
ERA, 32 (2): 1268−1307.

DOI: 10.3934/era.2024060

Received: 27 February 2023

Revised: 28 May 2023

Accepted: 06 July 2023

Published: 31 January 2024

http://www.aimspress.com/journal/ERA

Research article

Securing cloud-enabled smart cities by detecting intrusion using spark-

based stacking ensemble of machine learning algorithms

Mohd. Rehan Ghazi* and N. S. Raghava

Department of Electronics and Communication Engineering, Delhi Technological University, Delhi

110042, India

* Correspondence: Email: er.rehan.aras@gmail.com.

Abstract: With the use of cloud computing, which provides the infrastructure necessary for the

efficient delivery of smart city services to every citizen over the internet, intelligent systems may be

readily integrated into smart cities and communicate with one another. Any smart system at home, in

a car, or in the workplace can be remotely controlled and directed by the individual at any time.

Continuous cloud service availability is becoming a critical subscriber requirement within smart

cities. However, these cost-cutting measures and service improvements will make smart city cloud

networks more vulnerable and at risk. The primary function of Intrusion Detection Systems (IDS)

has gotten increasingly challenging due to the enormous proliferation of data created in cloud

networks of smart cities. To alleviate these concerns, we provide a framework for automatic, reliable,

and uninterrupted cloud availability of services for the network data security of intelligent connected

devices. This framework enables IDS to defend against security threats and to provide services that

meet the users’ Quality of Service (QoS) expectations. This study’s intrusion detection solution for

cloud network data from smart cities employed Spark and Waikato Environment for Knowledge

Analysis (WEKA). WEKA and Spark are linked and made scalable and distributed. The Hadoop

Distributed File System (HDFS) storage advantages are combined with WEKA’s Knowledge flow

for processing cloud network data for smart cities. Utilizing HDFS components, WEKA’s machine

learning algorithms receive cloud network data from smart cities. This research utilizes the wrapper-

based Feature Selection (FS) approach for IDS, employing both the Pigeon Inspired Optimizer (PIO)

and the Particle Swarm Optimization (PSO). For classifying the cloud network traffic of smart cities,

the tree-based Stacking Ensemble Method (SEM) of J48, Random Forest (RF), and eXtreme

Gradient Boosting (XGBoost) are applied. Performance evaluations of our system were conducted

using the UNSW-NB15 and NSL-KDD datasets. Our technique is superior to previous works in

1269

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

terms of sensitivity, specificity, precision, false positive rate (FPR), accuracy, F1 Score, and

Matthews correlation coefficient (MCC).

Keywords: smart cities; cloud security; spark; pigeon-inspired optimizer; PSO; IDS

1. Introduction

The objective of smart cities is to efficiently and effectively manage factors such as increasing

urbanization, power usage, preservation of natural resources, and the well-being of the civilian

economy. A population is capable of utilizing and embracing modern Information and

Communication Technologies (ICT) [1]. In the notion of smart cities, ICT plays a crucial part in

policy creation, decision, implementation, and ultimate productive services [1]. According to the

United Nations Population Fund, around 3.3 billion people—or 54% of the world’s population—

lived in urban areas in 2014; this figure is expected to rise to 5 billion (i.e., 66%) by 2030 [2]. If

urbanization continues at this rate, it will have a severe impact on city management, security, and the

environment. In order to effectively manage data analysis, data communications, and the successful

execution of complicated strategies to maintain the smooth and secure functioning of a smart city, the

efficient use of ICTs is very important [3−5].

Research has mostly concentrated on investigating potential applications and their effects on

smart citizens and smart cities [6,7]. Before the recent, unexpected and widespread distributed denial

of services (DDoS) attacks and ransomware threats [8,9], security and privacy in smart city systems

were not considered to be critical factors. For instance, in the case of smart vehicles, a Jeep Cherokee

was hacked on a highway, which prompted Chrysler to issue a recall for 1.4 million vehicles.

Examples of such assaults have been mentioned in [10,11]. Complex cyberattack vectors that might

affect cloud services including infrastructure, applications, and platforms continue to be a severe

danger. Cyberattacks such as DDoS attacks, ransomware, and botnet attacks are frequent attempts to

access cloud services and interfere with their processing resources [12].

These modifications have sparked a new wave of research into cybersecurity and data privacy in

cloud computing, the Internet of Things (IoT), and intelligent city communities. Businesses have

started marketing safe smart city goods [6]. The IoT can gain from improved efficiency,

performance, and payload in cloud infrastructure. The development of an industrial electronic

business also benefitted from Cloud Computing. Hence, IoT and cloud are extremely connected to

upcoming internet technologies that are compatible with IoT systems [13]. The most accurate and

effective course of action might be difficult to determine in the midst of large and complicated

volumes of data.

To make the best judgment possible, modern techniques such as Artificial Intelligence (AI) and

Machine Learning (ML) may be used to analyze large amounts of data [14,15]. As seen in Figure 1, the

concepts of “smart cities”, “big data”, “data security”, and the usage of AI and ML in many contexts are

still in the early phases of development and will likely bring more opportunities in the future. Each

element in Figure 2, which shows the architecture of a smart city application, requests security and

privacy assurance procedures to address consumers’ increased awareness of smart city cybersecurity [16].

The IoT is a new communication paradigm that has emerged as a result of the tremendous

increase in connectedness between people, devices, and services during the past ten years. In the

1270

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

upcoming generation of sustainable smart cities, this paradigm is anticipated to play a large role on

the internet- and service-centric computing inside the networks of the current generation (4G/5G)

and the future generation (6G and beyond) [17]. Recently, wireless technologies have emerged as a

significant enabler, linking people to physical items through phones, tablets, and personal computer

interfaces, which have contributed to this astonishing expansion of linked things [18]. We expect

wireless transmissions to represent 2/3 of all internet traffic until 2020, with cellular/Wi-Fi

connections contributing 66% of all internet protocol (IP) data [19]. As the Cloud network for data

exchange grows, there is a significant risk of misusing cloud services when focusing on wireless

edge devices, where sensitive and frequently semi-critical data can be fraudulently acquired, as

depicted in Figure 3. By exploiting the weaknesses of wireless networks, a significant number of

attackers or offenders attempted to either steal the personal information of target users or seek to

obtain unauthorized access to the target’s resources or applications [17].

Figure 1. The popularity of big data, data security, and smart cities (Google Trends).

Figure 2. A high-level illustration of the architecture of smart city applications [16].

A cybersecurity system often consists of both networks and computer security technologies. To

intercept cyberattacks, several elements (such as firewalls) and cryptographic techniques are

installed, and an IDS is employed to stop external intrusions, respectively [20]. Additionally, IDS is

used to define, assess, and identify unauthorized system actions, such as unauthorized access,

modifications, and damage [21,22].

1271

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Figure 3. The complexity, scale, and extent of smart services provide more opportunities

for the adversary [6].

In order to preserve the cloud network of smart cities, IDS is a security protection technique that

is used to find suspicious activity in the system and quickly intercept the attacking source [23].

Depending on the types of cyber data that are accessible, IDS can be separated into host- and

network-based detection. Host-based detection refers to monitoring internal resources such as logs,

disc resources, and file systems on electronic devices like smartphones and laptops [21]. Antiviruses

are a prime example of host-based detection. Network-based detection occurs by examining the

network traffic between electronic devices and the internet [24]. In this study, we concentrate on

network-based IDS for tracking fraudulent activity in the cloud network of connected device-based

smart cities [24]. An effective network-based IDS should be able to identify a variety of intrusions on

a cloud network of smart cities, including injection, flooding, and impersonation attacks that can

originate from both internal and external attackers [25].

A smart city should include linked sensors, actuators, and relays that are safe, secure, and

dependable for gathering, processing, and transmitting data in order to guarantee reliable and

effective digital services; additionally, it is necessary to address the cybersecurity challenges posed

by the interconnection of various devices [26]. The majority of the data is produced by IoT devices

that are cloud-based and play a key part in many smart city applications [27]. IDS is frequently

implemented using a centralized design, in which a single central unit is entirely in charge of

evaluating all network traffic data and detecting if attacks have occurred [28]. The dependence on a

single processing unit makes this strategy insecure due to a single point of failure [17].

The choice of features is crucial for creating ML models and is one of the essential steps in creating

efficient IDS. The process of choosing the most key features that go into creating a strong model is

known as Feature Selection (FS) [29]. FS can be performed either manually or with the aid of several

methods and algorithms. Eliminating features that raise false alerts and decrease system accuracy is a

crucial step in developing strong IDS [30]. As mentioned by [31], significant features convey crucial

information that considerably aids in the classification process. The fact that IDS’s FS decreases storage

requirements, lowers processing costs, and improves test data comprehension is an important

consideration. Since FS is a machine-learning topic, several different techniques are used to accomplish

it. It is noted that several methods, such as the employment of intelligence patterns, swarm intelligence,

Artificial Neural Networks (ANNs), deterministic algorithms, and fuzzy and rough sets, can be used to

1272

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

determine features [32]. Due to their high degree of accuracy, metaheuristic algorithms are frequently

utilized for FS in IDSs [33]. In this area, swarm intelligence is a key method employed in the

construction and classification of metaheuristic algorithms. The AI known as “swarm intelligence” is

modeled after the collective behavior of insects and swarms. It is employed to resolve challenging issues.

For this research, PIO [34] and PSO [35] are two methods utilized in swarm intelligence.

A dataset that keeps expanding to the point that it is challenging to handle using traditional

database concepts and technologies is referred to as big data. The data do not suit the structures of

traditional database systems, are too big, move too quickly, or a combination of all three. To be

beneficial, there is a need to select an alternative method of processing this data [36]. Big data is

extremely challenging to store and process [37]. Hadoop is mostly used to process huge data.

Hadoop uses the MapReduce framework to process the data and Hadoop Distributed File System

(HDFS) to store it efficiently [38]. Spark is a framework distinguished for its responsiveness. It tries

to speed up batch workloads by performing the entire calculation in memory and processing

optimization [39]. Additionally, spark is effective at performing iterative calculations, making it a

good choice for the creation of large-scale machine-learning systems [40]. Nowadays, organizations

are placing more emphasis on big data systems to manage such data and to use them for commercial

expansion. The top seven data drivers include instances of big data from the financial, Internet,

mobile, Smart cities-based data, science, sensor, and streaming industries.

The use of ML approaches to enhance IDS performance has been the subject of many studies [41,42].

However, these systems are limited because they use only one classifier, which prevents them from

identifying and thwarting serious threats. In order to address this problem, Hansen and Salamon [43]

have created several ensemble algorithms that outperform single classifiers. In this context, Pham et

al. [44] and Rashid et al. [45] highlight numerous factors that might affect IDS performance,

including feature selection, base classifiers, and ensemble techniques. This suggests the value of

investigating ensemble-based IDS from diverse angles. Tree-based ML techniques have

demonstrated promising results in predictive analytics [46]. Additionally, compared to many other

kinds of ML models, tree-based classifiers may be trained significantly more quickly [47]. In this

paper, we provide a tree-based SEM for enhancing IDS performance after taking their applicability

into account.

1.1. Motivation

To provide connected solutions for the general public, smart cities combine the IoT with a range

of software, user interfaces, and communication networks. The most likely security threats to the

networks of smart cities include various malicious attacks like DDoS, ransomware, remote

recording, routing attacks, and data leakage attacks [6]. A DDoS attack is when many compromised

machines launch a denial of service (DoS) attack on the smart cities network. With this attack, the

attacker floods the server with erroneous request packets to block it, thereby depriving users of the

resources and lengthening response times. Hence, it is important to make sure that smart cities are

protected from cyberattacks, hacking, and data theft. The network of smart cities is protected by

several security measures, including access control algorithms, public key-based security methods,

and IDSs. However, there are no effective security options. An efficient IDS is necessary to provide

integrated solutions that meet the fundamental security goals of availability, integrity, confidentiality,

and accountability of the smart city network.

1273

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Currently, intrusion detection in smart cities has drawn increased interest in the cybersecurity

field. Numerous FS and intrusion detection algorithms have been studied during the last few decades.

Due to limitations, in many cases, these algorithms could no longer address the difficulties in real-

time and distributed a nature of applications. The application of population-based metaheuristic

algorithms in optimization, including feature selection, has recently increased. In order to handle the

cloud network data from smart cities, the IDS must be scalable and dispersed. The use of only one

classifier makes it impossible to detect and neutralize severe threats. Tree-based ML techniques have

demonstrated promising outcomes in predictive analytics. In order to reduce potential future security

attacks against the cloud network data of smart cities, the motivation is to propose an IDS using tree-

based SEM ML classifiers. Additionally, we adopt the HDFS and Spark framework in our proposed

work because the data generated from the cloud network of smart cities is enormous and can only be

stored and processed in a cloud environment.

1.2. Contribution

IDSs are crucial in preventing intrusions into the cloud network of smart cities, which contains

private data and information. This research lists the most recent developments in FS and classification

techniques for IDSs using cloud network data from smart cities. The following tasks are included:

using a wrapper-based FS approach that uses PIO and PSO, storing the data in the HDFS, processing

cloud network data for smart cities using WEKA’s Knowledge flow [48], and classifying the cloud

network traffic of smart cities using a tree-based SEM approach that uses J48 [49], RF [50], and

XGBoost [51]. The UNSW-NB15 [52] and NSL-KDD [53] datasets were used to assess the system’s

performance. HDFS is used for storing and processing massive datasets. WEKA is used to train ML

for massive data mining and analysis. The “DistributedWekaSpark” package allows us to configure

Spark and WEKA together.

This effort’s core contribution consists of examining the breadth and scope of the effects of

cyberattacks, and the results are frequently utilized as the foundation for new legislation and

regulations. Computer scientists and researchers make up the second branch. They examine the

technological tools to ensure they adhere to the security and privacy standards set out by smart city

rules. The research community has recognized that the technological implementation of smart city

security is also a complicated issue, with the system’s total security being determined by the most

delicate link in the network. This insight is the source of vulnerabilities in existing smart city systems

since developers erroneously think they can boost their products’ security by protecting one aspect of

the system while ignoring others.

The main contributions are pointed out as follows:

(1) The suggested IDS has been modified to ensure that secure communication with service

providers only happens when it is performed between people of smart cities, trustworthy third-

party organizations, and service providers.

(2) This research effort proposes a unique approach for automatically identifying intruder attacks by

classifying both legal and malicious data.

(3) The hybrid monitoring system that makes up the intrusion detection mechanism combines data

preprocessing methods, PIO and PSO for data dimensionality reduction, HDFS for data storage,

and a tree-based SEM technique that employs J48, RF, and XGBoost for attacks classification

using WEKA’s Knowledge flow and Spark framework.

1274

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

(4) A model built on the Spark platform to divide the processing of cloud network data for smart

cities in order to save computation time.

(5) With reference to benchmark datasets, the suggested model is assessed to demonstrate how it

outperforms standard baseline methods.

1.3. Paper structure

The structure of the article is as follows. The related work is discussed in Section 2. Prerequisites for

the proposed methodology, which include dataset enumerations, FS tools (PSO and PIO), classification

approaches (J48, RF and XGBoost), and WEKA and Spark frameworks are discussed in Section 3. In

Section 4, the suggested tree-based SEM ML algorithms implementation on Spark and WEKA are used

to evaluate cloud network data from smart cities. In Section 4, a performance assessment, model

performance, implementation, and comparison of the proposed model are included. Finally, Section 5

concludes the paper and lays out the research agenda for the future.

2. Related work

In this section, we review related research and present the most pertinent related work to address

barriers that need to be considered in this study. Without question, the emergence of smart cities will

improve many aspects of urban life, while significantly increasing vulnerability. We research these

concerns on a variety of levels. The associated works are divided into many categories, including secure

Cloud/Edge/Fog/IoT ecosystems for smart cities, IDSs for smart cities, and FS techniques. The following

subsections explain these categories in more depth.

2.1. Secure Cloud/Edge/Fog/IoT ecosystem for smart cities

The architecture called Hybrid IoT was proposed by Qian et al. [54] to enable the well-

organized transmission, caching, and computation of massive data produced by widely scattered and

substantial IoT devices that are installed in smart cities. A paradigm for monitoring in the

transportation sector was proposed by Garg et al. [55]. They used real-time analytics and apps at

several levels to solve the issue of security risks in aerial vehicles. To discover cyber-threats in smart

cars, they applied the probabilistic data structure method. By gathering data from moving objects and

passing the load to edge devices through aggregators, extreme aerial vehicles serve as data providers.

The real-time security of the odd vehicle movements was assured by the creators. In order to

describe the function of cloud computing in providing storage, computation, databases, and a variety

of application services for access through the internet, Dener [56] reviewed many research

publications. These cloud-based services facilitate information sharing and integration amongst

various smart city systems.

Applications based on reinforcement learning have produced successful outcomes in mobile

edge computing (MEC), vehicular edge computing (VEC), and other areas. Reinforcement learning

(RL) has emerged as an important class of algorithms in AI. The AI discipline of RL contributes to

the further optimization of energy usage and the performance of MEC [57]. In a network, MEC

provides execution resources, such as storage and calculations, which are close to the users and can

be used to process and store content, as well as deliver services. Two sub-problems are created from

1275

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

the energy consumption optimization problem: computation optimization (data segmentation) and

transmission optimization (time division). The authors [57] have suggested DDQNL-IST, an

intelligent game method that combines distributed LSTM (Long Short-Term Memory) and DDQN

(Double Deep Q-Network) with an intermediate state transition (IST). The results of the experiments

demonstrate that the suggested DDQNL-IST can perform better in terms of average latency and

energy cost. Due to the restricted processing resources available to the VEC servers, the authors of

the research [58] suggest a resource management strategy based on Deep-RL (DRL) to motivate the

VEC servers.

An innovative framework known as VCoT, presented by Khattak et al. [59], merges IoT and

vehicular-networking clouds. The purpose of IoT-VC (VCoT) for numerous real-world applications,

including smart traffic signals, home automation, and smart cities, is thoroughly explained in the article,

along with the challenges that must be overcome. For the progress of smart cities, Kaur et al. [60]

suggested an architecture that relies on cloud computing and IoT. The author concentrated on the various

cloud characteristics and utilized IoT to deploy them to improve smart cities. The author used the

smart city of Dubai as a case study and suggested a scenario-based design for healthcare in a smart

city. A big-data analysis based on a smart city employing cloud computing infrastructure was

described by Massobrio et al. [61]. The Hadoop framework was used to implement the map reduced

parallel model. In essence, they concentrated on two cases: the estimate of the origin-to-destination

matrix and public transportation services. The first case uses information about prior sites, whereas

the latter case uses information about ticket sales. The actual outcome demonstrates how well the

model supports a large volume of data.

PROTeCt (Privacy aRchitecture for IntegratiOn of Internet of Things and Cloud computing), is

a device-based security system that enhances user privacy through a cryptography-based system in

which only interested users may access their data, which is stored on a cloud in encrypted form to

guard against unauthorized access [62]. The gateway was authenticated in this operation. Users must

repeatedly register and accept invitations to join the network, which raises the cost of

communication. A framework for effective IDS that is more suitable for IoT-based applications was

provided by the authors in [63]. To deal with security anomalies for IoT networks, the suggested

framework uses machine learning-based methodologies. The link measurement required to choose

the best routing option is missing from the research. These limitations increase the percentage of

route breakages and the rate of packet loss.

The authors in [6] investigated the deployments of cyber-physical systems in smart cities. They

focused on the security issues associated with smart infrastructure and the impact that ransomware

causes on governmental organizations, the healthcare system, and transportation. Moreover, the

solutions include game theory, IDS, and cryptography. It is important to note that the writers also

focused on human error. The authors in [17] introduced an IDS based on ML in a semi-distributed

and distributed mode for the resource-constrained IoT. This IDS is based on different FS strategies,

and each technique is investigated independently.

The authors of [64] focused on the security of IoT devices in the smart city and presented an

architecture dubbed the Anomaly Detection-IoT (AD-IoT) system that was built on RF ML. The

authors of [65] presented a novel DRL-based architecture to protect a smart city’s digital

infrastructure from any kind of cyber incursion and for early detection of intrusions based on data

behavior. To reduce latency and energy use, the authors of [66] introduced a neuro-fuzzy-based

secure PSO computational offloading system for the Fog-Cloud-IoT context. The authors of [67]

1276

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

envisioned an ML-based secure cloud service for connected automobiles that would identify

cyberattacks and satisfy user QoS and Quality of Experience (QoE) requirements.

Table 1. Brief literature Survey for implementing secure Cloud/Edge/Fog/IoT ecosystem

for smart cities.

Reference Year Method Employed Summary

[60] 2016 Cloud and IoT The integration of any smart city application requires

cloud computing and IoT.

[65] 2017 Restricted Boltzmann

Machine

Generalized method to spot and stop DoS in smart

cities.

[63] 2017 ML based IDS A cutting-edge intrusion detection technology that

recognizes security irregularities in IoT networks using

ML algorithms

[61] 2018 Hadoop Smart city Big Data analysis paradigm utilizing cloud

computing infrastructures.

[62] 2018 PROTeCt User privacy is increased through the privacy

architecture for the IoT and CC integration.

[55] 2018 Triple Bloom filter PDS A data-driven transportation optimization model that

uses a PDS-based method to identify cyber threats in

smart cars.

[54] 2019 UDN and MEC Lower the energy use and end-to-end latency of

computing data from large IoT devices installed in a

smart city.

[56] 2019 Cloud Computing Cloud-based services facilitate information sharing and

integration amongst various smart city systems.

[59] 2019 VCoT A new framework for architectural and communication

design that successfully integrates IoT and cloud-based

vehicular networking.

[6] 2019 Reviews for Security for

Smart cities

A multi-level structure, including a “security level”, can

be used to conceptualize smart cities. All other levels’

weaknesses are caused by the security level.

[64] 2019 RF-based binary

classification

AD-IoT system is suggested as a solution to deal with

the cybersecurity concerns posed by IoT in smart cities.

[66] 2019 Neuro-Fuzzy Model and PSO SecOFF-FCIoT

[67] 2019 Deep belief and DT IDS offers services that satisfy users’ QoS and QoE

needs.

[17] 2020 SAE and MLP IDS is based on semi-distributed and fully-distributed

approaches.

[57] 2021 Energy consumption

optimization in MEC.

RL-based performance enhancement of MEC by energy

consumption optimization.

[58] 2022 DRL and Stackelberg game-

based resource management

for VEC.

A DRL-based resource management plan is suggested

to boost vehicle and VEC server revenues.

UDN- Ultra-Dense Networking, PDS- probabilistic data structure, VCoT- vehicular networking clouds with IoT, SAE-

Stacked Auto-Encoder, MLP- Multi-layer perceptron, SecOFF-FCIoT- Secure offloading in a Fog-Cloud-IoT.

1277

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

The aforementioned papers offer the first step towards the ecosystem of smart cities. As the number

of connected devices grows due to technological innovation, it becomes impractical to individually

connect many low-end ‘things’ to management or analytics systems. In general, some end-system devices

produce so much data that the core communication channel may become saturated. An array of crucial

tasks, including data filtering and processing, and security are carried out by the Cloud/Edge/Fog/IoT

ecosystem for smart cities. Security concerns in smart cities are application-based. For instance, the

security flaw in smart meters might result in energy disruptions and ineffective Smart Grids. Therefore,

more sophisticated and cutting-edge techniques based on big data analytics are required to guarantee the

cyber safety and security of smart city applications. However, the aforementioned cryptographic and

technical approach is viewed as insufficient due to the increasingly sophisticated and varied cyber-

attacks. This drives the creation of an IDS with built-in intelligence to move away from “one-shot”

security protection and to include a sophisticated method of continuous learning from changing network

data. The discussion and summary of existing works are included in Table 1.

2.2. IDS for smart cities

IDSs have long been a topic of study in the field of communication networks; however, the

practical need for such networks has only recently led to a shift in emphasis to IDS for smart city-

based networks. IDSs are divided into host-based [68,69] and network-based [70,71] subcategories.

Due to several factors, host-based IDSs are considerably less effective in identifying corrupted IoT

devices. First, the development of detection algorithms uses the energy and computing of smart IoT

devices. Second, certain IoT devices have restrictions on what software may be installed on them.

Third, deploying detection techniques on many diverse IoT devices linked to smart networks in

smart cities is extremely difficult. Lastly, IoT device makers rarely incorporate detection techniques

into their designs [72].

DeepCoin is an innovative Deep Learning (DL) and blockchain-based energy framework for smart

grids [73]. The blockchain-based system is divided into five stages: setup, agreement, block creation and

consensus, view modification, and conclusion. It provides a high throughput methodology and contains a

revolutionary, trustworthy peer-to-peer energy system based on the useful Byzantine fault tolerance

algorithm [73]. The suggested system generates blocks using hash functions and short signatures to guard

against smart grid attacks. It is suggested to use the statistical correlation between measurements for

unsupervised anomaly identification with the objective to create a scalable anomaly detection engine that

is appropriate for large-scale smart grids that can distinguish between a genuine malfunction and either a

disturbance or sophisticated cyber-attack [74] The suggested approach uses feature extraction while

learning about the causal relationships between the subsystems using symbolic dynamic filtering (SDF),

which also helps to lighten the computing load.

The authors in [75] presented an intrusion detection/prevention system (IDPS) with fog-assisted

software-defined networking (SDN) using an enhanced decentralized computing structure known as

fog-computing as an IoT framework. To address an IoT scalability issue, they suggested a useful

technique for allocating fog resources. Additionally, they examined four classifiers to identify

intrusions and provided design recommendations to control cybersecurity threats at the edge of the

IoT network and to spot anomalies. An online Sequential Extreme Learning Machine (OS-ELM) was

used by the authors of [76] to construct a fog-oriented IDS, which summarizes the identified intrusion.

First, fog-nodes will identify the malicious traffic from the IoT environment, and the information of the

1278

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

identified intrusion is further transferred to the cloud server. Since the suggested approach is a distributed

IDS, it can offer scalability, interoperability, and flexibility. However, it is unable to summarize the data

without a cloud server and will become problematic once the cloud server goes down.

A supervised IDS was suggested by the authors of [77] for an IoT network in a smart house. The

three-layered model of the proposed IDS architecture worked to identify malicious packets. Three

experiments were tested over the layers using nine classifiers. Consequently, the J48 classifier

produced F-measure values of 96.2%, 90%, and 98% for each of the three experiments, respectively,

to obtain the best performance. The system’s drawback is that it must integrate the three levels in

order to detect malicious communications. The entire system will have problems if one of the layers

fails. To assist managers of smart cities in defining the most sensitive threats, researchers in [78]

suggested an intrusion detection framework and an attack categorization scheme. Additionally, this

paper demonstrates how a One-Class Support Vector machine (OC-SVM) and rule-based detection

may be used together to dramatically enhance detection results.

In [79], the authors investigated the viability of using single model classifiers in an ensemble

learning setting to identify cyberattacks in IoT-based smart city applications. The tests using the

most recent IoT attack the database, stacking a component of the ensemble technique outperforms

single models in distinguishing attacks from benign samples. In terms of various performance

emetrics, information gain (IG) is employed for FS and classification outcomes outperform either

single or other ensemble models. Diro and Chilamkurti suggested a DL model to detect distributed

intrusions in a social IoT network using the NSL-KDD open-source dataset, which logs attack data in

both distributed and centralized systems; their model achieved 99.2% and 98.27% accuracy for

binary-class and multi-class identification, respectively [78].

Due to the negative effects of low-frequency threats, such as user to-root (U2R) and remote-to-

local (R2L) attacks, Pajouh et al. introduced a two-stage dimension reduction and classification

approach to identify anomalies in IoT backbone networks [18]. After reducing the dataset’s features

using principal component analysis (PCA) and linear discriminate analysis (LDA), they employed

naive bayes and K-Nearest Neighbor (KNN) to find anomalies. This method resulted in an

identification rate of 84.82% [18]. However, this method is centralized and was only tested for DoS,

remote-to-local, user-to-root, and Probe attacks. In [80], Kozik et al. presented an attack detection

system that used the Apache Spark cloud architecture and the ELM method. The accuracy levels of

this investigation, which focused on the three key IoT system, used cases of scanning, command and

control, and infected host were 99%, 76%, and 95%, respectively.

The Gain Ratio (GR) FS approach, based on ANN and Bayesian networks, was suggested [81]

and the performance was assessed on the KDD’99 and NSL-KDD datasets, with ensemble techniques

achieving 99.42 and 98.07% accuracy, respectively. An ensemble technique that incorporates Naive

Bayes, Bayesian Net, and DT classifier was put out by Haq et al. [82], while using FS methods such as

Best First Search, Genetic, and Rank Search, where they were able to extract the common features. The

ensemble methodology generated a 98% true positive rate when examined using the 10-fold cross-

validation approach. A reduced error pruning tree (REPTree) was utilized as the basis classifier in the

bagging ensemble approach that Gaikwad et al. [83] developed on the NSL-KDD dataset; their model

had an accuracy rate of 81.29%. Jabbar et al. [84] suggested an ensemble approach that combined an

Alternating DT (ADTree) with KNN, and the performance evaluation showed that the proposed

ensemble outperformed the current strategies in terms of the Detection Rate (DR) (99.8%).

Zhou et al. proposed a FS and ensemble method-based IDS model in [47], where an optimal FS

1279

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

was achieved using a combination of Correlation-based FS (CFS) and Bat algorithm, followed by an

ensemble method made up of the Decision Tree (DT), RF, and Forest by Penalizing Attributes

(Forest PA) algorithms. A hybrid IDS that combined the C5 classifier and OC-SVM was introduced

in [85]. Using DT and RF trees as the basic classifiers, the authors of [44] developed bagging and

boosting ensemble approaches. Experiments were conducted on the NSL-KDD dataset, where it was

discovered that bagging with DT produces superior outcomes.

Table 2. Brief of literature Survey for implementing IDS which are suitable smart cities.

Reference Year Method Employed Summary

[81] 2014 Ensemble-based Multi

classification

GR FS approach combined with ANN and Bayesian Net classifiers for an

IDS.

[82] 2015 Ensemble-based Multi

classification

J48, Bayesian Network, and NB classification model ensemble utilizing a

hybrid FS technique.

[78] 2017 OC-SVM Rule-based detection using OC-SVM is employed to increase performance.

[84] 2017 Ensemble-based Multi

classification

The ADTree and KNN oriented cluster- based ensemble classifier is

constructed.

[75] 2018 RNN, MLP, and ADT IoT Network Anomaly Detection Using a Fog-Assisted SDN

[76] 2018 OS-ELM The testing findings indicate that the fog nodes identify attacks 25% more

quickly than cloud-based implementations while maintaining a low false

alarm rate.

[86] 2018 Neural Network based Multi

classification

A novel method of cybersecurity called DL makes it possible to identify

threats in the social IoT.

[80] 2018 ELM based Multi

classification

Sharing the traffic load between edge and cloud for effective traffic

classification using ELM.

[44] 2018 Ensemble-based Binary

classification

Bagging ensemble model with J48 as the basic classifier.

[85] 2019 Multi-classification by C5

classifier and One class-SVM

Ensemble of C5 classifier with the OC-SVM classifier, to identify both

known intrusions and zero-day attacks with high detection accuracy and

low false-alarm rates.

[18] 2019 NB and kNN Two-tier classification module to spot unusual R2L and U2R attack

behaviors.

[77] 2019 J48 A three-layered IDS to identify several common network-based

cyberattacks on IoT networks.

[74] 2019 Symbolic Dynamic Filtering

(SDF) and Boltzmann

Machine

This technique identifies unobservable intrusions in smart grids.

[47] 2020 Ensemble-based Multi

classification

Combination of the C4.5, RF, and Forest by Penalizing Attributes (Forest

PA) algorithms for attack identification through the voting process.

[79] 2020 ANN, SVM LR, DT, RF, and

KNN

Examine a machine learning-based attack and anomaly detection strategy

to counter and reduce IoT cybersecurity vulnerabilities in a smart city.

[73] 2020 RNN, Blockchain, and

Byzantine fault tolerance

algorithm.

IDS to identify network attacks and fraudulent energy network

transactions.

[83] 2021 Ensemble-based Binary

classification

Utilizing REPTree as the foundation class, the ensemble’s bagging method

is utilized to construct an IDS.

1280

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

The aforementioned models were created for IoT networks; however, because they primarily

focused on the network structure, they did not take the resource limits and limitations that exist

within IoT networks into account. The models’ findings indicated that impersonation attacks appear

to have a less favorable outcome or detection rate. However, these security measures come at a high

performance cost and are inappropriate for the accepted smart city context. The discussion and

summary of existing works are comprised in Table 2.

2.3. Feature selection procedures

The important step in intrusion detection in cloud Internet traffic data of smart cities is feature

selection. It is difficult to categorize and detect anomalous and unknown classes without feature

extraction and selection. Thus, for the field of network traffic identification, a comprehension of FS and

extraction is very essential. There are many intrusion detection techniques [87−94] employed to provide

security for communication networks while employing the NSL-KDD and UNSW-NB15 datasets.

In [95], Tama et al. introduced an ensemble-based IDS, which combined a two-stage classifier

with a hybrid FS technique including PSO, ant colony algorithm (ACO), and genetic algorithm (GA),

applied on UNSW-NB15 and NSL-KDD datasets. By altering the value of the parameter n, which

stands for the number of particles, population size, and ants in PSO, GA, and ACO, respectively,

experiments were conducted to ascertain the ideal configuration for feature selection. With an accuracy

of 99.5570 ± 0.134%, PSO with n = 2 clearly revealed the best classification result. This case produced

a collection of 37 features. The feature set of 19 was produced using PSO with n = 5, which yield the

highest classification accuracy of 97.0550 ± 0.125% for UNSW-NB15.

An IDS that is based on stacking ensembles was proposed by Smitha et al. [96]. Experiments were

conducted on the heterogeneous datasets UNSW-NB15 and UGR’16. Only the best features were

retrieved after the most important traits were provided weights in order to prioritize them. The IG-based

hashing approach was used to minimize the dimension of the features; only 11 characteristics from the

UNSW NB-15 dataset were chosen [96]. Alternatively, five characteristics of the UGR’16 dataset’s were

taken into consideration. In order to create a hybrid IDS, Salo et al. [97] combined an ensemble approach

with two FS techniques IG-PCA. The IG-PCA ensemble approach selected seven features out of 20

features of the ISC2012 dataset and achieved the highest accuracy of 99.011. For the NSL-KDD dataset,

12 features out of 41 features were selected by the IG-PCA ensemble approach to gain the highest

accuracy (98.24%). Twelve out of 24 features were selected by the IG-PCA ensemble approach using the

Kyoto 2006+ dataset to obtain the highest accuracy of 98.95.

Zhou et al. introduced an ensemble-based, feature-selected IDS in [47]. They coupled the

Bat algorithm with CFS (CFS-BA) to choose features. After choosing the features, they

conducted the experiment using the NSL-KDD, AWID, and CICIDS2017 datasets. The CFS-BA

approach selected 10 out of 41 features of the NSL-KDD dataset. For the AWID dataset, eight out

of 155 features were selected. Alternatively, 13 out of 80 features were selected by the CFA-BA

approach using the CICIDS2017 dataset. In [79], Rashid et al. examined several ML techniques to

identify cyber-attacks from IoT-based smart city applications using an FS approach. For UNSW-

NB15 and CICIDS2017, the authors employed the information-gain model and chose 25 features.

To improve the suggested ensemble approach, they added FS algorithms to select the most

pertinent features. The top 20 out of 41 features from the NSL-KDD dataset were chosen using

the proposed model and the SelectKbest FS algorithm [45]. The results of FS utilizing CFS as the

1281

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

feature evaluator and PSO as the search strategy (CFS+PSO) were presented in this work [98].

For PSO, we assume that there are 50 particles, that the inertia weight constant is 0.33, and that

the values of c1 and c2 are equal at 0.34. After utilizing CFS+PSO to execute FS on the NSL-KDD

dataset, 11 important features are effectively acquired.

To select the best subset of attributes for IDS, a unique combination technique based on the

Iterative Dichotomiser 3 (ID3) algorithm and the bee algorithm (BA) was proposed [97]. The BA

was used to offer a subset of features, while the ID3 approach acted as a classifier. When applied to

the KDD Cup 99 dataset, the results showed that the proposed model performed better for DR and

Arrival Rate (AR) when the number of features was less than 30. An IDS based on FS and a

clustering utilizing filter and wrapper approaches were proposed in study [31]; this featured grouping

based on a linear correlation coefficient (FGLCC) algorithm and a cuttlefish algorithm (CFA), which

are the names of the filter and wrapper approaches, respectively. The suggested technique used a DT

as the classifier. Using the KDD Cup 99 dataset, FGLCC and FGLCC-CFA FS techniques choose 15

and 10 features, respectively [31].

Table 3. Brief of literature survey for implementing feature selection.

Reference Year Method Dataset Total Features Feature Selected

[102] 2015 ID3-BA KDD CUP 99 41 <30

[98] 2017 CFS-PSO NSL-KDD 41 11

[99] 2018 IWD KDD CUP 99 41 9

[100] 2019 Firefly KDD CUP 99 41 10

[31] 2019 FGLCC KDD CUP 99 41 15

FGLCC-CFA KDD CUP 99 41 10

[97] 2019 IG-PCA NSL-KDD 41 12

Kyoto 2006+ 24 12

[95] 2019 PSO NSL-KDD 41 37

UNSW-NB15 49 19

[96] 2020 IG-Hashing UNSW-NB15 49 11

UGR’16 12 5

[47] 2020 CFS-BA NSL-KDD 41 10

AWID 155 8

CIC-IDS-2017 80 13

[79] 2020 IG UNSW-NB15 49 25

CIC-IDS-2017 80 25

[101] 2020 PIO SPIO NSL-KDD 41 18

UNSW-NB15 49 14

CPIO NSL-KDD 41 5

UNSW-NB15 49 5

[45] 2022 SelectKbest NSL-KDD 41 20

Acharya and Singh [99] developed a unique method for choosing IDS features that used the

Intelligence Water Drops (IWD) algorithm. IWD is also recognized as a metaheuristic-based swarm

intelligence optimization technique. With the help of the KDD CUP99 dataset, this strategy was assessed.

The suggested wrapper model obtained a minimum of nine features out of a total of 41. The suggested

study used a filter and wrapper-based technique using the firefly algorithm in the wrapper to choose the

1282

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

features from the KDD-CUP99 dataset since FS affects how quickly the analysis is completed [100]. Ten

features are considered. This method employs the selection process by means of an optimizer that was

inspired by pigeons. The conventional approach for binarizing continuous swarm intelligence algorithms

is contrasted with a novel approach for a continuous PIO [101]. The UNSW-NB15 dataset has 49

features, whereas the KDDCUP 99 and NSL-KDD datasets each have 41. However, not all of these

features are crucial for creating IDS. Both the Sigmoid PIO (SPIO) and the Cosine PIO (CPIO)

binarized versions of PIO for FS chose 10 and 7 features from the KDD-Cup99 dataset,

respectively. From the NSL-KDD dataset, the PIO for FS (SPIO and CPIO) chose 18 and 5 features,

respectively. From the UNSW-NB15 dataset, the PIO for FS (SPIO and CPIO) chose 14 and 5

features, respectively.

It is crucial to note that while most of the described methods have been evaluated using the

most recent KDD dataset (i.e., NSL- KDD and UNSW-NB15), a small number have also been tested

using the extremely old KDD’99 dataset (1999). In this research, we used both datasets to evaluate

the proposed framework. In conclusion, it should be noted that the research does not agree on a

specific number of features or subset of features, and that the proposed FS algorithms deal with a

tradeoff between the accuracy and FPR. The brief of existing works is comprised in Table 3.

3. Prerequisites

3.1. Dataset enumeration

3.1.1. NSL-KDD

The KDD Cup 99 dataset has been revised to become NSL-KDD. The dataset is comprised of

41 attributes that are divided into 5 classes—4 attack groups and 1 normal class—that are explained

in more detail in Table 4. The 42nd attribute, aka class attribute, gives details about these groups and

has either positive or negative examples. Here, we outline the most common forms of malicious

behavior, which are divided into 4 categories of attacks.

⚫ DoS attacks- Attacks that restrict the services of legitimate users fall under the term DoS. A

few examples include Smurf, teardrop, SYN flooding, and Neptune.

⚫ The term “User to Root” (U2R) refers to situations in which an attacker takes control of local

machines by abusing flaws within them. U2R is a type of exploit in which the attacker first gains access

to a regular user account on the system, and then uses that account to exploit a security hole to take

control of it [103]. A few examples include rootkit, espionage, buffer overflow, and SQL attacks.

⚫ R2L (Root to Local)- R2L occurs when an attacker, who can send packets to a system across

a network but who lacks an account on that machine, uses a vulnerability to acquire local access as a

user of that machine [103]. A few examples include Warezmaster, Imap, multihope, and spy.

⚫ A computer network is probed to learn more about it with the apparent goal of getting

beyond security measures. An example of a probe attack is when the attacker uses a traffic analysis

to learn more about the network. Examples include nmap, satan, ping-sweep, and port-scan.

The training part of the NSL-KDD dataset (KDDTrain+) is a dataset of 125,973 records, of which

67,343 records are normal and the remaining 58,630 records are anomalous. The test part of the

dataset (KDDTest+) is comprised of 22,544 records. of which 9711 records are normal and the

12,833 records are anomalous.

1283

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

3.1.2. UNSW-NB15

The dataset is critical for evaluating and measuring the performance of IDS. During the past few

decades, IDS datasets have been introduced. Moustafa et al. [52] generated the UNSW-NB15 dataset

lately. The UNSW-NB15 testbed is shown in Figure 4. The UNSW-NB15 dataset is a combination of

a real-world network operation and a synthetically modified attack. In this study, the UNSW-NB15

dataset is used. IXIA PerfectStorm, which is an attack creation tool, was used to produce the UNSW-

NB15 dataset. It includes both modified and actual attacks from nine different families. Different

servers are targeted in these attacks. At the beginning of 2015, the authors acquired tcpdump traces

of the network traffic for a total of 31 hours. In addition, the dataset consists of 12 methods that are

utilized to provide 49 features for the class label [96]. For each network flow, these network records

were utilized to create a dataset containing 49 features. Some of the features are numerical, while

others are statistical. Other qualities refer to the values of time stamps.

There are 175,341 records in the training set and 82,332 records in the testing dataset, which

include all types of attacks, as well as typical traffic samples. There are 45 features in the testing and

training datasets. These features are listed in Table 5. The UNSW-NB15 dataset has been subjected

to nine different types of attacks.

Table 4. NSL-KDD dataset with feature number, name, and type.

Feat. No. Name Type Feat.

No.

Name Type

42 Class Nominal 21 Is host login Discrete

41 Destination host service rerror rate Discrete 20 Number of outbound cmds Discrete

40 Destination host rerror rate Discrete 19 Number of access files Discrete

39 Destination host service serror rate Discrete 18 Number of shells Discrete

38 Destination host serror rate Discrete 17 Number of file creations Discrete

37 Destination host service different host

rate

Discrete 16 Number of root Discrete

36 Destination host same source port

rate

Discrete 15 Su attempted Discrete

35 Destination host different service rate Discrete 14 Root shell Discrete

34 Destination host same service rate Discrete 13 Number of compromised Discrete

33 Destination host service count Discrete 12 Logged in Discrete

32 Destination host count Discrete 11 Number of failed logins Discrete

31 Service different host rate Discrete 10 Hot Discrete

30 Different service rate Discrete 9 Urgent Discrete

29 Same service rate Discrete 8 Wrong fragment Continuous

28 Service rerror rate Discrete 7 Land Discrete

27 Rerror rate Discrete 6 Destination byte Continuous

26 Service serror rate Discrete 5 Source byte Continuous

25 Serror rate Discrete 4 Flag Discrete

24 Service count Continuous 3 Service Discrete

23 Count Discrete 2 Protocol type Discrete

22 Is guest login Discrete 1 Duration Continuous

1284

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Figure 4. The Testbed Visualization for UNSW-NB15 [52].

Table 5. Enumeration of the employed dataset.

Feat. No. Feat. Name Feat. No. Feat. Name Feat. No. Feat. Name

45 label 30 transdepth 15 sloss

44 attack_cat 29 dmean 14 dload

43 issmipsports 28 smean 13 sload

42 ctsrvdst 27 ackdat 12 dttl

41 ctsrcltm 26 synack 11 sttl

40 ctflwhttpmthd 25 tcprtt 10 rate

39 ctftpcmd 24 dwin 9 dbytes

38 isftplogin 23 dtcpb 8 sbytes

37 ctdstsrcltm 22 stcpb 7 dpkts

36 ctdstsportltm 21 swin 6 spkts

35 ctsrcdportltm 20 dit 5 state

34 ctdstltm 19 sjit 4 service

33 ctstatettl 18 dinpkt 3 proto

32 ctsrvsrc 17 sinpkt 2 dur

31 responsebodylen 16 dloss 1 id

The training section of the UNSW-NB15 dataset consists of 175,341 records, of which 56,000

are normal and 119,341 are attacks. The test part of the dataset is comprised of 82,332 records, of

which 37,000 records are normal and 45,332 records are anomalous.

3.2. Feature selection tools

3.2.1. Pigeon Inspired Optimization (PIO)

One of the recently created bio-inspired swarm intelligence algorithms is the PIO [104].

Pigeons’ homing behavior was influenced by two primary operators: landmark operators and map

and compass operators. According to the research on pigeon homing abilities, the pigeon’s capacity

to find its way home is caused by small magnetic particles that are found in its beak (i.e., through the

trigeminal nerve). These particles communicate with the brain of the species, and Pigeons can feel

1285

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

the earth’s magnetic field using their magneto-reception abilities. Additionally, they can utilize the

sun’s height as a compass to change their orientation [101]. The pigeons grow less dependent on the

map and compass operator as they approach their objective [104]. Guilford and others in [105]

devised the PIO algorithm, which is based on the two primary operators employed by pigeons and is

meant to match their behavior.

By changing the position Xi and velocity Vi of pigeon i throughout each iteration, this operator

may be mathematically stated in a more straightforward manner. Based on the value of the current

iteration t in Eqs (1) and (2), the values of Xi and Vi are changed for the following (t + 1)th iteration,

as stated in [104]:

() () ()()1 . .Rt

i i g iV t V t e random X X t−+ = + − (1)

() () ()1 1i i iX t X t V t+ = + + , (2)

where Xg is the global best solution, Xi(t) stands for the current position of a pigeon at iteration t, and Vi(t)

stands for its current at iteration t. R stands for the map and compass factor. “random” is a uniform

random number in the range [0, 1]. Equation (1) is used to calculate each pigeon’s velocity in the

traditional manner, and Eq (3) uses a sigmoidal function to convert the velocity into binary form:

()()
2

1

1
i

i v
S V t

e
−

=

+

 3)

()
()

()()()

,

1,

0,

i

i p

if S V t r
X t i

otherwise

=

, 4)

where r is an evenly distributed random number and 𝑉𝑖(𝑡) is the pigeon velocity in iteration t.

In this research, we apply the PIO’s new binary version to an IDS FS method. The features

selected by CPIO generate efficient results compared to SPIO and traditional PIO in terms of

accuracy, TPR, and FPR [101]. The outcome demonstrates that the proposed CPIO, which used the

cosine similarity to binarized the solution velocities rather than the sigmoid function, had a faster

convergence [101]. Hence, we adopted the Cosine version of PIO for FS purposes. The cosine

similarity was employed by CPIO to determine the pigeons’ velocity. Initial binary values of either

zero or one were chosen at random to set the value of the solution. The cosine similarity formula is

used to calculate the velocity and to determine how similar the local and global pigeons, Xp and Xg,

are to one another. The pigeon velocity calculation is shown in Eq (5). The position of the pigeon

will be updated in accordance with Eq (6) based on the probability that it is similar to the overall

global solution [101]:

()
1

, ,0

1 12 2

, ,0 0

|| |

.
,

|| . | ||

n

p i g ip g i
p p g

n n
g p

p i g ii i

X XX X
V CosineSimilarity X X

X X X X

−

=

− −

= =

= = =

 (5)

1286

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

()
()

() ()()()

() ,

1 ,

1 ,

ip

i p

g

X t i if S V t r
X t i

X t i otherwise

 −
=

−

, (6)

where r is a constant random number in this case. According to Eq (6), the probability of the solution

updating its position in the direction of the global solution is higher if it is not a neighbor of the

global solution when compared to if it is.

3.2.2. Particle Swarm Optimization (PSO)

BPSO, or binary PSO [106], is based on the fighting strategies used by flocks of birds. Each

particle follows the leader particle (global best) and the nearby particles (local best) . The particle

best solution (pb) refers to the particle’s own optimal position. The global best solution (gb) refers to

the solution that best fits the swarm as a whole. d is the dimension of the particle. The values of the

variables c1 and c2 are both set to 1. r1 and r2 represents a random number between 0 and 1. The

number of particles and the number of iterations are both set to 50. The position (Eq (8)) and velocity

(Eq (7)) in case of PSO is calculated as follows:

() () () ()() () ()()1 1 2 21 * * * *d d d d d d

i i i i iv t v t c r pb t X t c r gb t X t+ = + − + − (7)

() () ()1 1d d d

i i iX t X t v t+ = + + (8)

Equation (7) is replaced by Eq (9) for BPSO so that 𝑋𝑖
𝑑(𝑡) can only be either 0 or 1. Here, the

sigmoidal function, Eq (10), is used. For BPSO, the position in the binary search space is converted

using a sigmoidal function (using Eq (10)), and Eq (8) is replaced by Eq (11). In the case of the

BPSO algorithm, the position and velocity of the ith particle are calculated by the following:

() () () ()() () ()()1 1 2 21 * * * * *d d d d d d

i i i i iv t v t w c r pb t X t c r gb t X t+ = + − + − (9)

()
1

1
d
i

d

i v
Sig v

e
−

=
+

 (10)

()1,

0,

d

id

i

if Sig v r and
X

otherwise

=

 (11)

Additionally, the inertial weight w has a value of 1. rand is a random number selected in the

interim [0, 1]. 𝑆𝑖𝑔(𝑣𝑖
𝑑) denotes a sigmoidal function, and 𝑋𝑖

𝑑 represents the position of the ith particle

in dimension d.

3.3. Classification approaches

3.3.1. J48

To create the DT, a modified version of the c4.5 and ID3 algorithms, called J48, is employed [49].

The estimate criteria are used for each node of the DT to choose pertinent input variables for prediction.

1287

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

The estimate criteria are based on IG and entropy reduction to determine input variables [107].

Equation (12), where pP and pN represent the fraction of positive and negative (training) instances,

yields the entropy (E).

() ()2 2* *E pP log pP pN log pN= − − . (12)

There are many different DT algorithms, though one of the most often used ones is probably J48,

which is an improved version of the C4.5 tree method and constructs a DT by employing the idea of

information entropy [108]. J48 has been extensively used in earlier network security efforts [24,108,109]

since it is an integrable component for the machine learning-based security architecture. Therefore, it is a

supervised learning model.

3.3.2. Random Forest

The RF method is based on ensemble learning. In the paradigm of “ensemble learning”, a

learning algorithm may be used repeatedly to improve upon itself.

Since a RF is created by repeatedly running the DT algorithm, it is important to fully

comprehend the DT technique before attempting to create one [110]. When cloud network data from

smart cities are provided as the input, the DT algorithm’s job in the suggested technique is to forecast

if class labels are either normal or anomalous. Each tree in the “forest” is created by resampling

using the bootstrap methodology. Additionally, a subset of attributes is randomly chosen on each

node split, and this subset is used to pick the split variable. For classification, the projected value is

the decision of the majority vote. Breiman [50] developed the strategy, which was based on the

principles presented by Amit and Geman [111].

One of the most effective techniques used in ML for classification issues is RF. The supervised

classification category includes the RF technique. Rather than relying on the result of a single DT,

learning is carried out based on the outcomes of many DT [110].

3.3.3. XGBoost

XGBoost is a more recent tree classifier that can scale to large-scale data [112] and is gaining

popularity for its outstanding performance across a variety of applications, including cybersecurity

(e.g., [24,51,113]). In a nutshell, the classification and regression tree (CART) results are

accumulated by Gradient Boosting DT (GBDT) to reach the conclusion. At each iteration, the GBDT

must repeatedly traverse the full data collection. The size of the data can only be as much as what

can fit in the memory; otherwise, time-consuming read-and-write operations must be performed

repeatedly. Therefore, GBDT is unable to satisfy its needs when presented with huge and high-

dimensional data. XGBoost was created to address GBDT’s problem in handling big samples and

high-dimensional data. Tianqi Chen et al. [51] advocated for the creation of XGBoost. In order to

achieve high efficiency, versatility, and portability, it is an improved distributed gradient

improvement library that applies ML methods within the gradient boosting framework.

Decision trees are generated sequentially by the XGBoost system, an efficient gradient tree-

boosting method [51]. It can somewhat perform pertinent calculations in all computer environments

more quickly. Because of its effectiveness in modeling newer features and label classification,

1288

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

XGBoost is widely employed. With the implementation of the XGBoost method in structured and

tabular datasets, the use of the technique has greatly increased. The DT-based technique, which

involved computing graphical representations of potential decision answers based on specific

conditions, served as the foundation for the growth of the XGBoost algorithm. Then, “bagging”,

which is an ensemble Meta algorithm that aggregates forecasts from several DT using the

majoritarian voting technique, was developed. This bagging strategy was further developed to create

a forest, or an accumulation of DT, by randomly choosing attributes. The models’ performance was

improved by lowering the errors that occurred throughout the sequential model generation process.

The gradient descent approach was used as an additional improvement to lower the mistakes in the

sequential model. Finally, it was determined that the XGBoost algorithm was a useful method for

improving the gradient boosting algorithm by removing missing data and eradicating overfitting

problems through parallel processing. By utilizing parallelization, tree pruning, and hardware

optimization, the XGBoost method optimizes the system.

3.4. WEKA and sark famework

WEKA [48] is a well-known and comprehensive workbench for data mining with an easy-to-

use interface. Only a sequential single-node execution is supported. As a result, the size of the

datasets and processing jobs that WEKA can manage in its current context is constrained by both

sequential execution and the quantity of RAM in a single node. The DistributedWekaSpark may be

utilized to circumvent this. It serves as WEKA’s distributed framework and preserves the latter’s

current user interface. The framework is built on top of Spark, a distributed framework linked to

Hadoop with quick in-memory processing and support for iterative calculations. WEKA’s usability

and Spark’s processing power are combined to create DistributedWekaSpark, a useable prototype

distributed big data mining workbench that executes a variety of real-world scale tasks with an

average weak scaling efficiency of 91.4% and an average speed up to 4x quicker than Hadoop [114].

The processing engine Apache Spark is incredibly reliable and scalable. It makes use of a

resilient distributed dataset (RDD) [115], which is a group of fault-tolerant components that may be

used concurrently. When processing huge datasets in memory, Apache Spark is noted for being

quicker than Apache Hadoop MapReduce. Hadoop processes data from the disc, making it

ineffective for applications that frequently use repetition in data mining. A more contemporary

distributed framework called Spark [40] integrates with Hadoop and offers in-memory computation,

which speeds up the processing of iterative jobs, making it a better foundation for data mining. By

extending the current WEKA framework, DistributedWekaSpark eliminates the need to completely

re-implement algorithms. As a result, existing systems may be more quickly ported, and users can

continue to utilize the same interface for both local and remote data processing. In a MapReduce

paradigm, it explains a unified framework for representing WEKA’s algorithms. As a result, there is

no need to examine algorithms to find their parallel components and reimplement them using

MapReduce [114]. WEKA developer Mark Hall suggested a trio of additional packages that would

give WEKA the ability to perform distributed processing. The first new package,

DistributedWekaBase, independently performs fundamental map-reduce functions of any other

distributed processing platform. The second one is DistributedWekaHadoop, which offers tasks and

wrappers based on the Hadoop platform. The third one is DistributedWekaSpark, which performs

tasks based on the Spark platform [116]. The DistributedWekaSpark includes the Spark core classes

1289

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

that are required and sufficient for local Spark execution on a workstation, communicating with the

station’s local file system, without the need for a cluster Spark. Additionally, it is possible to run

many workers in independent worker threads, taking advantage of all the processors on the computer

to maximize power from the project [116].

4. Implementation

As shown in Figure 5, we suggest an architecture that demonstrates the links between IoT-

enabled homes and departments, Edge/Fog, and the Cloud, as well as the deployment of IDS at

network gateways.

Figure 5. Proposed Methodology with Cloud, Edge/Fog, and IoT layer.

The Edge/Fog and Cloud layers interact with devices and sensors in homes and departments to

subscribe to and broadcast telemetry data over network systems. There are several sensors in smart

homes and offices, including sensors for the garage, door, smart light, temperature, humidity, and

pressure. In Edge/Fog networks, the suggested IDS system would also be installed at gateways, such

as routers and switches. It can be used to defend against zero-day attacks on these networks.

The distributed IDS system that is being proposed is used to keep an eye on the endpoints that

connect the Edge/Fog, Cloud, and layers of IoT of residences and departments in a smart city, as

depicted in Figure 6. The system gathers key network characteristics from these endpoints, logs them

in the HDFS, and then adapts its methodology to train and test either normal or attack network vectors.

This section delves into the methods for detecting intrusions. DistributedWekaSpark is used to

evaluate the dataset, which is stored in an HDFS. Following the FS technique, we built models using

three different classifiers as base classifiers, and one meta-classifier, as shown in Figure 7. These

stages are outlined in the sections below.

1290

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Figure 6. IDS placement in a smart city scenario.

Figure 7. Proposed methods.

4.1. Data preprocessing

Data preprocessing is an important step that may speed up the experiment and enhance the

output. Feature normalization and encoding depending on the intrusion dataset’s features are part of

data pre-processing.

4.1.1. Feature normalization

The range of features is normalized by feature scaling, which guarantees that distinct features

have different values. Furthermore, training high-dimensional datasets require high computational

1291

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

power. Data is frequently scaled using methods such as Z-score standardization, decimal scaling, Max

normalization, and Min–Max scaling to address these difficulties [117]. The approach to utilize is

frequently determined by the application. Moreover, we have incorporated Min–Max scaling (Eq 13):

: min
norm

max min

X X
Min MaxscalingoffeatureX X

X X

−
− =

−
, (13)

where Xmin and Xmax are the minimum and maximum values of feature X, respectively.

4.1.2. Feature encoding

For efficient model training, all categorical features will be encoded into vectors. There are

several methods for converting categorical data into vectors. ‘Label encoding’, ‘One Hot Encoding’,

and ‘scikit-learn feature mapping’ are the most utilized approaches. We adopted the first approach

since the number of feature dimensions in the later techniques significantly rises [118]. It took a

straightforward approach to convert feature values to numeric numbers; for example, the values of

instances like “icmp, http, tcp” in the dataset will turn into vectors 0,1,2, respectively.

4.1.3. Feature removal

Two features (attack_cat and label) are the class labels out of the 45 features in the UNSW-

NB15 dataset. The last feature in the NSL-KDD dataset is the class label. Since the objective is to

reduce the number of features, it is imperative to get rid of them.

4.2. Feature selection

An adopted metaheuristic based on CPIO and BPSO is used in this article to handle the FS

process. In this section, CPIO and BPSO FS techniques were assessed using the NSL-KDD and

UNSW-NB15 datasets. The CPIO approach’s chosen collection of features from the NSL-KDD and

UNSW-NB15 datasets is shown in Table 6. All the aforementioned FS approaches are carried out

using Python, on a workstation using a 64-bit Windows operating system and a 2.40 GHz Intel Xeon

processor and 16 GB of RAM.

Table 6. Selected features.

Dataset Approach No. of features Selected Feature Number

NSL-KDD CPIO 5 27, 22, 10, 6, 2

BPSO 9 39, 37, 30, 29, 26, 12, 6, 5,

4

UNSW-NB15 CPIO 5 29, 12, 8, 4, 3

BPSO 16 43, 33, 29, 27, 26, 25, 24,

21, 17, 16, 12, 11, 7, 5, 2, 1

We investigate only five and nine of the 41 features in the NSL-KDD dataset based on CPIO

and BPSO, respectively, and only five and 16 of the 43 features in the UNSW-NB15 dataset based

on CPIO and BPSO, respectively. By reducing the number of features, the smaller subset of features

1292

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

may assist us in designing a simpler model. Additionally, the model’s detection skills are improved

by removing redundant features. Once the FS procedure has been completed using the FS algorithms,

the collection of features is trained using an SEM for classification.

4.3. Stacking Ensemble Method (SEM)

Ensemble approaches are a type of ML methodology in which numerous base classifiers are

combined to generate a single, effective prediction model [43,119]. The final model will overcome

each learner’s flaws, yielding a strong model that will improve prediction results. Algorithm 1

explains the procedures necessary for training our proposed SEM.

The SEM is a general architecture made up of two types of classifiers: base and meta-classifiers.

The training dataset is used to train the base (initial) classifiers, while a new dataset is created for the

meta-classifier. Then, this new dataset is used to train the meta-classifier. Finally, the test dataset is

predicted using the trained meta-classifier. We provide a model based on the SEM of ML algorithms,

in which J48, RF, and XGBoost serve as base classifiers, and XGBoost serves as a meta-classifier.

This research supports all of the proposed classifiers, particularly because their findings are simply

interpretable, and their training is robust against outliers.

Algorithm 1 SEM

Input: Training Data T{𝑿𝒊, 𝒀𝒊}𝒊=𝟏
𝒂 where X = Xi ϵ Sb is a give record set and Y = Yi ϵ N is a label set.

Output: 𝑬𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝑬′𝒔 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏

Begin

Step 1: Divide T into ‘a’ equal size subset randomly, i.e., T = {T1, T2, T3,……..Ta}.

Step 2:

for a ←1 to A

 Learn base classifiers namely, J48, RF and XGBoost

 for b ←1 to B

 Learn a base classifier Fab from T or Ta

 end for

 Step 3: Generate a meta-classifier (XGBoost) training dataset

 for each Xi ϵ Ta

 Extract a new instance (x’i , yi) where x’i={Fa1(Xi), Fa2(Xi), Fa3(Xi),…, FaB(Xi)}

 end for

 end for

 Return yi = {y1,y2,………,yb} for ensemble.

 End

4.4. Performance assessment

The most popular performance metrics, including sensitivity, specificity, precision, FPR,

accuracy, F1 Score, and MCC, were utilized to assess the performance. Table 7 represents the

confusion matrix, which displays how well a classification system performs. The undermentioned

metrics in Table 8 are widely used to assess models. The following are the performance metrics. True

Positive (TP) refers to an attack sample that has been correctly identified as an attack. A specimen

that is correctly identified as normal is represented by the True Negative (TN) code. False Positive

1293

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

(FP) refers to the misidentification of an attack in a normal specimen. An attack sample that has been

incorrectly classified as normal is known as a False Negative (FN).

Table 7. Confusion matrix.

 Actual

Benign Malware

Predicted Benign TP FP

Malware FN TN

Table 8. Metrics generated from the confusion matrix for performance evaluation.

Metrics Formula

MCC “(TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))”

Accuracy “(TP+TN)/(FP+TP+FN+TN)”

Precision “TP/(TP+FP)”

Sensitivity “TP/(TP+FN)”

F1-Score “2TP/(2TP+FP+FN)”

FPR “FP/(FP+TN)”

Specificity “TN/(FP+TN)”

4.5. Model performance

Using the features chosen by CPIO and BPSO for the NSL-KDD and UNSW-NB15 datasets,

Figures 8 and 9 and Tables 9−12 show the outcomes of the proposed methodology by distinguishing

between classes that are either attack or normal for the supplied dataset. By training the model with

only the chosen features, each FS strategy or method was tested using the base classifiers and SEM.

Then, the model was examined using the testing set. An average of 20 runs was used to calculate the

results. However, our analysis considered a more trustworthy metric (such as MCC) that was discovered

to produce more accurate estimates for the suggested model. Therefore, our study argues for the use of

the MCC metric as an evaluation criterion in future work, particularly in anomaly-based IDS.

In the case of NSL-KDD, the results of stacking-based classification appear promising for

identifying intrusions in the Cloud network data coming from smart cities when using the feature chosen

by CPIO and BPSO. The best classification result for the features selected by CPIO, sensitivity (0.9730),

specificity and precision (0.9852), accuracy (0.9791), F1-Score (0.9790), MCC (0.9582), and FPR

(0.0148), is for SEM, as depicted in Table 9 and Figure 8. The best classification result for the features

selected by BPSO, sensitivity (0.9810), specificity and precision (0.9923), accuracy (0.9862), F1-Score

(0.9861), MCC (0.9724), and FPR (0.0077), is for SEM, as depicted in Table 10 and Figure 8.

Table 9. Finding for NSL-KDD dataset using CPIO selected features.

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC

J48 0.9289 0.9406 0.9405 0.0594 0.9347 0.9346 0.8695

RF 0.9377 0.9495 0.9494 0.0505 0.9436 0.9435 0.8872

XGBoost 0.9553 0.9674 0.9673 0.0326 0.9613 0.9613 0.9227

Stacking 0.9730 0.9852 0.9852 0.0148 0.9791 0.9790 0.9582

1294

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Table 10. Finding for NSL-KDD dataset using BPSO selected features.

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC

J48 0.9359 0.9477 0.9476 0.0523 0.9418 0.9417 0.8837

RF 0.9474 0.9593 0.9592 0.0407 0.9533 0.9533 0.9067

XGBoost 0.9580 0.9700 0.9700 0.0300 0.9640 0.9639 0.9280

Stacking 0.9801 0.9923 0.9923 0.0077 0.9862 0.9861 0.9724

Figure 8. Results for both FS methods on the NSL-KDD dataset.

For NSL-KDD, the results of SEM-based classification appear promising for identifying

intrusion. A difference of about 0.8188% in sensitivity when the feature selected by BPSO is

considered. BPSO selected features generate better classification results, since there is a difference

of 0.7225% in accuracy. When CPIO selected features are considered for classification, a higher

FPR is obtained; when compared to the consideration of features selected by BPSO, the percentage

difference is 63.11% in the FPR.

In the case of UNSW-NB15, the results of stacking-based classification appear promising for

identifying intrusions in the cloud network data coming from smart cities when using the feature

chosen by CPIO and BPSO. The best classification result for the features selected by CPIO,

sensitivity (0.9562), specificity (0.9553), precision (0.9552), accuracy (0.9558), F1-Score (0.9557),

MCC (0.9115), and FPR (0.0337), is for SEM, as depicted in Table 11 and Figure 9. The best

classification result for the features selected by BPSO, sensitivity (0.9587), specificity (0.9577),

precision (0.9577), accuracy (0.9582), F1-Score (0.9582), MCC (0.9164), and FPR (0.0323), is for

SEM, as depicted in Table 12 and Figure 9.

For UNSW-NB15, a difference of about 0.2611% in sensitivity when the feature selected by

BPSO is considered. BPSO selected features generates better classification results as there is a

difference of 0.2507% in accuracy. When CPIO selected features are considered for classification,

a higher FPR is received; when compared to the consideration of features selected by BPSO, the

difference is 4.24% in the FPR.

1295

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Table 11. Finding for UNSW-NB15 dataset using CPIO selected features.

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC

J48 0.9404 0.9395 0.9394 0.0605 0.9400 0.9399 0.8799

RF 0.9441 0.9431 0.9431 0.0569 0.9436 0.9436 0.8872

XGBoost 0.9489 0.9480 0.9479 0.0520 0.9485 0.9484 0.8969

Stacking 0.9562 0.9553 0.9552 0.0337 0.9558 0.9557 0.9115

Table 12. Finding for UNSW-NB15 dataset using BPSO selected features.

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC

J48 0.9429 0.9419 0.9419 0.0581 0.9424 0.9424 0.8848

RF 0.9477 0.9468 0.9467 0.0532 0.9473 0.9472 0.8945

XGBoost 0.9526 0.9516 0.9516 0.0484 0.9521 0.9521 0.9042

Stacking 0.9587 0.9577 0.9577 0.0323 0.9582 0.9582 0.9164

Figure 9. Results for both FS methods on the UNSW-NB15 dataset.

The stacking approach requires more processing time, since it combines several base classifiers,

each of which requires development time. The amount of time it takes classifiers to forecast

intrusions for the test dataset is shown in Table 13. In terms of model building and testing time, we

found that the best classifiers in our setting are J48 and RF, and J48 obtains the lowest computation

time even if the complexity of the stacking model has risen; as a result, the time requirements

increased, which beats conventional IDS, as noted in the previous result, and is a significant

consideration. If computationally expensive, high-performing classification strategies have

significant implications for IoT-based smart cities applications. The cost of missing an intrusion in

such a system can be quite expensive. As an outcome, the cost of a little extra time, which is reported

in seconds for the datasets examined and therefore potentially well scalable in comparison to earlier

approaches, is justified. The capacity to quickly identify odd activity in the network is crucial for the

sustainability of services in commercial sectors such as smart cities and financial institutions. Attacks

1296

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

that go unnoticed in these places can be expensive, though manually identifying the attacks can be

exceedingly challenging. The focus is on a precise intrusion detection in such systems, which

frequently use considerable computational resources for automatically identifying intrusions. As a

result, the suggested model has significant practical usefulness. Table 13 shows the model

construction time for the given dataset. J48 takes the least amount of time among the classifiers,

whereas stacking takes the most time to create models for both datasets.

Table 13. for the base and stacking ensembles, model construction, and testing time.

Methodologies NSL-KDD UNSW-NB15

Model Building

Time (s)

Testing Time (μs) Model Building

Time (s)

Testing Time

(μs)

J48 0.458 0.187 0.97 0.436

RF 0.593 0.287 1.30 0.487

XGBoost 1.21 0.79 2.01 1.14

Stacking 6.34 3.09 10.54 5.74

4.6. Performance comparison with current methodologies

Using the NSL-KDD and UNSW-NB15 datasets, Table 14 compares the performance of the

stacking model with other methodologies. The proposed model outperforms earlier similar ensemble

classifiers described in [97], which, according to the table, use 10-fold cross validation and consider

intrusion detection as a classification issue. In terms of accuracy, our spark-based SEM-oriented

ensemble model exceeds several current approaches. A “-” in the table denotes a value that is either

inapplicable or unavailable.

For comparing the outcomes, we primarily employ the accuracy and FPR variables. This is a

tried-and-true method that has been applied to a variety of practical machine-learning projects. We

have compared the achieved rates with those presented in undermentioned work because accuracy

rates are a crucial component of any IDS performance evaluation. Since our method uses a nature-

inspired FS approach and classifiers that are HDFS and Spark-based, which is not the case with the

other models, it outperforms the other models’ accuracy rates. FPR is a term used to explain the

inability to recognize normal behavior. In other words, there is a warning. The table below

compares the FPR of our methodology to the works described in the citations. Compared to the

current state-of-the-art, our method yields the lowest FPR: 0.0077% for NSL-KDD and 0.0323%

for UNSW-NB15.

Our approach is distributed in nature with the aid of HDFS and DistributedWekaSpark, thereby

ensuring high availability and fault tolerance of our IDS and making it appropriate to handle big

Cloud network data of smart cities, which is another crucial point that sets it apart from all the works

cited. Our presented methodology outperforms [101] in terms of accuracy and the number of

selected features, while using the same number of features. Additionally, the comparative results

demonstrate that our work surpasses many other works in terms of accuracy and FPR when using the

NSL-KDD and UNSW-NB15 datasets, as shown in Table 14. In comparison to [95], we can see that

our research is able to identify fewer features for the NSL-KDD and UNSW-NB15 datasets, with the

latter displays a superior accuracy. Summarizing the results, we can see that our approach

outperformed all other methods in terms of accuracy. The suggested model makes it abundantly

1297

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

evident that the presented approach outperforms earlier reported approaches in terms of results.

Table 14. Performance comparison with current methodologies.

NSL-KDD

Author &

Reference

Year Methodologies FS Approach No. of

Features

Selected

Accuracy FPR

Alazzam et al.

[101]

2021 DT SPIO 18 0.869 0.064

CPIO 5 0.883 0.088

Khraisat et al. [87] 2020 C5-DT/OC-SVM - - 0.8324 -

Tama et al. [95] 2019 REPT PSO 37 0.8579 11.7

Louk and Tama

[88]

2023 Bagging-GBM - - 0.9157 1.3

Krishnaveli et al.

[89]

2022 Weighted majority

voting

- - 0.8523 12.8

Zhang et al. [90] 2021 MFFSEM - - 0.8433 24.82

Tama et al. [91] 2020 Stacking - - 0.9217 2.52

Prabavathy et al.

[76]

2018 OS-ELM - - 0.9736 0.37

Shrivas et al. [81] 2014 ANN-Bayesian GR 29 0.9778 -

Zhou et al. [47] 2020 Voting Ensemble CFS-BA 10 0.8737 3.19

Salo et al. [97] 2019 Ensemble IG-PCA 12 0.9824 0.017

Alghanam et al.

[92]

2021 LS-PIO iForest 10 0.947 -

Proposed Work - SEM (HDFS and

DistributedWekaSpark)

CPIO 5 0.9791 0.0148

BPSO 9 0.9862 0.0077

UNSW-NB15

Alazzam et al.

[101]

2021 DT SPIO 14 0.913 0.052

CPIO 5 0.917 0.034

Rashid et al. [45] 2022 Ensemble SelectKbest 20 0.94 0.06

Smitha et al. [96] 2020 Stacking Ensemble - 42 0.9400 5.2

Tama et al. [95] 2019 REPT PSO 19 0.9127 8.90

Alghanam et al.

[92]

2021 LS-PIO iForest 10 0.9445 -

Zehong et al. [93] 2022 EFS-DNN Light-GBM 15 0.8834 12.46

Nazir et al. [95] 2021 TS-RF TS 16 0.8312 3.7

Proposed Work - SEM (HDFS and

DistributedWekaSpark)

CPIO 5 0.9558 0.0337

BPSO 16 0.9582 0.0323

5. Conclusions

In this study, we developed a distributed and potent IDS that enables the processing of large

amounts of Cloud data from Smart Cities and improves accuracy while utilizing the fewest features

possible. It uses Spark and ML approaches to effectively manage massive amounts of data in vast

networks of smart cities. We used the Python-based FS methods CPIO and BPSO to create this

1298

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

system. The IDS used in this study for Cloud network data from smart cities used Spark and WEKA.

Due to the connection between WEKA and Spark (DistributedWekaSpark package), it is distributed

and scalable. Using the capabilities of distributed systems while maintaining the familiar WEKA

interface, DistributedWekaSpark is a scalable Big Data Mining toolkit. Built on top of Spark,

DistributedWekaSpark offers quick in-memory iterative processing using both parallel and

distributed execution, making it the perfect platform for data mining techniques. Using WEKA’s

Knowledge flow, this combination enables the analysis of Cloud network data for smart cities and

the storage of HDFS data. In order to build parallelized learning models for cyber-data analytics, we

used machine-learning approaches for feature extraction and selection. For NSL-KKD and UNSW-

NB15, the CPIO FS technique reduced the number of selected features from 41 to five and from 43

to five features, respectively. For NSL-KKD and UNSW-NB15, the BPSO FS technique reduced the

number of selected features from 41 to nine and from 43 to 16 features, respectively. For classifying

the cloud network traffic of smart cities, the tree-based SEM of J48, RF, and XGBoost was applied.

The best results were obtained for sensitivity (0.9810), specificity and precision (0.9923), accuracy

(0.9862), F1-Score (0.9861), MCC (0.9724), and FPR (0.0077) in the NSL-KDD dataset, while in

case of UNSW-NB15 dataset, the best results were obtained for sensitivity (0.9587), specificity

(0.9577), precision (0.9577), accuracy (0.9582), F1-Score (0.9582), MCC (0.9164), and FPR

(0.0323). The results demonstrate that CPIO and BPSO contribute to a greater accuracy and better

outcomes fitting. Since Spark functionality has been implemented, our methodology has been

discovered to be scalable and dispersed, making it suitable for the IoT context of smart cities.

Compared to contemporary systems, our suggested system experimentally exhibits a higher accuracy

and lower FPR.

As a result, research in the future must take a larger range of intrusion data sets in diverse

settings, environments and with wider range of threats into account. More evaluation metrics will be

used in upcoming studies. Using upgraded and latest nature-inspired algorithms for FS and several

deep neural network algorithms, including Auto-Encoder, Gated Recurrent Units and LSTM, will be

used to implement the strategy. We intend to use explainable AI for IDS ML/DL-based algorithms

for the detection and classification of cyberattacks in networks of smart cities.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgements

The first author would like to thank the Department of Science & Technology (DST), Ministry

of Science and Technology, GOI, for financial support in terms of research fellowship (DST-

INSPIRE).

Conflict of interest

The authors declare that they do not have any known competing interests.

1299

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

References

1. Z. Ullah, F. Al-Turjman, L. Mostarda, R. Gagliardi, Applications of artificial intelligence and

machine learning in smart cities, Comput. Commun., 154 (2020), 313–323.

https://doi.org/10.1016/j.comcom.2020.02.069

2. Urbanization, 2023. Available from: https://www.unfpa.org/urbanization.

3. R. Petrolo, V. Loscrì, N. Mitton, Towards a smart city based on cloud of things, a survey on the

smart city vision and paradigms, Trans. Emerg. Telecommun. Technol., 28 (2017).

https://doi.org/10.1002/ETT.2931

4. U. Aguilera, O. Peña, O. Belmonte, D. López-de-Ipiña, Citizen-centric data services for smarter cit-

ies, Future Gener. Comput. Syst., 76 (2017), 234–247. https://doi.org/10.1016/j.future.2016.10.031

5. P. Neirotti, A. De Marco, A. C. Cagliano, G. Mangano, F. Scorrano, Current trends in smart city

initiatives: some stylised facts, Cities, 38 (2014), 25–36. https://doi.org/10.1016/j.cities.2013.12.010

6. H. Habibzadeh, B. H. Nussbaum, F. Anjomshoa, B. Kantarci, T. Soyata, A survey on cybersecu-

rity, data privacy, and policy issues in cyber-physical system deployments in smart cities, Sus-

tain. Cities Soc., 50 (2019), 101660. https://doi.org/10.1016/J.SCS.2019.101660

7. M. Pouryazdan, C. Fiandrino, B. Kantarci, T. Soyata, D. Kliazovich, P. Bouvry, Intelligent gam-

ing for mobile crowd-sensing participants to acquire trustworthy big data in the Internet of

Things, IEEE Access, 5 (2017), 22209–22223. https://doi.org/10.1109/ACCESS.2017.2762238

8. K. Liao, Z. Zhao, A. Doupe, G. J. Ahn, Behind closed doors: measurement and analysis of

CryptoLocker ransoms in Bitcoin, in 2016 APWG Symposium on Electronic Crime Research

(eCrime), 2016 (2016), 1–13. https://doi.org/10.1109/ECRIME.2016.7487938

9. K. Cabaj, W. Mazurczyk, Using software-defined networking for ransomware mitigation: the

case of cryptowall, IEEE Netw., 30 (2016), 14–20.

https://doi.org/10.1109/MNET.2016.1600110NM

10. C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle, Black Hat USA, 2015.

Available from: https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-

1.pdf.

11. A. Greenberg, Hackers remotely kill a jeep on the highway—with me in it, Wired, 7 (2015), 21–22.

12. N. Moustafa, M. Keshk, K. K. R. Choo, T. Lynar, S. Camtepe, M. Whitty, DAD: a distributed

anomaly detection system using ensemble one-class statistical learning in edge networks, Future

Gener. Comput. Syst., 118 (2021), 240–251. https://doi.org/10.1016/J.FUTURE.2021.01.011

13. T. Alam, Cloud-based IoT applications and their roles in smart cities, Smart Cities, 4 (2021),

1196–1219. https://doi.org/10.3390/smartcities4030064

14. Y. Liu, C. Yang, L. Jiang, S. Xie, Y. Zhang, Intelligent edge computing for IoT-based energy

management in smart cities, IEEE Netw., 33 (2019), 111–117.

https://doi.org/10.1109/MNET.2019.1800254.

15. Z. Allam, Z. A. Dhunny, On big data, artificial intelligence and smart cities, Cities, 89 (2019),

80–91. https://doi.org/10.1016/j.cities.2019.01.032

16. H. Habibzadeh, T. Soyata, B. Kantarci, A. Boukerche, C. Kaptan, Sensing, communication and

security planes: a new challenge for a smart city system design, Comput. Netw., 144 (2018),

163–200. https://doi.org/10.1016/J.COMNET.2018.08.001

1300

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

17. M. A. Rahman, A. T. Asyhari, L. S. Leong, G. B. Satrya, M. H. Tao, M. F. Zolkipli, Scalable

machine learning-based intrusion detection system for IoT-enabled smart cities, Sustain. Cities

Soc., 61 (2020), 102324. https://doi.org/10.1016/J.SCS.2020.102324

18. H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, K. K. R. Choo, A two-layer dimen-

sion reduction and two-tier classification model for anomaly-based intrusion detection in IoT

backbone networks, IEEE Trans. Emerging Top. Comput., 7 (2019), 314–323.

https://doi.org/10.1109/TETC.2016.2633228

19. M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. Yoo, K. Kim, Deep abstraction and weighted

feature selection for Wi-Fi impersonation detection, IEEE Trans. Inf. Forensics Secur., 13

(2017), 621–636. https://doi.org/10.1109/TIFS.2017.2762828

20. C. F. Tsai, Y. F. Hsu, C. Y. Lin, W. Y. Lin, Intrusion detection by machine learning: a review,

Expert Syst. Appl., 36 (2009), 11994–12000. https://doi.org/10.1016/j.eswa.2009.05.029

21. A. L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber secu-

rity intrusion detection, IEEE Commun. Surv. Tutorials, 18 (2015), 1153–1176.

https://doi.org/10.1109/COMST.2015.2494502

22. Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, et al., Machine learning and deep learning

methods for cybersecurity, IEEE Access, 6 (2018), 35365–35381.

https://doi.org/10.1109/ACCESS.2018.2836950

23. L. Tian, Design and implementation of a distributed intelligent network intrusion detection system, in

2010 Int. Conf. Electr. Control Eng., 2010 (2010), 683–686. https://doi.org/10.1109/ICECE.2010.174

24. C. Kolias, G. Kambourakis, A. Stavrou, S. Gritzalis, Intrusion detection in 802.11 networks:

empirical evaluation of threats and a public dataset, IEEE Commun. Surv. Tutorials, 18 (2016),

184–208. https://doi.org/10.1109/COMST.2015.2402161.

25. A. A. Aryachandra, Y. F. Arif, S. N. Anggis, Intrusion Detection System (IDS) server place-

ment analysis in cloud computing, in 2016 4th Int. Conf. Inform. Commun. Technol. (ICoICT),

2016 (2016). https://doi.org/10.1109/ICOICT.2016.7571954

26. D. B. Rawat, K. Z. Ghafoor, Smart Cities Cybersecurity and Privacy, Elsevier, 2018.

27. N. Sengupta, Designing cyber security system for smart cities, in Smart Cities Symposium 2018,

2018 (2018). https://doi.org/10.1049/cp.2018.1418

28. E. Vasilomanolakis, S. Karuppayah, M. Muhlhauser, M. Fischer, Taxonomy and survey of collabo-

rative intrusion detection, ACM Comput. Surv., 47 (2015), 1−33. https://doi.org/10.1145/2716260

29. H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Springer Sci-

ence & Business Media, 2012. https://doi.org/10.1007/978-1-4615-5689-3

30. X. Tang, Y. Dai, Y. Xiang, Feature selection based on feature interactions with application to text

categorization, Expert Syst. Appl., 120 (2019), 207–216. https://doi.org/10.1016/j.eswa.2018.11.018

31. S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, H. Karimipour, Cyber intrusion detection

by combined feature selection algorithm, J. Inf. Secur. Appl., 44 (2019), 80–88.

https://doi.org/10.1016/j.jisa.2018.11.007

32. S. Maza, M. Touahria, Feature selection algorithms in intrusion detection system: a survey, KSII

Trans. Internet Inf. Syst., 12 (2018), 5079–5099. https://doi.org/10.3837/tiis.2018.10.024

33. A. Al Shorman, H. Faris, I. Aljarah, Unsupervised intelligent system based on one class support

vector machine and Grey Wolf optimization for IoT botnet detection, J. Ambient Intell. Hum.

Comput., 11 (2020), 2809–2825. https://doi.org/10.1007/s12652-019-01387-y

1301

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

34. H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection sys-

tem based on pigeon inspired optimizer, Expert Syst. Appl., 148 (2020), 113249.

https://doi.org/10.1016/J.ESWA.2020.113249

35. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell., 1 (2007), 33–57.

https://doi.org/10.1007/s11721-007-0002-0

36. A. Jain, V. Sharma, V. Sharma, Big data mining using supervised machine learning approaches

for Hadoop with Weka distribution, Int. J. Comput. Intell. Res., 13 (2017), 2095–2111.

37. M. R. Ghazi, D. Gangodkar, Hadoop, MapReduce and HDFS: a developers perspective, Proce-

dia Comput. Sci., 48 (2015), 45–50. https://doi.org/10.1016/j.procs.2015.04.108

38. M. R. Ghazi, N. S. Raghava, MapReduce based analysis of sample applications using hadoop, in

Int. Conf. Appl. Comput. Commun. Technol., Springer, 899 (2018), 34–44.

https://doi.org/10.1007/978-981-13-2035-4_4

39. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with

working sets, 10 (2010), 1−7.

40. A. G. Shoro, T. R. Soomro, Big data analysis: apache spark perspective, Global J. Comput. Sci.

Technol., 15 (2015), 7–14.

41. A. K. Saxena, S. Sinha, P. Shukla, General study of intrusion detection system and survey of

agent based intrusion detection system, in 2017 Int. Conf. Comput., Commun. Automation

(ICCCA), 2017 (2017), 421–471. https://doi.org/10.1109/CCAA.2017.8229866

42. I. H. Sarker, Y. B. Abushark, F. Alsolami, A. I. Khan, Intrudtree: a machine learning based

cyber security intrusion detection model, Symmetry, 12 (2020), 754.

https://doi.org/10.3390/sym12050754

43. L. K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal. Mach. Intell.,

12 (1990), 993–1001. https://doi.org/10.1109/34.58871

44. N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, H. F. M. Lahza, Improving performance of intrusion

detection system using ensemble methods and feature selection, in Proceedings of the Australa-

sian Computer Science Week Multiconference, 2018 (2018), 1–6.

https://doi.org/10.1145/3167918.3167951

45. M. Rashid, J. Kamruzzaman, T. Imam, S. Wibowo, S. Gordon, A tree-based stacking ensemble

technique with feature selection for network intrusion detection, Appl. Intell., 52 (2022), 9768–

9781. https://doi.org/10.1007/s10489-021-02968-1

46. I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, A. Ng, Cybersecurity data

science: an overview from machine learning perspective, J. Big Data, 7 (2020), 41.

https://doi.org/10.1186/s40537-020-00318-5

47. Y. Zhou, G. Cheng, S. Jiang, M. Dai, Building an efficient intrusion detection system based on

feature selection and ensemble classifier, Comput. Netw., 174 (2020), 107247.

https://doi.org/10.1016/j.comnet.2020.107247

48. E. Frank, M. A. Hall, I. H. Witten, The WEKA Workbench, Online appendix for “data mining:

practical machine learning tools and techniques”, Morgan Kaufmann, 2016. Available from:

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf.

49. J. R. Quinlan, C4.5: Programs for Machine Learning, Elsevier, 2014. Available from:

https://books.google.com/books/about/C4_5.html?id=b3ujBQAAQBAJ.

50. L. Breiman, Random Forests, Mach. Learn., 45 (2001), 5–32.

https://doi.org/10.1023/A:1010933404324

1302

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

51. T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016

(2016), 785–794. https://doi.org/10.1145/2939672.2939785

52. N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network intrusion detection

systems (UNSW-NB15 network data set), in 2015 Military Communications and Information

Systems Conference (MilCIS), 2015 (2015). https://doi.org/10.1109/MILCIS.2015.7348942.

53. M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani, A detailed analysis of the KDD CUP 99 data

set, in 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applica-

tions, 2009 (2009). https://doi.org/10.1109/CISDA.2009.5356528

54. L. P. Qian, Y. Wu, B. Ji, L. Huang, D. H. K. Tsang, HybridIoT: integration of hierarchical mul-

tiple access and computation offloading for IoT-based smart cities, IEEE Netw., 33 (2019), 6–13.

https://doi.org/10.1109/MNET.2019.1800149

55. S. Garg, A. Singh, S. Batra, N. Kumar, L. T. Yang, UAV-empowered edge computing environ-

ment for cyber-threat detection in smart vehicles, IEEE Netw., 32 (2018), 42–51.

https://doi.org/10.1109/MNET.2018.1700286

56. M. Dener, The role of cloud computing in smart cities, in The Eurasia Proceedings of Science,

Technology, Engineering & Mathematics (EPSTEM), 7 (2019), 39–43.

57. M. Chen, W. Liu, T. Wang, S. Zhang, A. Liu, A game-based deep reinforcement learning ap-

proach for energy-efficient computation in MEC systems, Knowl.-Based Syst., 235 (2022),

107660. https://doi.org/10.1016/j.knosys.2021.107660

58. X. Zhu, Y. Luo, A. Liu, N. N. Xiong, M. Dong, S. Zhang, A deep reinforcement learning-based

resource management game in vehicular edge computing, IEEE Trans. Intell. Transp. Syst., 23

(2022), 2422–2433. https://doi.org/10.1109/TITS.2021.3114295

59. H. A. Khattak, H. Farman, B. Jan, I. U. Din, Toward integrating vehicular clouds with IoT for smart

city services, IEEE Netw., 33 (2019), 65–71. https://doi.org/10.1109/MNET.2019.1800236

60. M. Kaur, P. Maheshwari, Building smart cities applications using IoT and cloud-based architec-

tures, in 2016 Int. Conf. Ind. Inform. Comput. Syst. (CIICS), 2016 (2016), 1–5.

https://doi.org/10.1109/ICCSII.2016.7462433

61. R. Massobrio, S. Nesmachnow, A. Tchernykh, A. Avetisyan, G. Radchenko, Towards a cloud

computing paradigm for big data analysis in smart cities, Program. Comput. Software, 44

(2018), 181–189. https://doi.org/10.1134/S0361768818030052.

62. L. A. B. Pacheco, E. A. P. Alchieri, P. A. S. M. Barreto, Device-based security to improve user

privacy in the Internet of Things, Sensors, 18 (2018). https://doi.org/10.3390/s18082664

63. S. Chawla, Deep learning based intrusion detection system for Internet of Things, University of

Washington, 2017. Available from:

https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/39829/Chawla_washingt

on_0250O_17062.pdf.

64. I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, H. Ming, AD-IoT: anomaly detec-

tion of IoT cyberattacks in smart city using machine learning, in 2019 IEEE 9th Annual Compu-

ting and Communication Workshop and Conference (CCWC), 2019 (2019), 305–310.

https://doi.org/10.1109/CCWC.2019.8666450

65. A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma, A. Jamalipour, A smart city cyber securi-

ty platform for narrowband networks, in 2017 27th Int. Telecommun. Netw. Appl. Conf. (IT-

NAC), 2017 (2017), 1–6. https://doi.org/10.1109/ATNAC.2017.8215388

1303

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

66. A. A. Alli, M. M. Alam, SecOFF-FCIoT: machine learning based secure offloading in Fog-

Cloud of things for smart city applications, Internet Things, 7 (2019), 100070.

https://doi.org/10.1016/J.IOT.2019.100070

67. M. Aloqaily, S. Otoum, I. Al Ridhawi, Y. Jararweh, An intrusion detection system for connected vehi-

cles in smart cities, Ad Hoc Netw., 90 (2019), 101842. https://doi.org/10.1016/J.ADHOC.2019.02.001

68. H. Sedjelmaci, S. M. Senouci, M. Al-Bahri, A lightweight anomaly detection technique for low-

resource IoT devices: a game-theoretic methodology, in 2016 IEEE Int. Conf. Commun. (ICC),

IEEE, 2016 (2016), 1–6. https://doi.org/10.1109/ICC.2016.7510811

69. D. H. Summerville, K. M. Zach, Y. Chen, Ultra-lightweight deep packet anomaly detection for In-

ternet of Things devices, in 2015 IEEE 34th International Performance Computing and Communi-

cations Conference (IPCCC), 2015 (2015), 1–8. https://doi.org/10.1109/PCCC.2015.7410342

70. H. Bostani, M. Sheikhan, Hybrid of binary gravitational search algorithm and mutual infor-

mation for feature selection in intrusion detection systems, Soft Comput., 21 (2017), 2307–2324.

https://doi.org/10.1007/s00500-015-1942-8

71. I. Butun, B. Kantarci, M. Erol-Kantarci, Anomaly detection and privacy preservation in cloud-

centric Internet of Things, in 2015 IEEE International Conference on Communication Workshop

(ICCW), 2015 (2015), 2610–2615. https://doi.org/10.1109/ICCW.2015.7247572

72. Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, et al., N-baiot—

network-based detection of IoT botnet attacks using deep autoencoders, IEEE Pervas. Comput.,

17 (2018), 12–22. https://doi.org/10.1109/MPRV.2018.03367731

73. M. A. Ferrag, L. Maglaras, DeepCoin: a novel deep learning and blockchain-based energy ex-

change framework for smart grids, IEEE Trans. Eng. Manage., 67 (2020), 1285–1297.

https://doi.org/10.1109/TEM.2019.2922936

74. H. Karimipour, A. Dehghantanha, R. M. Parizi, K. K. R. Choo, H. Leung, A deep and scalable

unsupervised machine learning system for cyber-attack detection in large-scale smart grids,

IEEE Access, 7 (2019), 80778–80788. https://doi.org/10.1109/ACCESS.2019.2920326

75. Q. Shafi, A. Basit, S. Qaisar, A. Koay, I. Welch, Fog-assisted SDN controlled framework for

enduring anomaly detection in an IoT network, IEEE Access, 6 (2018), 73713–73723.

https://doi.org/10.1109/ACCESS.2018.2884293

76. S. Prabavathy, K. Sundarakantham, S. M. Shalinie, Design of cognitive fog computing for intru-

sion detection in Internet of Things, J. Commun. Netw., 20 (2018), 291–298.

https://doi.org/10.1109/JCN.2018.000041

77. E. Anthi, L. Williams, M. Slowinska, G. Theodorakopoulos, P. Burnap, A supervised intrusion

detection system for smart home IoT devices, IEEE Internet Things J., 6 (2019), 9042–9053.

https://doi.org/10.1109/JIOT.2019.2926365

78. V. Garcia-Font, C. Garrigues, H. Rifà-Pous, Attack classification schema for smart city WSNs,

Sensors, 17 (2017), 771. https://doi.org/10.3390/S17040771

79. M. M. Rashid, J. Kamruzzaman, M. M. Hassan, T. Imam, S. Gordon, Cyberattacks detection in

IoT-based smart city applications using machine learning techniques, Int. J. Environ. Res. Pub-

lic Health, 17 (2020), 9347. https://doi.org/10.3390/ijerph17249347

80. R. Kozik, M. Choraś, M. Ficco, F. Palmieri, A scalable distributed machine learning approach

for attack detection in edge computing environments, J. Parallel Distrib. Comput., 119 (2018),

18–26. https://doi.org/10.1016/J.JPDC.2018.03.006

1304

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

81. A. K. Shrivas, A. K. Dewangan, An ensemble model for classification of attacks with feature

selection based on KDD99 and NSL-KDD data set, Int. J. Comput. Appl., 99 (2014), 8–13.

https://doi.org/10.5120/17447-5392

82. N. F. Haq, A. R. Onik, F. M. Shah, An ensemble framework of anomaly detection using hybrid-

ized feature selection approach (HFSA), in 2015 SAI Intelligent Systems Conference (IntelliSys),

2015 (2015), 989–995. https://doi.org/10.1109/INTELLISYS.2015.7361264

83. D. P. Gaikwad, Intrusion detection system using ensemble of rule learners and first search algo-

rithm as feature selectors., Int. J. Comput. Netw. Inf. Secur., 13 (2021), 26−34.

https://doi.org/10.5815/ijcnis.2021.04.03

84. M. A. Jabbar, R. Aluvalu, S. S. S. Reddy, Cluster based ensemble classification for intrusion

detection system, in Proceedings of the 9th International Conference on Machine Learning and

Computing, 2017 (2017), 253–257. https://doi.org/10.1145/3055635.3056595

85. A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, A. Alazab, A novel ensemble of hybrid

intrusion detection system for detecting Internet of Things attacks, Electronics, 8 (2019), 1210.

https://doi.org/10.3390/electronics8111210

86. A. A. Diro, N. Chilamkurti, Distributed attack detection scheme using deep learning approach

for Internet of Things, Future Gener. Comput. Syst., 82 (2018), 761–768.

https://doi.org/10.1016/j.future.2017.08.043

87. A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, A. Alazab, Hybrid intrusion detection

system based on the stacking ensemble of C5 decision tree classifier and one class support vec-

tor machine, Electronics, 9 (2020). https://doi.org/10.3390/electronics9010173

88. M. H. L. Louk, B. A. Tama, Dual-IDS: a bagging-based gradient boosting decision tree model

for network anomaly intrusion detection system, Expert Syst. Appl., 213 (2023), 119030.

https://doi.org/10.1016/j.eswa.2022.119030

89. S. Krishnaveni, S. Sivamohan, S. Sridhar, S. Prabhakaran, Network intrusion detection based on

ensemble classification and feature selection method for cloud computing, Concurrency Comput.

Pract. Exper., 34 (2022), e6838. https://doi.org/10.1002/cpe.6838

90. H. Zhang, J. L. Li, X. M. Liu, C. Dong, Multi-dimensional feature fusion and stacking ensemble

mechanism for network intrusion detection, Future Gener. Comput. Syst., 122 (2021), 130–143.

https://doi.org/10.1016/J.FUTURE.2021.03.024

91. B. A. Tama, L. Nkenyereye, S. M. R. Islam, K. S. Kwak, An enhanced anomaly detection in

web traffic using a stack of classifier ensemble, IEEE Access, 8 (2020), 24120–24134.

https://doi.org/10.1109/ACCESS.2020.2969428

92. O. A. Alghanam, W. Almobaideen, M. Saadeh, O. Adwan, An improved PIO feature selection

algorithm for IoT network intrusion detection system based on ensemble learning, Expert Syst.

Appl., 213 (2023), 118745. https://doi.org/10.1016/j.eswa.2022.118745

93. Z. Wang, J. Liu, L. Sun, EFS-DNN: an ensemble feature selection-based deep learning approach

to network intrusion detection system, Secur. Commun. Netw., 2022 (2022), 2693948.

https://doi.org/10.1155/2022/2693948

94. A. Nazir, R. A. Khan, A novel combinatorial optimization based feature selection method for

network intrusion detection, Comput. Secur., 102 (2021), 102164.

https://doi.org/10.1016/j.cose.2020.102164.

1305

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

95. B. A. Tama, M. Comuzzi, K. H. Rhee, TSE-IDS: a two-stage classifier ensemble for intelligent

anomaly-based intrusion detection system, IEEE Access, 7 (2019), 94497–94507.

https://doi.org/10.1109/ACCESS.2019.2928048.

96. S. Rajagopal, P. P. Kundapur, K. S. Hareesha, A stacking ensemble for network intrusion detec-

tion using heterogeneous datasets, Secur. Commun. Netw., 2020 (2020).

https://doi.org/10.1155/2020/4586875

97. F. Salo, A. B. Nassif, A. Essex, Dimensionality reduction with IG-PCA and ensemble classifier

for network intrusion detection, Comput. Netw., 148 (2019), 164–175.

https://doi.org/10.1016/j.comnet.2018.11.010

98. B. A. Tama, K. H. Rhee, An extensive empirical evaluation of classifier ensembles for intrusion

detection task, Comput. Syst. Sci. Eng., 2 (2017), 149–158.

99. N. Acharya, S. Singh, An IWD-based feature selection method for intrusion detection system,

Soft Comput., 22 (2018), 4407–4416. https://doi.org/10.1007/s00500-017-2635-2

100. B. Selvakumar, K. Muneeswaran, Firefly algorithm based feature selection for network intrusion

detection, Comput. Secur., 81 (2019), 148–155. https://doi.org/10.1016/J.COSE.2018.11.005

101. H. Alazzam, A. Sharieh, K. E. Sabri, A feature selection algorithm for intrusion detection sys-

tem based on Pigeon Inspired Optimizer, Expert Syst. Appl., 148 (2020), 113249.

https://doi.org/10.1016/J.ESWA.2020.113249

102. A. S. Eesa, Z. Orman, A. M. A. Brifcani, A new feature selection model based on ID3 and bees

algorithm for intrusion detection system, Turk. J. Electr. Eng. Comput. Sci., 23 (2015), 615–622.

https://doi.org/10.3906/ELK-1302-53

103. T. A. J. Ali, M. Jawhar, Proposing a model for detecting intrusion network attacks using ma-

chine learning techniques, J. Educ. Sci., 31 (2022), 99–109.

https://doi.org/10.33899/edusj.2022.133867.1240

104. Y. Deng, H. Duan, Control parameter design for automatic carrier landing system via pigeon-inspired

optimization, Nonlinear Dyn., 85 (2016), 97–106. https://doi.org/10.1007/S11071-016-2670-Z

105. T. Guilford, S. Roberts, D. Biro, I. Rezek, Positional entropy during pigeon homing II: naviga-

tional interpretation of Bayesian latent state models, J. Theor. Biol., 227 (2004), 25–38.

https://doi.org/10.1016/j.jtbi.2003.07.003

106. J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997

IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics

and Simulation, IEEE, (1997), 4104–4108. https://doi.org/10.1109/ICSMC.1997.637339

107. V. Sugumaran, V. Muralidharan, K. I. Ramachandran, Feature selection using decision tree and

classification through proximal support vector machine for fault diagnostics of roller bearing,

Mech. Syst. Signal Process., 21 (2007), 930–942. https://doi.org/10.1016/J.YMSSP.2006.05.004

108. M. Abdulrazaq, A. Salih, Combination of multi classification algorithms for intrusion detection

system, Int. J. Sci. Eng. Res., 6 (2015), 1364–1371.

109. Q. Zhang, Y. Qu, A. Deng, Network intrusion detection using kernel-based fuzzy-rough feature

selection, in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2018 (2018).

https://doi.org/10.1109/FUZZ-IEEE.2018.8491578

110. P. S. Varma, V. Anand, Random Forest learning based indoor localization as an IoT service for

smart buildings, Wireless Pers. Commun., 117 (2021), 3209–3227.

https://doi.org/10.1007/s11277-020-07977-w

1306

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

111. Y. Amit, D. Geman, Shape quantization and recognition with randomized trees, Neural Comput.,

9 (1997), 1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545

112. S. S. Dhaliwal, A. A. Nahid, R. Abbas, Effective intrusion detection system using XGBoost,

Information, 9 (2018), 149. https://doi.org/10.3390/info9070149

113. I. Sharafaldin, A. H. Lashkari, S. Hakak, A. A. Ghorbani, Developing realistic distributed denial

of service (DDoS) attack dataset and taxonomy, in 2019 International Carnahan Conference on

Security Technology (ICCST), (2019), 1–8. https://doi.org/10.1109/CCST.2019.8888419

114. A. K. Koliopoulos, P. Yiapanis, F. Tekiner, G. Nenadic, J. Keane, A parallel distributed Weka

framework for big data mining using spark, in 2015 IEEE International Congress on Big Data,

(2015), 9–16. https://doi.org/10.1109/BigDataCongress.2015.12

115. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, et al., Resilient distributed

datasets: a fault-tolerant abstraction for in-memory cluster computing, in Proceedings of the 9th

USENIX conference on Networked Systems Design and Implementation, (2012), 15–28.

116. M. Hall, Advanced data mining with Weka, Online Course, University of Waikato, 2016

117. W. Li, Z. Liu, A method of SVM with normalization in intrusion detection, Procedia Environ.

Sci., 11 (2011), 256–262. https://doi.org/10.1016/j.proenv.2011.12.040

118. Scikit-learn developers, 2022. Available from: https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.htm.

119. D. H. Wolpert, Stacked generalization, Neural Netw., 5 (1992), 241–259.

https://doi.org/10.1016/S0893-6080(05)80023-1

Appendix

This section provides instructions for setting up Weka-Spark to work with a Hadoop cluster in

order to continue managing data for the intrusion detection issue in cloud networks for smart cities.

Weka’s ability to be used as a data mining tool is one of its benefits. Since it was created in Java, it

can function on any OS as long as JVM is installed (Java Virtual Machine). Applications written for

Spark can operate on any OS, albeit Windows requires some specialized libraries for execution

whereas Linux does not. To use the Spark utilities in Weka, in addition to these prerequisites, a

number of basic setups must be completed. First, the environment variables for Java and Hadoop

must be established. Second, the Hadoop environment variable’s path must contain both the

hadoop.dll and the winutils library, and at last DistributedWekaBase and DistributedWekaSpark

dependencies need to be installed on the Weka. With all of the prior Weka Knowledge Flow settings,

a result similar to that in Figure A.1 is shown.

The tool WekaClassifierEvaluationSparkJob is used for J48, RF, and XGBoost training and

evaluation. It allows assessing a classifier using cross-validation, a distinct dataset, or training data.

In our case, for training, the training dataset is used while for testing the data, a distinct test dataset is

employed. The data for training is passed through the ArffHeaderSparkJob, so some of the most

crucial variables must be indicated, including the path (Copy the datasets’ CSV files to HDFS and

point the inputFile setting of the ArffHeaderSparkJob to the HDFS location) to the data to execute

the evaluation and the chosen classifier, stacking. Three base classifiers are added to the stacking

section’s classifier field, and XGBoost is selected as the meta-classifier. The fields that contain the

route in HDFS to a different test suite that includes the path detail to the test dataset are some of the

most crucial fields.

1307

Electronic Research Archive Volume 32, Issue 2, 1268−1307.

Figure A.1. Spark elements in the Weka’s knowledge flow palette.

Weka’s KnowledgeFlow is an alternative to Weka Explorer with a graphical environment. It is

well known for its simplicity of use because it is a fairly intuitive work system with a graphical

interface that allows you to drag the objects from a palette to the workspace and create connections

between them in various types to obtain the results and information.

All of the filters, classifiers, regressors, and other tools that are present in the version of Weka

that is being used can be used in KnowledgeFlow [117]. Additionally, some additional tools can be

used, such as in the case presented in this work, which is the distributed processing capability of

Hadoop and Spark. While Explorer only handles batch data, KnowledgeFlow can process data

incrementally or in large batches [117]. Once the libraries are installed and configured, one can find

the many Spark jobs that can be carried out in the Weka component palette. The TextViewer is the

last visualization tool that is suggested; it enables the data to be obtained in text form for subsequent

analysis and storage. Once the runs are completed, getting the results is quite easy because they are

stored in the output configuration folder, ‘OutputDir’, as well as in the TextViewer, which allows you

to view the results of the tests.

In addition to Weka’s KnowledgeFlow, a Web service offered by Spark that is active on the

computer where the application driver is running allows for more detailed monitoring of the

applications and their progress. With access through a Web browser to the website where the cluster

jobs are monitored through its URL and its web access port, by default this is 8080, you can check if

the program is discovered running, as well as the resources it has, in addition to other extensive

capabilities.

©2024 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

