University of Washington, 2017. Available from: https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/39829/Chawla_washington_0250O_17062.pdf.
    [64] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, H. Ming, AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning, in 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 2019 (2019), 305–310. https://doi.org/10.1109/CCWC.2019.8666450
    [65] A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma, A. Jamalipour, A smart city cyber security platform for narrowband networks, in 2017 27th Int. Telecommun. Netw. Appl. Conf. (ITNAC), 2017 (2017), 1–6. https://doi.org/10.1109/ATNAC.2017.8215388
    [66] A. A. Alli, M. M. Alam, SecOFF-FCIoT: machine learning based secure offloading in Fog-Cloud of things for smart city applications, Internet Things, 7 (2019), 100070. https://doi.org/10.1016/J.IOT.2019.100070 doi: 10.1016/J.IOT.2019.100070
    [67] M. Aloqaily, S. Otoum, I. Al Ridhawi, Y. Jararweh, An intrusion detection system for connected vehicles in smart cities, Ad Hoc Netw., 90 (2019), 101842. https://doi.org/10.1016/J.ADHOC.2019.02.001 doi: 10.1016/J.ADHOC.2019.02.001
    [68] H. Sedjelmaci, S. M. Senouci, M. Al-Bahri, A lightweight anomaly detection technique for low-resource IoT devices: a game-theoretic methodology, in 2016 IEEE Int. Conf. Commun. (ICC), IEEE, 2016 (2016), 1–6. https://doi.org/10.1109/ICC.2016.7510811
    [69] D. H. Summerville, K. M. Zach, Y. Chen, Ultra-lightweight deep packet anomaly detection for Internet of Things devices, in 2015 IEEE 34th International Performance Computing and Communications Conference (IPCCC), 2015 (2015), 1–8. https://doi.org/10.1109/PCCC.2015.7410342
    [70] H. Bostani, M. Sheikhan, Hybrid of binary gravitational search algorithm and mutual information for feature selection in intrusion detection systems, Soft Comput., 21 (2017), 2307–2324. https://doi.org/10.1007/s00500-015-1942-8 doi: 10.1007/s00500-015-1942-8
    [71] I. Butun, B. Kantarci, M. Erol-Kantarci, Anomaly detection and privacy preservation in cloud-centric Internet of Things, in 2015 IEEE International Conference on Communication Workshop (ICCW), 2015 (2015), 2610–2615. https://doi.org/10.1109/ICCW.2015.7247572
    [72] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, et al., N-baiot—network-based detection of IoT botnet attacks using deep autoencoders, IEEE Pervas. Comput., 17 (2018), 12–22. https://doi.org/10.1109/MPRV.2018.03367731 doi: 10.1109/MPRV.2018.03367731
    [73] M. A. Ferrag, L. Maglaras, DeepCoin: a novel deep learning and blockchain-based energy exchange framework for smart grids, IEEE Trans. Eng. Manage., 67 (2020), 1285–1297. https://doi.org/10.1109/TEM.2019.2922936 doi: 10.1109/TEM.2019.2922936
    [74] H. Karimipour, A. Dehghantanha, R. M. Parizi, K. K. R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids, IEEE Access, 7 (2019), 80778–80788. https://doi.org/10.1109/ACCESS.2019.2920326 doi: 10.1109/ACCESS.2019.2920326
    [75] Q. Shafi, A. Basit, S. Qaisar, A. Koay, I. Welch, Fog-assisted SDN controlled framework for enduring anomaly detection in an IoT network, IEEE Access, 6 (2018), 73713–73723. https://doi.org/10.1109/ACCESS.2018.2884293 doi: 10.1109/ACCESS.2018.2884293
    [76] S. Prabavathy, K. Sundarakantham, S. M. Shalinie, Design of cognitive fog computing for intrusion detection in Internet of Things, J. Commun. Netw., 20 (2018), 291–298. https://doi.org/10.1109/JCN.2018.000041 doi: 10.1109/JCN.2018.000041
    [77] E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, P. Burnap, A supervised intrusion detection system for smart home IoT devices, IEEE Internet Things J., 6 (2019), 9042–9053. https://doi.org/10.1109/JIOT.2019.2926365 doi: 10.1109/JIOT.2019.2926365
    [78] V. Garcia-Font, C. Garrigues, H. Rifà-Pous, Attack classification schema for smart city WSNs, Sensors, 17 (2017), 771. https://doi.org/10.3390/S17040771 doi: 10.3390/S17040771
    [79] M. M. Rashid, J. Kamruzzaman, M. M. Hassan, T. Imam, S. Gordon, Cyberattacks detection in IoT-based smart city applications using machine learning techniques, Int. J. Environ. Res. Public Health, 17 (2020), 9347. https://doi.org/10.3390/ijerph17249347 doi: 10.3390/ijerph17249347
    [80] R. Kozik, M. Choraś, M. Ficco, F. Palmieri, A scalable distributed machine learning approach for attack detection in edge computing environments, J. Parallel Distrib. Comput., 119 (2018), 18–26. https://doi.org/10.1016/J.JPDC.2018.03.006 doi: 10.1016/J.JPDC.2018.03.006
    [81] A. K. Shrivas, A. K. Dewangan, An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set, Int. J. Comput. Appl., 99 (2014), 8–13. https://doi.org/10.5120/17447-5392 doi: 10.5120/17447-5392
    [82] N. F. Haq, A. R. Onik, F. M. Shah, An ensemble framework of anomaly detection using hybridized feature selection approach (HFSA), in 2015 SAI Intelligent Systems Conference (IntelliSys), 2015 (2015), 989–995. https://doi.org/10.1109/INTELLISYS.2015.7361264
    [83] D. P. Gaikwad, Intrusion detection system using ensemble of rule learners and first search algorithm as feature selectors., Int. J. Comput. Netw. Inf. Secur., 13 (2021), 26−34. https://doi.org/10.5815/ijcnis.2021.04.03 doi: 10.5815/ijcnis.2021.04.03
    [84] M. A. Jabbar, R. Aluvalu, S. S. S. Reddy, Cluster based ensemble classification for intrusion detection system, in Proceedings of the 9th International Conference on Machine Learning and Computing, 2017 (2017), 253–257. https://doi.org/10.1145/3055635.3056595
    [85] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, A. Alazab, A novel ensemble of hybrid intrusion detection system for detecting Internet of Things attacks, Electronics, 8 (2019), 1210. https://doi.org/10.3390/electronics8111210 doi: 10.3390/electronics8111210
    [86] A. A. Diro, N. Chilamkurti, Distributed attack detection scheme using deep learning approach for Internet of Things, Future Gener. Comput. Syst., 82 (2018), 761–768. https://doi.org/10.1016/j.future.2017.08.043 doi: 10.1016/j.future.2017.08.043
    [87] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, A. Alazab, Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine, Electronics, 9 (2020). https://doi.org/10.3390/electronics9010173 doi: 10.3390/electronics9010173
    [88] M. H. L. Louk, B. A. Tama, Dual-IDS: a bagging-based gradient boosting decision tree model for network anomaly intrusion detection system, Expert Syst. Appl., 213 (2023), 119030. https://doi.org/10.1016/j.eswa.2022.119030 doi: 10.1016/j.eswa.2022.119030
    [89] S. Krishnaveni, S. Sivamohan, S. Sridhar, S. Prabhakaran, Network intrusion detection based on ensemble classification and feature selection method for cloud computing, Concurrency Comput. Pract. Exper., 34 (2022), e6838. https://doi.org/10.1002/cpe.6838 doi: 10.1002/cpe.6838
    [90] H. Zhang, J. L. Li, X. M. Liu, C. Dong, Multi-dimensional feature fusion and stacking ensemble mechanism for network intrusion detection, Future Gener. Comput. Syst., 122 (2021), 130–143. https://doi.org/10.1016/J.FUTURE.2021.03.024 doi: 10.1016/J.FUTURE.2021.03.024
    [91] B. A. Tama, L. Nkenyereye, S. M. R. Islam, K. S. Kwak, An enhanced anomaly detection in web traffic using a stack of classifier ensemble, IEEE Access, 8 (2020), 24120–24134. https://doi.org/10.1109/ACCESS.2020.2969428 doi: 10.1109/ACCESS.2020.2969428
    [92] O. A. Alghanam, W. Almobaideen, M. Saadeh, O. Adwan, An improved PIO feature selection algorithm for IoT network intrusion detection system based on ensemble learning, Expert Syst. Appl., 213 (2023), 118745. https://doi.org/10.1016/j.eswa.2022.118745 doi: 10.1016/j.eswa.2022.118745
    [93] Z. Wang, J. Liu, L. Sun, EFS-DNN: an ensemble feature selection-based deep learning approach to network intrusion detection system, Secur. Commun. Netw., 2022 (2022), 2693948. https://doi.org/10.1155/2022/2693948 doi: 10.1155/2022/2693948
    [94] A. Nazir, R. A. Khan, A novel combinatorial optimization based feature selection method for network intrusion detection, Comput. Secur., 102 (2021), 102164. https://doi.org/10.1016/j.cose.2020.102164. doi: 10.1016/j.cose.2020.102164
    [95] B. A. Tama, M. Comuzzi, K. H. Rhee, TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system, IEEE Access, 7 (2019), 94497–94507. https://doi.org/10.1109/ACCESS.2019.2928048. doi: 10.1109/ACCESS.2019.2928048
    [96] S. Rajagopal, P. P. Kundapur, K. S. Hareesha, A stacking ensemble for network intrusion detection using heterogeneous datasets, Secur. Commun. Netw., 2020 (2020). https://doi.org/10.1155/2020/4586875 doi: 10.1155/2020/4586875
    [97] F. Salo, A. B. Nassif, A. Essex, Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection, Comput. Netw., 148 (2019), 164–175. https://doi.org/10.1016/j.comnet.2018.11.010 doi: 10.1016/j.comnet.2018.11.010
    [98] B. A. Tama, K. H. Rhee, An extensive empirical evaluation of classifier ensembles for intrusion detection task, Comput. Syst. Sci. Eng., 2 (2017), 149–158.
    [99] N. Acharya, S. Singh, An IWD-based feature selection method for intrusion detection system, Soft Comput., 22 (2018), 4407–4416. https://doi.org/10.1007/s00500-017-2635-2 doi: 10.1007/s00500-017-2635-2
    [100] B. Selvakumar, K. Muneeswaran, Firefly algorithm based feature selection for network intrusion detection, Comput. Secur., 81 (2019), 148–155. https://doi.org/10.1016/J.COSE.2018.11.005 doi: 10.1016/J.COSE.2018.11.005
    [101] H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection system based on Pigeon Inspired Optimizer, Expert Syst. Appl., 148 (2020), 113249. https://doi.org/10.1016/J.ESWA.2020.113249 doi: 10.1016/J.ESWA.2020.113249
    [102] A. S. Eesa, Z. Orman, A. M. A. Brifcani, A new feature selection model based on ID3 and bees algorithm for intrusion detection system, Turk. J. Electr. Eng. Comput. Sci., 23 (2015), 615–622. https://doi.org/10.3906/ELK-1302-53 doi: 10.3906/ELK-1302-53
    [103] T. A. J. Ali, M. Jawhar, Proposing a model for detecting intrusion network attacks using machine learning techniques, J. Educ. Sci., 31 (2022), 99–109. https://doi.org/10.33899/edusj.2022.133867.1240 doi: 10.33899/edusj.2022.133867.1240
    [104] Y. Deng, H. Duan, Control parameter design for automatic carrier landing system via pigeon-inspired optimization, Nonlinear Dyn., 85 (2016), 97–106. https://doi.org/10.1007/S11071-016-2670-Z doi: 10.1007/S11071-016-2670-Z
    [105] T. Guilford, S. Roberts, D. Biro, I. Rezek, Positional entropy during pigeon homing Ⅱ: navigational interpretation of Bayesian latent state models, J. Theor. Biol., 227 (2004), 25–38. https://doi.org/10.1016/j.jtbi.2003.07.003 doi: 10.1016/j.jtbi.2003.07.003
    [106] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, IEEE, (1997), 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339
    [107] V. Sugumaran, V. Muralidharan, K. I. Ramachandran, Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing, Mech. Syst. Signal Process., 21 (2007), 930–942. https://doi.org/10.1016/J.YMSSP.2006.05.004 doi: 10.1016/J.YMSSP.2006.05.004
    [108] M. Abdulrazaq, A. Salih, Combination of multi classification algorithms for intrusion detection system, Int. J. Sci. Eng. Res., 6 (2015), 1364–1371.
    [109] Q. Zhang, Y. Qu, A. Deng, Network intrusion detection using kernel-based fuzzy-rough feature selection, in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018 (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491578
    [110] P. S. Varma, V. Anand, Random Forest learning based indoor localization as an IoT service for smart buildings, Wireless Pers. Commun., 117 (2021), 3209–3227. https://doi.org/10.1007/s11277-020-07977-w doi: 10.1007/s11277-020-07977-w
    [111] Y. Amit, D. Geman, Shape quantization and recognition with randomized trees, Neural Comput., 9 (1997), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545 doi: 10.1162/neco.1997.9.7.1545
    [112] S. S. Dhaliwal, A. A. Nahid, R. Abbas, Effective intrusion detection system using XGBoost, Information, 9 (2018), 149. https://doi.org/10.3390/info9070149 doi: 10.3390/info9070149
    [113] I. Sharafaldin, A. H. Lashkari, S. Hakak, A. A. Ghorbani, Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy, in 2019 International Carnahan Conference on Security Technology (ICCST), (2019), 1–8. https://doi.org/10.1109/CCST.2019.8888419
    [114] A. K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed Weka framework for big data mining using spark, in 2015 IEEE International Congress on Big Data, (2015), 9–16. https://doi.org/10.1109/BigDataCongress.2015.12
    [115] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, et al., Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing, in Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, (2012), 15–28.
    [116] M. Hall, Advanced data mining with Weka, Online Course, University of Waikato, 2016
    [117] W. Li, Z. Liu, A method of SVM with normalization in intrusion detection, Procedia Environ. Sci., 11 (2011), 256–262. https://doi.org/10.1016/j.proenv.2011.12.040 doi: 10.1016/j.proenv.2011.12.040
    [118] Scikit-learn developers, 2022. Available from: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.htm.
    [119] D. H. Wolpert, Stacked generalization, Neural Netw., 5 (1992), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1 doi: 10.1016/S0893-6080(05)80023-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(502) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog