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Abstract: With the use of cloud computing, which provides the infrastructure necessary for the 

efficient delivery of smart city services to every citizen over the internet, intelligent systems may be 

readily integrated into smart cities and communicate with one another. Any smart system at home, in 

a car, or in the workplace can be remotely controlled and directed by the individual at any time. 

Continuous cloud service availability is becoming a critical subscriber requirement within smart 

cities. However, these cost-cutting measures and service improvements will make smart city cloud 

networks more vulnerable and at risk. The primary function of Intrusion Detection Systems (IDS) 

has gotten increasingly challenging due to the enormous proliferation of data created in cloud 

networks of smart cities. To alleviate these concerns, we provide a framework for automatic, reliable, 

and uninterrupted cloud availability of services for the network data security of intelligent connected 

devices. This framework enables IDS to defend against security threats and to provide services that 

meet the users’ Quality of Service (QoS) expectations. This study’s intrusion detection solution for 

cloud network data from smart cities employed Spark and Waikato Environment for Knowledge 

Analysis (WEKA). WEKA and Spark are linked and made scalable and distributed. The Hadoop 

Distributed File System (HDFS) storage advantages are combined with WEKA’s Knowledge flow 

for processing cloud network data for smart cities. Utilizing HDFS components, WEKA’s machine 

learning algorithms receive cloud network data from smart cities. This research utilizes the wrapper-

based Feature Selection (FS) approach for IDS, employing both the Pigeon Inspired Optimizer (PIO) 

and the Particle Swarm Optimization (PSO). For classifying the cloud network traffic of smart cities, 

the tree-based Stacking Ensemble Method (SEM) of J48, Random Forest (RF), and eXtreme 

Gradient Boosting (XGBoost) are applied. Performance evaluations of our system were conducted 

using the UNSW-NB15 and NSL-KDD datasets. Our technique is superior to previous works in 
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terms of sensitivity, specificity, precision, false positive rate (FPR), accuracy, F1 Score, and 

Matthews correlation coefficient (MCC).  
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1. Introduction  

The objective of smart cities is to efficiently and effectively manage factors such as increasing 

urbanization, power usage, preservation of natural resources, and the well-being of the civilian 

economy. A population is capable of utilizing and embracing modern Information and 

Communication Technologies (ICT) [1]. In the notion of smart cities, ICT plays a crucial part in 

policy creation, decision, implementation, and ultimate productive services [1]. According to the 

United Nations Population Fund, around 3.3 billion people—or 54% of the world’s population—

lived in urban areas in 2014; this figure is expected to rise to 5 billion (i.e., 66%) by 2030 [2]. If 

urbanization continues at this rate, it will have a severe impact on city management, security, and the 

environment. In order to effectively manage data analysis, data communications, and the successful 

execution of complicated strategies to maintain the smooth and secure functioning of a smart city, the 

efficient use of ICTs is very important [3−5].  

Research has mostly concentrated on investigating potential applications and their effects on 

smart citizens and smart cities [6,7]. Before the recent, unexpected and widespread distributed denial 

of services (DDoS) attacks and ransomware threats [8,9], security and privacy in smart city systems 

were not considered to be critical factors. For instance, in the case of smart vehicles, a Jeep Cherokee 

was hacked on a highway, which prompted Chrysler to issue a recall for 1.4 million vehicles. 

Examples of such assaults have been mentioned in [10,11]. Complex cyberattack vectors that might 

affect cloud services including infrastructure, applications, and platforms continue to be a severe 

danger. Cyberattacks such as DDoS attacks, ransomware, and botnet attacks are frequent attempts to 

access cloud services and interfere with their processing resources [12]. 

These modifications have sparked a new wave of research into cybersecurity and data privacy in 

cloud computing, the Internet of Things (IoT), and intelligent city communities. Businesses have 

started marketing safe smart city goods [6]. The IoT can gain from improved efficiency, 

performance, and payload in cloud infrastructure. The development of an industrial electronic 

business also benefitted from Cloud Computing. Hence, IoT and cloud are extremely connected to 

upcoming internet technologies that are compatible with IoT systems [13]. The most accurate and 

effective course of action might be difficult to determine in the midst of large and complicated 

volumes of data.  

To make the best judgment possible, modern techniques such as Artificial Intelligence (AI) and 

Machine Learning (ML) may be used to analyze large amounts of data [14,15]. As seen in Figure 1, the 

concepts of “smart cities”, “big data”, “data security”, and the usage of AI and ML in many contexts are 

still in the early phases of development and will likely bring more opportunities in the future. Each 

element in Figure 2, which shows the architecture of a smart city application, requests security and 

privacy assurance procedures to address consumers’ increased awareness of smart city cybersecurity [16]. 

The IoT is a new communication paradigm that has emerged as a result of the tremendous 

increase in connectedness between people, devices, and services during the past ten years. In the 



1270 

Electronic Research Archive  Volume 32, Issue 2, 1268−1307. 

upcoming generation of sustainable smart cities, this paradigm is anticipated to play a large role on 

the internet- and service-centric computing inside the networks of the current generation (4G/5G) 

and the future generation (6G and beyond) [17]. Recently, wireless technologies have emerged as a 

significant enabler, linking people to physical items through phones, tablets, and personal computer 

interfaces, which have contributed to this astonishing expansion of linked things [18]. We expect 

wireless transmissions to represent 2/3 of all internet traffic until 2020, with cellular/Wi-Fi 

connections contributing 66% of all internet protocol (IP) data [19]. As the Cloud network for data 

exchange grows, there is a significant risk of misusing cloud services when focusing on wireless 

edge devices, where sensitive and frequently semi-critical data can be fraudulently acquired, as 

depicted in Figure 3. By exploiting the weaknesses of wireless networks, a significant number of 

attackers or offenders attempted to either steal the personal information of target users or seek to 

obtain unauthorized access to the target’s resources or applications [17]. 

 

Figure 1. The popularity of big data, data security, and smart cities (Google Trends). 

 

Figure 2. A high-level illustration of the architecture of smart city applications [16]. 

A cybersecurity system often consists of both networks and computer security technologies. To 

intercept cyberattacks, several elements (such as firewalls) and cryptographic techniques are 

installed, and an IDS is employed to stop external intrusions, respectively [20]. Additionally, IDS is 

used to define, assess, and identify unauthorized system actions, such as unauthorized access, 

modifications, and damage [21,22].  
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Figure 3. The complexity, scale, and extent of smart services provide more opportunities 

for the adversary [6]. 

In order to preserve the cloud network of smart cities, IDS is a security protection technique that 

is used to find suspicious activity in the system and quickly intercept the attacking source [23]. 

Depending on the types of cyber data that are accessible, IDS can be separated into host- and 

network-based detection. Host-based detection refers to monitoring internal resources such as logs, 

disc resources, and file systems on electronic devices like smartphones and laptops [21]. Antiviruses 

are a prime example of host-based detection. Network-based detection occurs by examining the 

network traffic between electronic devices and the internet [24]. In this study, we concentrate on 

network-based IDS for tracking fraudulent activity in the cloud network of connected device-based 

smart cities [24]. An effective network-based IDS should be able to identify a variety of intrusions on 

a cloud network of smart cities, including injection, flooding, and impersonation attacks that can 

originate from both internal and external attackers [25]. 

A smart city should include linked sensors, actuators, and relays that are safe, secure, and 

dependable for gathering, processing, and transmitting data in order to guarantee reliable and 

effective digital services; additionally, it is necessary to address the cybersecurity challenges posed 

by the interconnection of various devices [26]. The majority of the data is produced by IoT devices 

that are cloud-based and play a key part in many smart city applications [27]. IDS is frequently 

implemented using a centralized design, in which a single central unit is entirely in charge of 

evaluating all network traffic data and detecting if attacks have occurred [28]. The dependence on a 

single processing unit makes this strategy insecure due to a single point of failure [17].  

The choice of features is crucial for creating ML models and is one of the essential steps in creating 

efficient IDS. The process of choosing the most key features that go into creating a strong model is 

known as Feature Selection (FS) [29]. FS can be performed either manually or with the aid of several 

methods and algorithms. Eliminating features that raise false alerts and decrease system accuracy is a 

crucial step in developing strong IDS [30]. As mentioned by [31], significant features convey crucial 

information that considerably aids in the classification process. The fact that IDS’s FS decreases storage 

requirements, lowers processing costs, and improves test data comprehension is an important 

consideration. Since FS is a machine-learning topic, several different techniques are used to accomplish 

it. It is noted that several methods, such as the employment of intelligence patterns, swarm intelligence, 

Artificial Neural Networks (ANNs), deterministic algorithms, and fuzzy and rough sets, can be used to 
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determine features [32]. Due to their high degree of accuracy, metaheuristic algorithms are frequently 

utilized for FS in IDSs [33]. In this area, swarm intelligence is a key method employed in the 

construction and classification of metaheuristic algorithms. The AI known as “swarm intelligence” is 

modeled after the collective behavior of insects and swarms. It is employed to resolve challenging issues. 

For this research, PIO [34] and PSO [35] are two methods utilized in swarm intelligence. 

A dataset that keeps expanding to the point that it is challenging to handle using traditional 

database concepts and technologies is referred to as big data. The data do not suit the structures of 

traditional database systems, are too big, move too quickly, or a combination of all three. To be 

beneficial, there is a need to select an alternative method of processing this data [36]. Big data is 

extremely challenging to store and process [37]. Hadoop is mostly used to process huge data. 

Hadoop uses the MapReduce framework to process the data and Hadoop Distributed File System 

(HDFS) to store it efficiently [38]. Spark is a framework distinguished for its responsiveness. It tries 

to speed up batch workloads by performing the entire calculation in memory and processing 

optimization [39]. Additionally, spark is effective at performing iterative calculations, making it a 

good choice for the creation of large-scale machine-learning systems [40]. Nowadays, organizations 

are placing more emphasis on big data systems to manage such data and to use them for commercial 

expansion. The top seven data drivers include instances of big data from the financial, Internet, 

mobile, Smart cities-based data, science, sensor, and streaming industries. 

The use of ML approaches to enhance IDS performance has been the subject of many studies [41,42]. 

However, these systems are limited because they use only one classifier, which prevents them from 

identifying and thwarting serious threats. In order to address this problem, Hansen and Salamon [43] 

have created several ensemble algorithms that outperform single classifiers. In this context, Pham et 

al. [44] and Rashid et al. [45] highlight numerous factors that might affect IDS performance, 

including feature selection, base classifiers, and ensemble techniques. This suggests the value of 

investigating ensemble-based IDS from diverse angles. Tree-based ML techniques have 

demonstrated promising results in predictive analytics [46]. Additionally, compared to many other 

kinds of ML models, tree-based classifiers may be trained significantly more quickly [47]. In this 

paper, we provide a tree-based SEM for enhancing IDS performance after taking their applicability 

into account. 

1.1. Motivation 

To provide connected solutions for the general public, smart cities combine the IoT with a range 

of software, user interfaces, and communication networks. The most likely security threats to the 

networks of smart cities include various malicious attacks like DDoS, ransomware, remote 

recording, routing attacks, and data leakage attacks [6]. A DDoS attack is when many compromised 

machines launch a denial of service (DoS) attack on the smart cities network. With this attack, the 

attacker floods the server with erroneous request packets to block it, thereby depriving users of the 

resources and lengthening response times. Hence, it is important to make sure that smart cities are 

protected from cyberattacks, hacking, and data theft. The network of smart cities is protected by 

several security measures, including access control algorithms, public key-based security methods, 

and IDSs. However, there are no effective security options. An efficient IDS is necessary to provide 

integrated solutions that meet the fundamental security goals of availability, integrity, confidentiality, 

and accountability of the smart city network. 
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Currently, intrusion detection in smart cities has drawn increased interest in the cybersecurity 

field. Numerous FS and intrusion detection algorithms have been studied during the last few decades. 

Due to limitations, in many cases, these algorithms could no longer address the difficulties in real-

time and distributed a nature of applications. The application of population-based metaheuristic 

algorithms in optimization, including feature selection, has recently increased. In order to handle the 

cloud network data from smart cities, the IDS must be scalable and dispersed. The use of only one 

classifier makes it impossible to detect and neutralize severe threats. Tree-based ML techniques have 

demonstrated promising outcomes in predictive analytics. In order to reduce potential future security 

attacks against the cloud network data of smart cities, the motivation is to propose an IDS using tree-

based SEM ML classifiers. Additionally, we adopt the HDFS and Spark framework in our proposed 

work because the data generated from the cloud network of smart cities is enormous and can only be 

stored and processed in a cloud environment. 

1.2. Contribution 

IDSs are crucial in preventing intrusions into the cloud network of smart cities, which contains 

private data and information. This research lists the most recent developments in FS and classification 

techniques for IDSs using cloud network data from smart cities. The following tasks are included: 

using a wrapper-based FS approach that uses PIO and PSO, storing the data in the HDFS, processing 

cloud network data for smart cities using WEKA’s Knowledge flow [48], and classifying the cloud 

network traffic of smart cities using a tree-based SEM approach that uses J48 [49], RF [50], and 

XGBoost [51]. The UNSW-NB15 [52] and NSL-KDD [53] datasets were used to assess the system’s 

performance. HDFS is used for storing and processing massive datasets. WEKA is used to train ML 

for massive data mining and analysis. The “DistributedWekaSpark” package allows us to configure 

Spark and WEKA together. 

This effort’s core contribution consists of examining the breadth and scope of the effects of 

cyberattacks, and the results are frequently utilized as the foundation for new legislation and 

regulations. Computer scientists and researchers make up the second branch. They examine the 

technological tools to ensure they adhere to the security and privacy standards set out by smart city 

rules. The research community has recognized that the technological implementation of smart city 

security is also a complicated issue, with the system’s total security being determined by the most 

delicate link in the network. This insight is the source of vulnerabilities in existing smart city systems 

since developers erroneously think they can boost their products’ security by protecting one aspect of 

the system while ignoring others.  

The main contributions are pointed out as follows: 

(1) The suggested IDS has been modified to ensure that secure communication with service 

providers only happens when it is performed between people of smart cities, trustworthy third-

party organizations, and service providers. 

(2) This research effort proposes a unique approach for automatically identifying intruder attacks by 

classifying both legal and malicious data. 

(3) The hybrid monitoring system that makes up the intrusion detection mechanism combines data 

preprocessing methods, PIO and PSO for data dimensionality reduction, HDFS for data storage, 

and a tree-based SEM technique that employs J48, RF, and XGBoost for attacks classification 

using WEKA’s Knowledge flow and Spark framework. 
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(4) A model built on the Spark platform to divide the processing of cloud network data for smart 

cities in order to save computation time. 

(5) With reference to benchmark datasets, the suggested model is assessed to demonstrate how it 

outperforms standard baseline methods. 

1.3. Paper structure 

The structure of the article is as follows. The related work is discussed in Section 2. Prerequisites for 

the proposed methodology, which include dataset enumerations, FS tools (PSO and PIO), classification 

approaches (J48, RF and XGBoost), and WEKA and Spark frameworks are discussed in Section 3. In 

Section 4, the suggested tree-based SEM ML algorithms implementation on Spark and WEKA are used 

to evaluate cloud network data from smart cities. In Section 4, a performance assessment, model 

performance, implementation, and comparison of the proposed model are included. Finally, Section 5 

concludes the paper and lays out the research agenda for the future. 

2. Related work 

In this section, we review related research and present the most pertinent related work to address 

barriers that need to be considered in this study. Without question, the emergence of smart cities will 

improve many aspects of urban life, while significantly increasing vulnerability. We research these 

concerns on a variety of levels. The associated works are divided into many categories, including secure 

Cloud/Edge/Fog/IoT ecosystems for smart cities, IDSs for smart cities, and FS techniques. The following 

subsections explain these categories in more depth. 

2.1. Secure Cloud/Edge/Fog/IoT ecosystem for smart cities 

The architecture called Hybrid IoT was proposed by Qian et al. [54] to enable the well-

organized transmission, caching, and computation of massive data produced by widely scattered and 

substantial IoT devices that are installed in smart cities. A paradigm for monitoring in the 

transportation sector was proposed by Garg et al. [55]. They used real-time analytics and apps at 

several levels to solve the issue of security risks in aerial vehicles. To discover cyber-threats in smart 

cars, they applied the probabilistic data structure method. By gathering data from moving objects and 

passing the load to edge devices through aggregators, extreme aerial vehicles serve as data providers. 

The real-time security of the odd vehicle movements was assured by the creators. In order to 

describe the function of cloud computing in providing storage, computation, databases, and a variety 

of application services for access through the internet, Dener [56] reviewed many research 

publications. These cloud-based services facilitate information sharing and integration amongst 

various smart city systems. 

Applications based on reinforcement learning have produced successful outcomes in mobile 

edge computing (MEC), vehicular edge computing (VEC), and other areas. Reinforcement learning 

(RL) has emerged as an important class of algorithms in AI. The AI discipline of RL contributes to 

the further optimization of energy usage and the performance of MEC [57]. In a network, MEC 

provides execution resources, such as storage and calculations, which are close to the users and can 

be used to process and store content, as well as deliver services. Two sub-problems are created from 



1275 

Electronic Research Archive  Volume 32, Issue 2, 1268−1307. 

the energy consumption optimization problem: computation optimization (data segmentation) and 

transmission optimization (time division). The authors [57] have suggested DDQNL-IST, an 

intelligent game method that combines distributed LSTM (Long Short-Term Memory) and DDQN 

(Double Deep Q-Network) with an intermediate state transition (IST). The results of the experiments 

demonstrate that the suggested DDQNL-IST can perform better in terms of average latency and 

energy cost. Due to the restricted processing resources available to the VEC servers, the authors of 

the research [58] suggest a resource management strategy based on Deep-RL (DRL) to motivate the 

VEC servers. 

An innovative framework known as VCoT, presented by Khattak et al. [59], merges IoT and 

vehicular-networking clouds. The purpose of IoT-VC (VCoT) for numerous real-world applications, 

including smart traffic signals, home automation, and smart cities, is thoroughly explained in the article, 

along with the challenges that must be overcome. For the progress of smart cities, Kaur et al. [60] 

suggested an architecture that relies on cloud computing and IoT. The author concentrated on the various 

cloud characteristics and utilized IoT to deploy them to improve smart cities. The author used the 

smart city of Dubai as a case study and suggested a scenario-based design for healthcare in a smart 

city. A big-data analysis based on a smart city employing cloud computing infrastructure was 

described by Massobrio et al. [61]. The Hadoop framework was used to implement the map reduced 

parallel model. In essence, they concentrated on two cases: the estimate of the origin-to-destination 

matrix and public transportation services. The first case uses information about prior sites, whereas 

the latter case uses information about ticket sales. The actual outcome demonstrates how well the 

model supports a large volume of data. 

PROTeCt (Privacy aRchitecture for IntegratiOn of Internet of Things and Cloud computing), is 

a device-based security system that enhances user privacy through a cryptography-based system in 

which only interested users may access their data, which is stored on a cloud in encrypted form to 

guard against unauthorized access [62]. The gateway was authenticated in this operation. Users must 

repeatedly register and accept invitations to join the network, which raises the cost of 

communication. A framework for effective IDS that is more suitable for IoT-based applications was 

provided by the authors in [63]. To deal with security anomalies for IoT networks, the suggested 

framework uses machine learning-based methodologies. The link measurement required to choose 

the best routing option is missing from the research. These limitations increase the percentage of 

route breakages and the rate of packet loss. 

The authors in [6] investigated the deployments of cyber-physical systems in smart cities. They 

focused on the security issues associated with smart infrastructure and the impact that ransomware 

causes on governmental organizations, the healthcare system, and transportation. Moreover, the 

solutions include game theory, IDS, and cryptography. It is important to note that the writers also 

focused on human error. The authors in [17] introduced an IDS based on ML in a semi-distributed 

and distributed mode for the resource-constrained IoT. This IDS is based on different FS strategies, 

and each technique is investigated independently.  

The authors of [64] focused on the security of IoT devices in the smart city and presented an 

architecture dubbed the Anomaly Detection-IoT (AD-IoT) system that was built on RF ML. The 

authors of [65] presented a novel DRL-based architecture to protect a smart city’s digital 

infrastructure from any kind of cyber incursion and for early detection of intrusions based on data 

behavior. To reduce latency and energy use, the authors of [66] introduced a neuro-fuzzy-based 

secure PSO computational offloading system for the Fog-Cloud-IoT context. The authors of [67] 
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envisioned an ML-based secure cloud service for connected automobiles that would identify 

cyberattacks and satisfy user QoS and Quality of Experience (QoE) requirements.  

Table 1. Brief literature Survey for implementing secure Cloud/Edge/Fog/IoT ecosystem 

for smart cities. 

Reference Year Method Employed Summary 

[60] 2016 Cloud and IoT The integration of any smart city application requires 

cloud computing and IoT. 

[65] 2017 Restricted Boltzmann 

Machine 

Generalized method to spot and stop DoS in smart 

cities. 

[63] 2017 ML based IDS A cutting-edge intrusion detection technology that 

recognizes security irregularities in IoT networks using 

ML algorithms 

[61] 2018 Hadoop Smart city Big Data analysis paradigm utilizing cloud 

computing infrastructures. 

[62] 2018 PROTeCt User privacy is increased through the privacy 

architecture for the IoT and CC integration. 

[55] 2018 Triple Bloom filter PDS A data-driven transportation optimization model that 

uses a PDS-based method to identify cyber threats in 

smart cars. 

[54] 2019 UDN and MEC Lower the energy use and end-to-end latency of 

computing data from large IoT devices installed in a 

smart city. 

[56] 2019 Cloud Computing Cloud-based services facilitate information sharing and 

integration amongst various smart city systems. 

[59] 2019 VCoT A new framework for architectural and communication 

design that successfully integrates IoT and cloud-based 

vehicular networking. 

[6] 2019 Reviews for Security for 

Smart cities 

 

A multi-level structure, including a “security level”, can 

be used to conceptualize smart cities. All other levels’ 

weaknesses are caused by the security level. 

[64] 2019 RF-based binary 

classification 

AD-IoT system is suggested as a solution to deal with 

the cybersecurity concerns posed by IoT in smart cities. 

[66] 2019 Neuro-Fuzzy Model and PSO SecOFF-FCIoT 

[67] 2019 Deep belief and DT IDS offers services that satisfy users’ QoS and QoE 

needs. 

[17] 2020 SAE and MLP IDS is based on semi-distributed and fully-distributed 

approaches. 

[57] 2021 Energy consumption 

optimization in MEC. 

RL-based performance enhancement of MEC by energy 

consumption optimization. 

[58] 2022 DRL and Stackelberg game-

based resource management 

for VEC. 

A DRL-based resource management plan is suggested 

to boost vehicle and VEC server revenues. 

UDN- Ultra-Dense Networking, PDS- probabilistic data structure, VCoT- vehicular networking clouds with IoT, SAE- 

Stacked Auto-Encoder, MLP- Multi-layer perceptron, SecOFF-FCIoT- Secure offloading in a Fog-Cloud-IoT. 
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The aforementioned papers offer the first step towards the ecosystem of smart cities. As the number 

of connected devices grows due to technological innovation, it becomes impractical to individually 

connect many low-end ‘things’ to management or analytics systems. In general, some end-system devices 

produce so much data that the core communication channel may become saturated. An array of crucial 

tasks, including data filtering and processing, and security are carried out by the Cloud/Edge/Fog/IoT 

ecosystem for smart cities. Security concerns in smart cities are application-based. For instance, the 

security flaw in smart meters might result in energy disruptions and ineffective Smart Grids. Therefore, 

more sophisticated and cutting-edge techniques based on big data analytics are required to guarantee the 

cyber safety and security of smart city applications. However, the aforementioned cryptographic and 

technical approach is viewed as insufficient due to the increasingly sophisticated and varied cyber-

attacks. This drives the creation of an IDS with built-in intelligence to move away from “one-shot” 

security protection and to include a sophisticated method of continuous learning from changing network 

data. The discussion and summary of existing works are included in Table 1. 

2.2. IDS for smart cities 

IDSs have long been a topic of study in the field of communication networks; however, the 

practical need for such networks has only recently led to a shift in emphasis to IDS for smart city-

based networks. IDSs are divided into host-based [68,69] and network-based [70,71] subcategories. 

Due to several factors, host-based IDSs are considerably less effective in identifying corrupted IoT 

devices. First, the development of detection algorithms uses the energy and computing of smart IoT 

devices. Second, certain IoT devices have restrictions on what software may be installed on them. 

Third, deploying detection techniques on many diverse IoT devices linked to smart networks in 

smart cities is extremely difficult. Lastly, IoT device makers rarely incorporate detection techniques 

into their designs [72].  

DeepCoin is an innovative Deep Learning (DL) and blockchain-based energy framework for smart 

grids [73]. The blockchain-based system is divided into five stages: setup, agreement, block creation and 

consensus, view modification, and conclusion. It provides a high throughput methodology and contains a 

revolutionary, trustworthy peer-to-peer energy system based on the useful Byzantine fault tolerance 

algorithm [73]. The suggested system generates blocks using hash functions and short signatures to guard 

against smart grid attacks. It is suggested to use the statistical correlation between measurements for 

unsupervised anomaly identification with the objective to create a scalable anomaly detection engine that 

is appropriate for large-scale smart grids that can distinguish between a genuine malfunction and either a 

disturbance or sophisticated cyber-attack [74] The suggested approach uses feature extraction while 

learning about the causal relationships between the subsystems using symbolic dynamic filtering (SDF), 

which also helps to lighten the computing load.  

The authors in [75] presented an intrusion detection/prevention system (IDPS) with fog-assisted 

software-defined networking (SDN) using an enhanced decentralized computing structure known as 

fog-computing as an IoT framework. To address an IoT scalability issue, they suggested a useful 

technique for allocating fog resources. Additionally, they examined four classifiers to identify 

intrusions and provided design recommendations to control cybersecurity threats at the edge of the 

IoT network and to spot anomalies. An online Sequential Extreme Learning Machine (OS-ELM) was 

used by the authors of [76] to construct a fog-oriented IDS, which summarizes the identified intrusion. 

First, fog-nodes will identify the malicious traffic from the IoT environment, and the information of the 
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identified intrusion is further transferred to the cloud server. Since the suggested approach is a distributed 

IDS, it can offer scalability, interoperability, and flexibility. However, it is unable to summarize the data 

without a cloud server and will become problematic once the cloud server goes down. 

A supervised IDS was suggested by the authors of [77] for an IoT network in a smart house. The 

three-layered model of the proposed IDS architecture worked to identify malicious packets. Three 

experiments were tested over the layers using nine classifiers. Consequently, the J48 classifier 

produced F-measure values of 96.2%, 90%, and 98% for each of the three experiments, respectively, 

to obtain the best performance. The system’s drawback is that it must integrate the three levels in 

order to detect malicious communications. The entire system will have problems if one of the layers 

fails. To assist managers of smart cities in defining the most sensitive threats, researchers in [78] 

suggested an intrusion detection framework and an attack categorization scheme. Additionally, this 

paper demonstrates how a One-Class Support Vector machine (OC-SVM) and rule-based detection 

may be used together to dramatically enhance detection results. 

In [79], the authors investigated the viability of using single model classifiers in an ensemble 

learning setting to identify cyberattacks in IoT-based smart city applications. The tests using the 

most recent IoT attack the database, stacking a component of the ensemble technique outperforms 

single models in distinguishing attacks from benign samples. In terms of various performance 

emetrics, information gain (IG) is employed for FS and classification outcomes outperform either 

single or other ensemble models. Diro and Chilamkurti suggested a DL model to detect distributed 

intrusions in a social IoT network using the NSL-KDD open-source dataset, which logs attack data in 

both distributed and centralized systems; their model achieved 99.2% and 98.27% accuracy for 

binary-class and multi-class identification, respectively [78]. 

Due to the negative effects of low-frequency threats, such as user to-root (U2R) and remote-to-

local (R2L) attacks, Pajouh et al. introduced a two-stage dimension reduction and classification 

approach to identify anomalies in IoT backbone networks [18]. After reducing the dataset’s features 

using principal component analysis (PCA) and linear discriminate analysis (LDA), they employed 

naive bayes and K-Nearest Neighbor (KNN) to find anomalies. This method resulted in an 

identification rate of 84.82% [18]. However, this method is centralized and was only tested for DoS, 

remote-to-local, user-to-root, and Probe attacks. In [80], Kozik et al. presented an attack detection 

system that used the Apache Spark cloud architecture and the ELM method. The accuracy levels of 

this investigation, which focused on the three key IoT system, used cases of scanning, command and 

control, and infected host were 99%, 76%, and 95%, respectively.  

The Gain Ratio (GR) FS approach, based on ANN and Bayesian networks, was suggested [81] 

and the performance was assessed on the KDD’99 and NSL-KDD datasets, with ensemble techniques 

achieving 99.42 and 98.07% accuracy, respectively. An ensemble technique that incorporates Naive 

Bayes, Bayesian Net, and DT classifier was put out by Haq et al. [82], while using FS methods such as 

Best First Search, Genetic, and Rank Search, where they were able to extract the common features. The 

ensemble methodology generated a 98% true positive rate when examined using the 10-fold cross-

validation approach. A reduced error pruning tree (REPTree) was utilized as the basis classifier in the 

bagging ensemble approach that Gaikwad et al. [83] developed on the NSL-KDD dataset; their model 

had an accuracy rate of 81.29%. Jabbar et al. [84] suggested an ensemble approach that combined an 

Alternating DT (ADTree) with KNN, and the performance evaluation showed that the proposed 

ensemble outperformed the current strategies in terms of the Detection Rate (DR) (99.8%). 

Zhou et al. proposed a FS and ensemble method-based IDS model in [47], where an optimal FS 
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was achieved using a combination of Correlation-based FS (CFS) and Bat algorithm, followed by an 

ensemble method made up of the Decision Tree (DT), RF, and Forest by Penalizing Attributes 

(Forest PA) algorithms. A hybrid IDS that combined the C5 classifier and OC-SVM was introduced 

in [85]. Using DT and RF trees as the basic classifiers, the authors of [44] developed bagging and 

boosting ensemble approaches. Experiments were conducted on the NSL-KDD dataset, where it was 

discovered that bagging with DT produces superior outcomes. 

Table 2. Brief of literature Survey for implementing IDS which are suitable smart cities. 

Reference Year Method Employed Summary 

[81] 2014 Ensemble-based Multi 

classification 

GR FS approach combined with ANN and Bayesian Net classifiers for an 

IDS. 

[82] 2015 Ensemble-based Multi 

classification 

J48, Bayesian Network, and NB classification model ensemble utilizing a 

hybrid FS technique. 

[78] 2017 OC-SVM Rule-based detection using OC-SVM is employed to increase performance. 

[84] 2017 Ensemble-based Multi 

classification 

The ADTree and KNN oriented cluster- based ensemble classifier is 

constructed. 

[75] 2018 RNN, MLP, and ADT IoT Network Anomaly Detection Using a Fog-Assisted SDN 

[76] 2018 OS-ELM The testing findings indicate that the fog nodes identify attacks 25% more 

quickly than cloud-based implementations while maintaining a low false 

alarm rate. 

[86] 2018 Neural Network based Multi 

classification 

A novel method of cybersecurity called DL  makes it possible to identify 

threats in the social IoT. 

[80] 2018 ELM based Multi 

classification 

Sharing the traffic load between edge and cloud for effective traffic 

classification using ELM. 

[44] 2018 Ensemble-based Binary 

classification 

Bagging ensemble model with J48 as the basic classifier. 

[85] 2019 Multi-classification by C5 

classifier and One class-SVM 

Ensemble of C5 classifier with the OC-SVM classifier, to identify both 

known intrusions and zero-day attacks with high detection accuracy and 

low false-alarm rates. 

[18] 2019 NB and kNN Two-tier classification module to spot unusual R2L and U2R attack 

behaviors. 

[77] 2019 J48 A three-layered IDS to identify several common network-based 

cyberattacks on IoT networks. 

[74] 2019 Symbolic Dynamic Filtering 

(SDF) and Boltzmann 

Machine 

This technique identifies unobservable intrusions in smart grids. 

[47] 2020 Ensemble-based Multi 

classification 

Combination of the C4.5, RF, and Forest by Penalizing Attributes (Forest 

PA) algorithms for attack identification through the voting process. 

[79] 2020 ANN, SVM LR, DT, RF, and 

KNN 

Examine a machine learning-based attack and anomaly detection strategy 

to counter and reduce IoT cybersecurity vulnerabilities in a smart city. 

[73] 2020 RNN, Blockchain, and 

Byzantine fault tolerance 

algorithm. 

IDS to identify network attacks and fraudulent energy network 

transactions. 

[83] 2021 Ensemble-based Binary 

classification 

Utilizing REPTree as the foundation class, the ensemble’s bagging method 

is utilized to construct an IDS. 
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The aforementioned models were created for IoT networks; however, because they primarily 

focused on the network structure, they did not take the resource limits and limitations that exist 

within IoT networks into account. The models’ findings indicated that impersonation attacks appear 

to have a less favorable outcome or detection rate. However, these security measures come at a high 

performance cost and are inappropriate for the accepted smart city context. The discussion and 

summary of existing works are comprised in Table 2. 

2.3. Feature selection procedures 

The important step in intrusion detection in cloud Internet traffic data of smart cities is feature 

selection. It is difficult to categorize and detect anomalous and unknown classes without feature 

extraction and selection. Thus, for the field of network traffic identification, a comprehension of FS and 

extraction is very essential. There are many intrusion detection techniques [87−94] employed to provide 

security for communication networks while employing the NSL-KDD and UNSW-NB15 datasets.  

In [95], Tama et al. introduced an ensemble-based IDS, which combined a two-stage classifier 

with a hybrid FS technique including PSO, ant colony algorithm (ACO), and genetic algorithm (GA), 

applied on UNSW-NB15 and NSL-KDD datasets. By altering the value of the parameter n, which 

stands for the number of particles, population size, and ants in PSO, GA, and ACO, respectively, 

experiments were conducted to ascertain the ideal configuration for feature selection. With an accuracy 

of 99.5570 ± 0.134%, PSO with n = 2 clearly revealed the best classification result. This case produced 

a collection of 37 features. The feature set of 19 was produced using PSO with n = 5, which yield the 

highest classification accuracy of 97.0550 ± 0.125% for UNSW-NB15. 

An IDS that is based on stacking ensembles was proposed by Smitha et al. [96]. Experiments were 

conducted on the heterogeneous datasets UNSW-NB15 and UGR’16. Only the best features were 

retrieved after the most important traits were provided weights in order to prioritize them. The IG-based 

hashing approach was used to minimize the dimension of the features; only 11 characteristics from the 

UNSW NB-15 dataset were chosen [96]. Alternatively, five characteristics of the UGR’16 dataset’s were 

taken into consideration. In order to create a hybrid IDS, Salo et al. [97] combined an ensemble approach 

with two FS techniques IG-PCA. The IG-PCA ensemble approach selected seven features out of 20 

features of the ISC2012 dataset and achieved the highest accuracy of 99.011. For the NSL-KDD dataset, 

12 features out of 41 features were selected by the IG-PCA ensemble approach to gain the highest 

accuracy (98.24%). Twelve out of 24 features were selected by the IG-PCA ensemble approach using the 

Kyoto 2006+ dataset to obtain the highest accuracy of 98.95.  

Zhou et al. introduced an ensemble-based, feature-selected IDS in [47]. They coupled the 

Bat algorithm with CFS (CFS-BA) to choose features. After choosing the features, they 

conducted the experiment using the NSL-KDD, AWID, and CICIDS2017 datasets. The CFS-BA 

approach selected 10 out of 41 features of the NSL-KDD dataset. For the AWID dataset, eight out 

of 155 features were selected. Alternatively, 13 out of 80 features were selected by the CFA-BA 

approach using the CICIDS2017 dataset. In [79], Rashid et al. examined several ML techniques to 

identify cyber-attacks from IoT-based smart city applications using an FS approach. For UNSW-

NB15 and CICIDS2017, the authors employed the information-gain model and chose 25 features. 

To improve the suggested ensemble approach, they added FS algorithms to select the most 

pertinent features. The top 20 out of 41 features from the NSL-KDD dataset were chosen using 

the proposed model and the SelectKbest FS algorithm [45]. The results of FS utilizing CFS as the 
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feature evaluator and PSO as the search strategy (CFS+PSO) were presented in this work [98]. 

For PSO, we assume that there are 50 particles, that the inertia weight constant is 0.33, and that 

the values of c1 and c2 are equal at 0.34. After utilizing CFS+PSO to execute FS on the NSL-KDD 

dataset, 11 important features are effectively acquired. 

To select the best subset of attributes for IDS, a unique combination technique based on the 

Iterative Dichotomiser 3 (ID3) algorithm and the bee algorithm (BA) was proposed [97]. The BA 

was used to offer a subset of features, while the ID3 approach acted as a classifier. When applied to 

the KDD Cup 99 dataset, the results showed that the proposed model performed better for DR and 

Arrival Rate (AR) when the number of features was less than 30. An IDS based on FS and a 

clustering utilizing filter and wrapper approaches were proposed in study [31]; this featured grouping 

based on a linear correlation coefficient (FGLCC) algorithm and a cuttlefish algorithm (CFA), which 

are the names of the filter and wrapper approaches, respectively. The suggested technique used a DT 

as the classifier. Using the KDD Cup 99 dataset, FGLCC and FGLCC-CFA FS techniques choose 15 

and 10 features, respectively [31].  

Table 3. Brief of literature survey for implementing feature selection. 

Reference Year Method Dataset Total Features Feature Selected 

[102] 2015 ID3-BA KDD CUP 99 41 <30 

[98] 2017 CFS-PSO NSL-KDD 41 11 

[99] 2018 IWD KDD CUP 99 41 9 

[100] 2019 Firefly KDD CUP 99 41 10 

[31] 2019 FGLCC KDD CUP 99 41 15 

FGLCC-CFA KDD CUP 99 41 10 

[97] 2019 IG-PCA NSL-KDD 41 12 

Kyoto 2006+ 24 12 

[95] 2019 PSO NSL-KDD 41 37 

UNSW-NB15 49 19 

[96] 2020 IG-Hashing UNSW-NB15 49 11 

UGR’16 12 5 

[47] 2020 CFS-BA NSL-KDD 41 10 

AWID 155 8 

CIC-IDS-2017 80 13 

[79] 2020 IG UNSW-NB15 49 25 

CIC-IDS-2017 80 25 

[101] 2020 PIO SPIO NSL-KDD 41 18 

UNSW-NB15 49 14 

CPIO NSL-KDD 41 5 

UNSW-NB15 49 5 

[45] 2022 SelectKbest NSL-KDD 41 20 

Acharya and Singh [99] developed a unique method for choosing IDS features that used the 

Intelligence Water Drops (IWD) algorithm. IWD is also recognized as a metaheuristic-based swarm 

intelligence optimization technique. With the help of the KDD CUP99 dataset, this strategy was assessed. 

The suggested wrapper model obtained a minimum of nine features out of a total of 41. The suggested 

study used a filter and wrapper-based technique using the firefly algorithm in the wrapper to choose the 
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features from the KDD-CUP99 dataset since FS affects how quickly the analysis is completed [100]. Ten 

features are considered. This method employs the selection process by means of an optimizer that was 

inspired by pigeons. The conventional approach for binarizing continuous swarm intelligence algorithms 

is contrasted with a novel approach for a continuous PIO [101]. The UNSW-NB15 dataset has 49 

features, whereas the KDDCUP 99 and NSL-KDD datasets each have 41. However, not all of these 

features are crucial for creating IDS. Both the Sigmoid PIO (SPIO) and the Cosine PIO (CPIO) 

binarized versions of PIO for FS chose 10 and 7 features from the KDD-Cup99 dataset, 

respectively. From the NSL-KDD dataset, the PIO for FS (SPIO and CPIO) chose 18 and 5 features, 

respectively. From the UNSW-NB15 dataset, the PIO for FS (SPIO and CPIO) chose 14 and 5 

features, respectively. 

It is crucial to note that while most of the described methods have been evaluated using the 

most recent KDD dataset (i.e., NSL- KDD and UNSW-NB15), a small number have also been tested 

using the extremely old KDD’99 dataset (1999). In this research, we used both datasets to evaluate 

the proposed framework. In conclusion, it should be noted that the research does not agree on a 

specific number of features or subset of features, and that the proposed FS algorithms deal with a 

tradeoff between the accuracy and FPR. The brief of existing works is comprised in Table 3. 

3. Prerequisites 

3.1. Dataset enumeration 

3.1.1. NSL-KDD 

The KDD Cup 99 dataset has been revised to become NSL-KDD. The dataset is comprised of 

41 attributes that are divided into 5 classes—4 attack groups and 1 normal class—that are explained 

in more detail in Table 4. The 42nd attribute, aka class attribute, gives details about these groups and 

has either positive or negative examples. Here, we outline the most common forms of malicious 

behavior, which are divided into 4 categories of attacks. 

⚫ DoS attacks- Attacks that restrict the services of legitimate users fall under the term DoS. A 

few examples include Smurf, teardrop, SYN flooding, and Neptune. 

⚫ The term “User to Root” (U2R) refers to situations in which an attacker takes control of local 

machines by abusing flaws within them. U2R is a type of exploit in which the attacker first gains access 

to a regular user account on the system, and then uses that account to exploit a security hole to take 

control of it [103]. A few examples include rootkit, espionage, buffer overflow, and SQL attacks. 

⚫ R2L (Root to Local)- R2L occurs when an attacker, who can send packets to a system across 

a network but who lacks an account on that machine, uses a vulnerability to acquire local access as a 

user of that machine [103]. A few examples include Warezmaster, Imap, multihope, and spy. 

⚫ A computer network is probed to learn more about it with the apparent goal of getting 

beyond security measures. An example of a probe attack is when the attacker uses a traffic analysis 

to learn more about the network. Examples include nmap, satan, ping-sweep, and port-scan.  

The training part of the NSL-KDD dataset (KDDTrain+) is a dataset of 125,973 records, of which 

67,343 records are normal and the remaining 58,630 records are anomalous. The test part of the 

dataset (KDDTest+) is comprised of 22,544 records. of which 9711 records are normal and the 

12,833 records are anomalous. 
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3.1.2. UNSW-NB15 

The dataset is critical for evaluating and measuring the performance of IDS. During the past few 

decades, IDS datasets have been introduced. Moustafa et al. [52] generated the UNSW-NB15 dataset 

lately. The UNSW-NB15 testbed is shown in Figure 4. The UNSW-NB15 dataset is a combination of 

a real-world network operation and a synthetically modified attack. In this study, the UNSW-NB15 

dataset is used. IXIA PerfectStorm, which is an attack creation tool, was used to produce the UNSW-

NB15 dataset. It includes both modified and actual attacks from nine different families. Different 

servers are targeted in these attacks. At the beginning of 2015, the authors acquired tcpdump traces 

of the network traffic for a total of 31 hours. In addition, the dataset consists of 12 methods that are 

utilized to provide 49 features for the class label [96]. For each network flow, these network records 

were utilized to create a dataset containing 49 features. Some of the features are numerical, while 

others are statistical. Other qualities refer to the values of time stamps. 

There are 175,341 records in the training set and 82,332 records in the testing dataset, which 

include all types of attacks, as well as typical traffic samples. There are 45 features in the testing and 

training datasets. These features are listed in Table 5. The UNSW-NB15 dataset has been subjected 

to nine different types of attacks. 

Table 4. NSL-KDD dataset with feature number, name, and type. 

Feat. No. Name Type Feat. 

No. 

Name Type 

42 Class Nominal 21 Is host login Discrete 

41 Destination host service rerror rate Discrete 20 Number of outbound cmds Discrete 

40 Destination host rerror rate Discrete 19 Number of access files Discrete 

39 Destination host service serror rate Discrete 18 Number of shells Discrete 

38 Destination host serror rate Discrete 17 Number of file creations Discrete 

37 Destination host service different host 

rate 

Discrete 16 Number of root Discrete 

36 Destination host same source port 

rate 

Discrete 15 Su attempted Discrete 

35 Destination host different service rate Discrete 14 Root shell Discrete 

34 Destination host same service rate Discrete 13 Number of compromised Discrete 

33 Destination host service count Discrete 12 Logged in Discrete 

32 Destination host count Discrete 11 Number of failed logins Discrete 

31 Service different host rate Discrete 10 Hot Discrete 

30 Different service rate Discrete 9 Urgent Discrete 

29 Same service rate Discrete 8 Wrong fragment Continuous 

28 Service rerror rate Discrete 7 Land Discrete 

27 Rerror rate Discrete 6 Destination byte Continuous 

26 Service serror rate Discrete 5 Source byte Continuous 

25 Serror rate Discrete 4 Flag Discrete 

24 Service count Continuous 3 Service Discrete 

23 Count Discrete 2 Protocol type Discrete 

22 Is guest login Discrete 1 Duration Continuous 
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Figure 4. The Testbed Visualization for UNSW-NB15 [52]. 

Table 5. Enumeration of the employed dataset. 

Feat. No. Feat. Name Feat. No. Feat. Name Feat. No. Feat. Name 

45 label 30 transdepth 15 sloss 

44 attack_cat 29 dmean 14 dload 

43 issmipsports 28 smean 13 sload 

42 ctsrvdst 27 ackdat 12 dttl 

41 ctsrcltm 26 synack 11 sttl 

40 ctflwhttpmthd 25 tcprtt 10 rate 

39 ctftpcmd 24 dwin 9 dbytes 

38 isftplogin 23 dtcpb 8 sbytes 

37 ctdstsrcltm 22 stcpb 7 dpkts 

36 ctdstsportltm 21 swin 6 spkts 

35 ctsrcdportltm 20 dit 5 state 

34 ctdstltm 19 sjit 4 service 

33 ctstatettl 18 dinpkt 3 proto 

32 ctsrvsrc 17 sinpkt 2 dur 

31 responsebodylen 16 dloss 1 id 

The training section of the UNSW-NB15 dataset consists of 175,341 records, of which 56,000 

are normal and 119,341 are attacks. The test part of the dataset is comprised of 82,332 records, of 

which 37,000 records are normal and 45,332 records are anomalous.  

3.2. Feature selection tools 

3.2.1. Pigeon Inspired Optimization (PIO) 

One of the recently created bio-inspired swarm intelligence algorithms is the PIO [104]. 

Pigeons’ homing behavior was influenced by two primary operators: landmark operators and map 

and compass operators. According to the research on pigeon homing abilities, the pigeon’s capacity 

to find its way home is caused by small magnetic particles that are found in its beak (i.e., through the 

trigeminal nerve). These particles communicate with the brain of the species, and Pigeons can feel 
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the earth’s magnetic field using their magneto-reception abilities. Additionally, they can utilize the 

sun’s height as a compass to change their orientation [101]. The pigeons grow less dependent on the 

map and compass operator as they approach their objective [104]. Guilford and others in [105] 

devised the PIO algorithm, which is based on the two primary operators employed by pigeons and is 

meant to match their behavior.  

By changing the position Xi and velocity Vi of pigeon i throughout each iteration, this operator 

may be mathematically stated in a more straightforward manner. Based on the value of the current 

iteration t in Eqs (1) and (2), the values of Xi and Vi are changed for the following (t + 1)th iteration, 

as stated in [104]: 

( ) ( ) ( )( )1 . .Rt

i i g iV t V t e random X X t−+ = + −       (1) 

( ) ( ) ( )1 1i i iX t X t V t+ = + + ,         (2) 

where Xg is the global best solution, Xi(t) stands for the current position of a pigeon at iteration t, and Vi(t) 

stands for its current at iteration t. R stands for the map and compass factor. “random” is a uniform 

random number in the range [0, 1]. Equation (1) is used to calculate each pigeon’s velocity in the 

traditional manner, and Eq (3) uses a sigmoidal function to convert the velocity into binary form: 
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where r is an evenly distributed random number and 𝑉𝑖(𝑡) is the pigeon velocity in iteration t. 

In this research, we apply the PIO’s new binary version to an IDS FS method. The features 

selected by CPIO generate efficient results compared to SPIO and traditional PIO in terms of 

accuracy, TPR, and FPR [101]. The outcome demonstrates that the proposed CPIO, which used the 

cosine similarity to binarized the solution velocities rather than the sigmoid function, had a faster 

convergence [101]. Hence, we adopted the Cosine version of PIO for FS purposes. The cosine 

similarity was employed by CPIO to determine the pigeons’ velocity. Initial binary values of either 

zero or one were chosen at random to set the value of the solution. The cosine similarity formula is 

used to calculate the velocity and to determine how similar the local and global pigeons, Xp and Xg, 

are to one another. The pigeon velocity calculation is shown in Eq (5). The position of the pigeon 

will be updated in accordance with Eq (6) based on the probability that it is similar to the overall 

global solution [101]: 
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where r is a constant random number in this case. According to Eq (6), the probability of the solution 

updating its position in the direction of the global solution is higher if it is not a neighbor of the 

global solution when compared to if it is.  

3.2.2. Particle Swarm Optimization (PSO) 

BPSO, or binary PSO [106], is based on the fighting strategies used by flocks of birds. Each 

particle follows the leader particle (global best) and the nearby particles (local best) . The particle 

best solution (pb) refers to the particle’s own optimal position. The global best solution (gb) refers to 

the solution that best fits the swarm as a whole. d is the dimension of the particle. The values of the 

variables c1 and c2 are both set to 1. r1 and r2 represents a random number between 0 and 1. The 

number of particles and the number of iterations are both set to 50. The position (Eq (8)) and velocity 

(Eq (7)) in case of PSO is calculated as follows: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21 * * * *d d d d d d

i i i i iv t v t c r pb t X t c r gb t X t+ = + − + −    (7) 

( ) ( ) ( )1 1d d d

i i iX t X t v t+ = + +          (8) 

Equation (7) is replaced by Eq (9) for BPSO so that 𝑋𝑖
𝑑(𝑡) can only be either 0 or 1. Here, the 

sigmoidal function, Eq (10), is used. For BPSO, the position in the binary search space is converted 

using a sigmoidal function (using Eq (10)), and Eq (8) is replaced by Eq (11). In the case of the 

BPSO algorithm, the position and velocity of the ith particle are calculated by the following: 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21 * * * * *d d d d d d

i i i i iv t v t w c r pb t X t c r gb t X t+ = + − + −    (9) 

( )
1

1
d
i

d

i v
Sig v

e
−

=
+

             (10) 

( )1,   

0,

d

id

i

if Sig v r and
X

otherwise

 
= 


          (11) 

Additionally, the inertial weight w has a value of 1. rand is a random number selected in the 

interim [0, 1]. 𝑆𝑖𝑔(𝑣𝑖
𝑑) denotes a sigmoidal function, and 𝑋𝑖

𝑑 represents the position of the ith particle 

in dimension d. 

3.3. Classification approaches 

3.3.1. J48 

To create the DT, a modified version of the c4.5 and ID3 algorithms, called J48, is employed [49]. 

The estimate criteria are used for each node of the DT to choose pertinent input variables for prediction. 
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The estimate criteria are based on IG and entropy reduction to determine input variables [107]. 

Equation (12), where pP and pN represent the fraction of positive and negative (training) instances, 

yields the entropy (E). 

( ) ( )2 2* *E pP log pP pN log pN= − − .        (12) 

There are many different DT algorithms, though one of the most often used ones is probably J48, 

which is an improved version of the C4.5 tree method and constructs a DT by employing the idea of 

information entropy [108]. J48 has been extensively used in earlier network security efforts [24,108,109] 

since it is an integrable component for the machine learning-based security architecture. Therefore, it is a 

supervised learning model.  

3.3.2. Random Forest 

The RF method is based on ensemble learning. In the paradigm of “ensemble learning”, a 

learning algorithm may be used repeatedly to improve upon itself.  

Since a RF is created by repeatedly running the DT algorithm, it is important to fully 

comprehend the DT technique before attempting to create one [110]. When cloud network data from 

smart cities are provided as the input, the DT algorithm’s job in the suggested technique is to forecast 

if class labels are either normal or anomalous. Each tree in the “forest” is created by resampling 

using the bootstrap methodology. Additionally, a subset of attributes is randomly chosen on each 

node split, and this subset is used to pick the split variable. For classification, the projected value is 

the decision of the majority vote. Breiman [50] developed the strategy, which was based on the 

principles presented by Amit and Geman [111].  

One of the most effective techniques used in ML for classification issues is RF. The supervised 

classification category includes the RF technique. Rather than relying on the result of a single DT, 

learning is carried out based on the outcomes of many DT [110]. 

3.3.3. XGBoost 

XGBoost is a more recent tree classifier that can scale to large-scale data [112] and is gaining 

popularity for its outstanding performance across a variety of applications, including cybersecurity 

(e.g., [24,51,113]). In a nutshell, the classification and regression tree (CART) results are 

accumulated by Gradient Boosting DT (GBDT) to reach the conclusion. At each iteration, the GBDT 

must repeatedly traverse the full data collection. The size of the data can only be as much as what 

can fit in the memory; otherwise, time-consuming read-and-write operations must be performed 

repeatedly. Therefore, GBDT is unable to satisfy its needs when presented with huge and high-

dimensional data. XGBoost was created to address GBDT’s problem in handling big samples and 

high-dimensional data. Tianqi Chen et al. [51] advocated for the creation of XGBoost. In order to 

achieve high efficiency, versatility, and portability, it is an improved distributed gradient 

improvement library that applies ML methods within the gradient boosting framework. 

Decision trees are generated sequentially by the XGBoost system, an efficient gradient tree-

boosting method [51]. It can somewhat perform pertinent calculations in all computer environments 

more quickly. Because of its effectiveness in modeling newer features and label classification, 
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XGBoost is widely employed. With the implementation of the XGBoost method in structured and 

tabular datasets, the use of the technique has greatly increased. The DT-based technique, which 

involved computing graphical representations of potential decision answers based on specific 

conditions, served as the foundation for the growth of the XGBoost algorithm. Then, “bagging”, 

which is an ensemble Meta algorithm that aggregates forecasts from several DT using the 

majoritarian voting technique, was developed. This bagging strategy was further developed to create 

a forest, or an accumulation of DT, by randomly choosing attributes. The models’ performance was 

improved by lowering the errors that occurred throughout the sequential model generation process. 

The gradient descent approach was used as an additional improvement to lower the mistakes in the 

sequential model. Finally, it was determined that the XGBoost algorithm was a useful method for 

improving the gradient boosting algorithm by removing missing data and eradicating overfitting 

problems through parallel processing. By utilizing parallelization, tree pruning, and hardware 

optimization, the XGBoost method optimizes the system. 

3.4. WEKA and sark famework 

WEKA [48] is a well-known and comprehensive workbench for data mining with an easy-to-

use interface. Only a sequential single-node execution is supported. As a result, the size of the 

datasets and processing jobs that WEKA can manage in its current context is constrained by both 

sequential execution and the quantity of RAM in a single node. The DistributedWekaSpark may be 

utilized to circumvent this. It serves as WEKA’s distributed framework and preserves the latter’s 

current user interface. The framework is built on top of Spark, a distributed framework linked to 

Hadoop with quick in-memory processing and support for iterative calculations. WEKA’s usability 

and Spark’s processing power are combined to create DistributedWekaSpark, a useable prototype 

distributed big data mining workbench that executes a variety of real-world scale tasks with an 

average weak scaling efficiency of 91.4% and an average speed up to 4x quicker than Hadoop [114]. 

The processing engine Apache Spark is incredibly reliable and scalable. It makes use of a 

resilient distributed dataset (RDD) [115], which is a group of fault-tolerant components that may be 

used concurrently. When processing huge datasets in memory, Apache Spark is noted for being 

quicker than Apache Hadoop MapReduce. Hadoop processes data from the disc, making it 

ineffective for applications that frequently use repetition in data mining. A more contemporary 

distributed framework called Spark [40] integrates with Hadoop and offers in-memory computation, 

which speeds up the processing of iterative jobs, making it a better foundation for data mining. By 

extending the current WEKA framework, DistributedWekaSpark eliminates the need to completely 

re-implement algorithms. As a result, existing systems may be more quickly ported, and users can 

continue to utilize the same interface for both local and remote data processing. In a MapReduce 

paradigm, it explains a unified framework for representing WEKA’s algorithms. As a result, there is 

no need to examine algorithms to find their parallel components and reimplement them using 

MapReduce [114]. WEKA developer Mark Hall suggested a trio of additional packages that would 

give WEKA the ability to perform distributed processing. The first new package, 

DistributedWekaBase, independently performs fundamental map-reduce functions of any other 

distributed processing platform. The second one is DistributedWekaHadoop, which offers tasks and 

wrappers based on the Hadoop platform. The third one is DistributedWekaSpark, which performs 

tasks based on the Spark platform [116]. The DistributedWekaSpark includes the Spark core classes 
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that are required and sufficient for local Spark execution on a workstation, communicating with the 

station’s local file system, without the need for a cluster Spark. Additionally, it is possible to run 

many workers in independent worker threads, taking advantage of all the processors on the computer 

to maximize power from the project [116]. 

4. Implementation 

As shown in Figure 5, we suggest an architecture that demonstrates the links between IoT-

enabled homes and departments, Edge/Fog, and the Cloud, as well as the deployment of IDS at 

network gateways.  

 

Figure 5. Proposed Methodology with Cloud, Edge/Fog, and IoT layer. 

The Edge/Fog and Cloud layers interact with devices and sensors in homes and departments to 

subscribe to and broadcast telemetry data over network systems. There are several sensors in smart 

homes and offices, including sensors for the garage, door, smart light, temperature, humidity, and 

pressure. In Edge/Fog networks, the suggested IDS system would also be installed at gateways, such 

as routers and switches. It can be used to defend against zero-day attacks on these networks.  

The distributed IDS system that is being proposed is used to keep an eye on the endpoints that 

connect the Edge/Fog, Cloud, and layers of IoT of residences and departments in a smart city, as 

depicted in Figure 6. The system gathers key network characteristics from these endpoints, logs them 

in the HDFS, and then adapts its methodology to train and test either normal or attack network vectors. 

This section delves into the methods for detecting intrusions. DistributedWekaSpark is used to 

evaluate the dataset, which is stored in an HDFS. Following the FS technique, we built models using 

three different classifiers as base classifiers, and one meta-classifier, as shown in Figure 7. These 

stages are outlined in the sections below. 
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Figure 6. IDS placement in a smart city scenario. 

 

Figure 7. Proposed methods. 

4.1. Data preprocessing 

Data preprocessing is an important step that may speed up the experiment and enhance the 

output. Feature normalization and encoding depending on the intrusion dataset’s features are part of 

data pre-processing. 

4.1.1. Feature normalization 

The range of features is normalized by feature scaling, which guarantees that distinct features 

have different values. Furthermore, training high-dimensional datasets require high computational 
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power. Data is frequently scaled using methods such as Z-score standardization, decimal scaling, Max 

normalization, and Min–Max scaling to address these difficulties [117]. The approach to utilize is 

frequently determined by the application. Moreover, we have incorporated Min–Max scaling (Eq 13): 

: min
norm

max min

X X
Min MaxscalingoffeatureX X

X X

−
− =

−
,     (13) 

where Xmin and Xmax are the minimum and maximum values of feature X, respectively.  

4.1.2. Feature encoding 

For efficient model training, all categorical features will be encoded into vectors. There are 

several methods for converting categorical data into vectors. ‘Label encoding’, ‘One Hot Encoding’, 

and ‘scikit-learn feature mapping’ are the most utilized approaches. We adopted the first approach 

since the number of feature dimensions in the later techniques significantly rises [118]. It took a 

straightforward approach to convert feature values to numeric numbers; for example, the values of 

instances like “icmp, http, tcp” in the dataset will turn into vectors 0,1,2, respectively. 

4.1.3. Feature removal 

Two features (attack_cat and label) are the class labels out of the 45 features in the UNSW-

NB15 dataset. The last feature in the NSL-KDD dataset is the class label. Since the objective is to 

reduce the number of features, it is imperative to get rid of them. 

4.2. Feature selection 

An adopted metaheuristic based on CPIO and BPSO is used in this article to handle the FS 

process. In this section, CPIO and BPSO FS techniques were assessed using the NSL-KDD and 

UNSW-NB15 datasets. The CPIO approach’s chosen collection of features from the NSL-KDD and 

UNSW-NB15 datasets is shown in Table 6. All the aforementioned FS approaches are carried out 

using Python, on a workstation using a 64-bit Windows operating system and a 2.40 GHz Intel Xeon 

processor and 16 GB of RAM. 

Table 6. Selected features. 

Dataset Approach No. of features Selected Feature Number 

NSL-KDD CPIO 5 27, 22, 10, 6, 2 

BPSO 9 39, 37, 30, 29, 26, 12, 6, 5, 

4 

UNSW-NB15 CPIO 5 29, 12, 8, 4, 3 

BPSO 16 43, 33, 29, 27, 26, 25, 24, 

21, 17, 16, 12, 11, 7, 5, 2, 1 

We investigate only five and nine of the 41 features in the NSL-KDD dataset based on CPIO 

and BPSO, respectively, and only five and 16 of the 43 features in the UNSW-NB15 dataset based 

on CPIO and BPSO, respectively. By reducing the number of features, the smaller subset of features 
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may assist us in designing a simpler model. Additionally, the model’s detection skills are improved 

by removing redundant features. Once the FS procedure has been completed using the FS algorithms, 

the collection of features is trained using an SEM for classification. 

4.3. Stacking Ensemble Method (SEM) 

Ensemble approaches are a type of ML methodology in which numerous base classifiers are 

combined to generate a single, effective prediction model [43,119]. The final model will overcome 

each learner’s flaws, yielding a strong model that will improve prediction results. Algorithm 1 

explains the procedures necessary for training our proposed SEM. 

The SEM is a general architecture made up of two types of classifiers: base and meta-classifiers. 

The training dataset is used to train the base (initial) classifiers, while a new dataset is created for the 

meta-classifier. Then, this new dataset is used to train the meta-classifier. Finally, the test dataset is 

predicted using the trained meta-classifier. We provide a model based on the SEM of ML algorithms, 

in which J48, RF, and XGBoost serve as base classifiers, and XGBoost serves as a meta-classifier. 

This research supports all of the proposed classifiers, particularly because their findings are simply 

interpretable, and their training is robust against outliers.  

Algorithm 1 SEM 

Input: Training Data T{𝑿𝒊, 𝒀𝒊}𝒊=𝟏
𝒂  where X = Xi ϵ Sb is a give record set and Y = Yi ϵ N is a label set. 

Output: 𝑬𝒏𝒔𝒆𝒎𝒃𝒍𝒆 𝑬′𝒔 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 

Begin 

Step 1: Divide T into ‘a’ equal size subset randomly, i.e., T = {T1, T2, T3,……..Ta}. 

Step 2: 

for a ←1 to A 

      Learn base classifiers namely, J48, RF and XGBoost 

      for b ←1 to B 

           Learn a base classifier Fab from T or Ta 

      end for 

           Step 3: Generate a meta-classifier (XGBoost) training dataset 

                       for each Xi ϵ Ta 

                            Extract a new instance (x’i , yi) where x’i={Fa1(Xi), Fa2(Xi), Fa3(Xi),…, FaB(Xi)} 

                       end for 

      end for 

    Return yi = {y1,y2,………,yb} for ensemble. 

    End 

4.4. Performance assessment 

The most popular performance metrics, including sensitivity, specificity, precision, FPR, 

accuracy, F1 Score, and MCC, were utilized to assess the performance. Table 7 represents the 

confusion matrix, which displays how well a classification system performs. The undermentioned 

metrics in Table 8 are widely used to assess models. The following are the performance metrics. True 

Positive (TP) refers to an attack sample that has been correctly identified as an attack. A specimen 

that is correctly identified as normal is represented by the True Negative (TN) code. False Positive 
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(FP) refers to the misidentification of an attack in a normal specimen. An attack sample that has been 

incorrectly classified as normal is known as a False Negative (FN). 

Table 7. Confusion matrix. 

 Actual 

Benign Malware 

Predicted Benign TP FP 

Malware FN TN 

Table 8. Metrics generated from the confusion matrix for performance evaluation. 

Metrics Formula 

MCC “(TP*TN-FP*FN)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))” 

Accuracy “(TP+TN)/(FP+TP+FN+TN)” 

Precision “TP/(TP+FP)” 

Sensitivity “TP/(TP+FN)” 

F1-Score “2TP/(2TP+FP+FN)” 

FPR “FP/(FP+TN)” 

Specificity “TN/(FP+TN)” 

4.5. Model performance 

Using the features chosen by CPIO and BPSO for the NSL-KDD and UNSW-NB15 datasets, 

Figures 8 and 9 and Tables 9−12 show the outcomes of the proposed methodology by distinguishing 

between classes that are either attack or normal for the supplied dataset. By training the model with 

only the chosen features, each FS strategy or method was tested using the base classifiers and SEM. 

Then, the model was examined using the testing set. An average of 20 runs was used to calculate the 

results. However, our analysis considered a more trustworthy metric (such as MCC) that was discovered 

to produce more accurate estimates for the suggested model. Therefore, our study argues for the use of 

the MCC metric as an evaluation criterion in future work, particularly in anomaly-based IDS.  

In the case of NSL-KDD, the results of stacking-based classification appear promising for 

identifying intrusions in the Cloud network data coming from smart cities when using the feature chosen 

by CPIO and BPSO. The best classification result for the features selected by CPIO, sensitivity (0.9730), 

specificity and precision (0.9852), accuracy (0.9791), F1-Score (0.9790), MCC (0.9582), and FPR 

(0.0148), is for SEM, as depicted in Table 9 and Figure 8. The best classification result for the features 

selected by BPSO, sensitivity (0.9810), specificity and precision (0.9923), accuracy (0.9862), F1-Score 

(0.9861), MCC (0.9724), and FPR (0.0077), is for SEM, as depicted in Table 10 and Figure 8. 

Table 9. Finding for NSL-KDD dataset using CPIO selected features. 

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC 

J48 0.9289 0.9406 0.9405 0.0594 0.9347 0.9346 0.8695 

RF 0.9377 0.9495 0.9494 0.0505 0.9436 0.9435 0.8872 

XGBoost 0.9553 0.9674 0.9673 0.0326 0.9613 0.9613 0.9227 

Stacking 0.9730 0.9852 0.9852 0.0148 0.9791 0.9790 0.9582 
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Table 10. Finding for NSL-KDD dataset using BPSO selected features. 

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC 

J48 0.9359 0.9477 0.9476 0.0523 0.9418 0.9417 0.8837 

RF 0.9474 0.9593 0.9592 0.0407 0.9533 0.9533 0.9067 

XGBoost 0.9580 0.9700 0.9700 0.0300 0.9640 0.9639 0.9280 

Stacking 0.9801 0.9923 0.9923 0.0077 0.9862 0.9861 0.9724 

 

Figure 8. Results for both FS methods on the NSL-KDD dataset. 

For NSL-KDD, the results of SEM-based classification appear promising for identifying 

intrusion. A difference of about 0.8188% in sensitivity when the feature selected by BPSO is 

considered. BPSO selected features generate better classification results, since there is a difference 

of 0.7225% in accuracy. When CPIO selected features are considered for classification, a higher 

FPR is obtained; when compared to the consideration of features selected by BPSO, the percentage 

difference is 63.11% in the FPR. 

In the case of UNSW-NB15, the results of stacking-based classification appear promising for 

identifying intrusions in the cloud network data coming from smart cities when using the feature 

chosen by CPIO and BPSO. The best classification result for the features selected by CPIO, 

sensitivity (0.9562), specificity (0.9553), precision (0.9552), accuracy (0.9558), F1-Score (0.9557), 

MCC (0.9115), and FPR (0.0337), is for SEM, as depicted in Table 11 and Figure 9. The best 

classification result for the features selected by BPSO, sensitivity (0.9587), specificity (0.9577), 

precision (0.9577), accuracy (0.9582), F1-Score (0.9582), MCC (0.9164), and FPR (0.0323), is for 

SEM, as depicted in Table 12 and Figure 9. 

For UNSW-NB15, a difference of about 0.2611% in sensitivity when the feature selected by 

BPSO is considered. BPSO selected features generates better classification results as there is a 

difference of 0.2507% in accuracy. When CPIO selected features are considered for classification,  

a higher FPR is received; when compared to the consideration of features selected by BPSO, the 

difference is 4.24% in the FPR. 
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Table 11. Finding for UNSW-NB15 dataset using CPIO selected features. 

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC 

J48 0.9404 0.9395 0.9394 0.0605 0.9400 0.9399 0.8799 

RF 0.9441 0.9431 0.9431 0.0569 0.9436 0.9436 0.8872 

XGBoost 0.9489 0.9480 0.9479 0.0520 0.9485 0.9484 0.8969 

Stacking 0.9562 0.9553 0.9552 0.0337 0.9558 0.9557 0.9115 

Table 12. Finding for UNSW-NB15 dataset using BPSO selected features. 

Classifier Sensitivity Specificity Precision FPR Accuracy F1-Score MCC 

J48 0.9429 0.9419 0.9419 0.0581 0.9424 0.9424 0.8848 

RF 0.9477 0.9468 0.9467 0.0532 0.9473 0.9472 0.8945 

XGBoost 0.9526 0.9516 0.9516 0.0484 0.9521 0.9521 0.9042 

Stacking 0.9587 0.9577 0.9577 0.0323 0.9582 0.9582 0.9164 

 

Figure 9. Results for both FS methods on the UNSW-NB15 dataset. 

The stacking approach requires more processing time, since it combines several base classifiers, 

each of which requires development time. The amount of time it takes classifiers to forecast 

intrusions for the test dataset is shown in Table 13. In terms of model building and testing time, we 

found that the best classifiers in our setting are J48 and RF, and J48 obtains the lowest computation 

time even if the complexity of the stacking model has risen; as a result, the time requirements 

increased, which beats conventional IDS, as noted in the previous result, and is a significant 

consideration. If computationally expensive, high-performing classification strategies have 

significant implications for IoT-based smart cities applications. The cost of missing an intrusion in 

such a system can be quite expensive. As an outcome, the cost of a little extra time, which is reported 

in seconds for the datasets examined and therefore potentially well scalable in comparison to earlier 

approaches, is justified. The capacity to quickly identify odd activity in the network is crucial for the 

sustainability of services in commercial sectors such as smart cities and financial institutions. Attacks 
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that go unnoticed in these places can be expensive, though manually identifying the attacks can be 

exceedingly challenging. The focus is on a precise intrusion detection in such systems, which 

frequently use considerable computational resources for automatically identifying intrusions. As a 

result, the suggested model has significant practical usefulness. Table 13 shows the model 

construction time for the given dataset. J48 takes the least amount of time among the classifiers, 

whereas stacking takes the most time to create models for both datasets.  

Table 13. for the base and stacking ensembles, model construction, and testing time. 

Methodologies NSL-KDD  UNSW-NB15  

Model Building 

Time (s) 

Testing Time (μs) Model Building 

Time (s) 

Testing Time 

(μs) 

J48 0.458 0.187 0.97 0.436 

RF 0.593 0.287 1.30 0.487 

XGBoost 1.21 0.79 2.01 1.14 

Stacking 6.34 3.09 10.54 5.74 

4.6. Performance comparison with current methodologies 

Using the NSL-KDD and UNSW-NB15 datasets, Table 14 compares the performance of the 

stacking model with other methodologies. The proposed model outperforms earlier similar ensemble 

classifiers described in [97], which, according to the table, use 10-fold cross validation and consider 

intrusion detection as a classification issue. In terms of accuracy, our spark-based SEM-oriented 

ensemble model exceeds several current approaches. A “-” in the table denotes a value that is either 

inapplicable or unavailable. 

For comparing the outcomes, we primarily employ the accuracy and FPR variables. This is a 

tried-and-true method that has been applied to a variety of practical machine-learning projects. We 

have compared the achieved rates with those presented in undermentioned work because accuracy 

rates are a crucial component of any IDS performance evaluation. Since our method uses a nature-

inspired FS approach and classifiers that are HDFS and Spark-based, which is not the case with the 

other models, it outperforms the other models’ accuracy rates. FPR is a term used to explain the 

inability to recognize normal behavior. In other words, there is a warning. The table below 

compares the FPR of our methodology to the works described in the citations. Compared to the 

current state-of-the-art, our method yields the lowest FPR: 0.0077% for NSL-KDD and 0.0323% 

for UNSW-NB15. 

Our approach is distributed in nature with the aid of HDFS and DistributedWekaSpark, thereby 

ensuring high availability and fault tolerance of our IDS and making it appropriate to handle big 

Cloud network data of smart cities, which is another crucial point that sets it apart from all the works 

cited. Our presented methodology outperforms [101] in terms of accuracy and the number of 

selected features, while using the same number of features. Additionally, the comparative results 

demonstrate that our work surpasses many other works in terms of accuracy and FPR when using the 

NSL-KDD and UNSW-NB15 datasets, as shown in Table 14. In comparison to [95], we can see that 

our research is able to identify fewer features for the NSL-KDD and UNSW-NB15 datasets, with the 

latter displays a superior accuracy. Summarizing the results, we can see that our approach 

outperformed all other methods in terms of accuracy. The suggested model makes it abundantly 
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evident that the presented approach outperforms earlier reported approaches in terms of results. 

Table 14. Performance comparison with current methodologies. 

NSL-KDD 

Author & 

Reference 

Year Methodologies FS Approach No. of 

Features 

Selected 

Accuracy FPR 

Alazzam et al. 

[101] 

2021 DT SPIO 18 0.869 0.064 

CPIO 5 0.883 0.088 

Khraisat et al. [87] 2020 C5-DT/OC-SVM - - 0.8324 - 

Tama et al. [95] 2019 REPT PSO 37 0.8579 11.7 

Louk and Tama 

[88] 

2023 Bagging-GBM - - 0.9157 1.3 

Krishnaveli et al. 

[89] 

2022 Weighted majority 

voting 

- - 0.8523 12.8 

Zhang et al. [90] 2021 MFFSEM - - 0.8433 24.82 

Tama et al. [91] 2020 Stacking - - 0.9217 2.52 

Prabavathy et al. 

[76] 

2018 OS-ELM - - 0.9736 0.37 

Shrivas et al. [81] 2014 ANN-Bayesian GR 29 0.9778 - 

Zhou et al. [47] 2020 Voting Ensemble CFS-BA 10 0.8737 3.19 

Salo et al. [97] 2019 Ensemble IG-PCA 12 0.9824 0.017 

Alghanam et al. 

[92] 

2021 LS-PIO iForest 10 0.947 - 

Proposed Work - SEM (HDFS and 

DistributedWekaSpark) 

CPIO 5 0.9791 0.0148 

BPSO 9 0.9862 0.0077 

UNSW-NB15 

Alazzam et al. 

[101] 

2021 DT SPIO 14 0.913 0.052 

CPIO 5 0.917 0.034 

Rashid et al. [45] 2022 Ensemble SelectKbest 20 0.94 0.06 

Smitha et al. [96] 2020 Stacking Ensemble - 42 0.9400 5.2 

Tama et al. [95] 2019 REPT PSO 19 0.9127 8.90 

Alghanam et al. 

[92] 

2021 LS-PIO iForest 10 0.9445 - 

Zehong et al. [93] 2022 EFS-DNN Light-GBM 15 0.8834 12.46 

Nazir et al. [95] 2021 TS-RF TS 16 0.8312 3.7 

Proposed Work - SEM (HDFS and 

DistributedWekaSpark) 

CPIO 5 0.9558 0.0337 

BPSO 16 0.9582 0.0323 

5. Conclusions 

In this study, we developed a distributed and potent IDS that enables the processing of large 

amounts of Cloud data from Smart Cities and improves accuracy while utilizing the fewest features 

possible. It uses Spark and ML approaches to effectively manage massive amounts of data in vast 

networks of smart cities. We used the Python-based FS methods CPIO and BPSO to create this 
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system. The IDS used in this study for Cloud network data from smart cities used Spark and WEKA. 

Due to the connection between WEKA and Spark (DistributedWekaSpark package), it is distributed 

and scalable. Using the capabilities of distributed systems while maintaining the familiar WEKA 

interface, DistributedWekaSpark is a scalable Big Data Mining toolkit. Built on top of Spark, 

DistributedWekaSpark offers quick in-memory iterative processing using both parallel and 

distributed execution, making it the perfect platform for data mining techniques. Using WEKA’s 

Knowledge flow, this combination enables the analysis of Cloud network data for smart cities and 

the storage of HDFS data. In order to build parallelized learning models for cyber-data analytics, we 

used machine-learning approaches for feature extraction and selection. For NSL-KKD and UNSW-

NB15, the CPIO FS technique reduced the number of selected features from 41 to five and from 43 

to five features, respectively. For NSL-KKD and UNSW-NB15, the BPSO FS technique reduced the 

number of selected features from 41 to nine and from 43 to 16 features, respectively. For classifying 

the cloud network traffic of smart cities, the tree-based SEM of J48, RF, and XGBoost was applied. 

The best results were obtained for sensitivity (0.9810), specificity and precision (0.9923), accuracy 

(0.9862), F1-Score (0.9861), MCC (0.9724), and FPR (0.0077) in the NSL-KDD dataset, while in 

case of UNSW-NB15 dataset, the best results were obtained for sensitivity (0.9587), specificity 

(0.9577), precision (0.9577), accuracy (0.9582), F1-Score (0.9582), MCC (0.9164), and FPR 

(0.0323). The results demonstrate that CPIO and BPSO contribute to a greater accuracy and better 

outcomes fitting. Since Spark functionality has been implemented, our methodology has been 

discovered to be scalable and dispersed, making it suitable for the IoT context of smart cities. 

Compared to contemporary systems, our suggested system experimentally exhibits a higher accuracy 

and lower FPR.  

As a result, research in the future must take a larger range of intrusion data sets in diverse 

settings, environments and with wider range of threats into account. More evaluation metrics will be 

used in upcoming studies. Using upgraded and latest nature-inspired algorithms for FS and several 

deep neural network algorithms, including Auto-Encoder, Gated Recurrent Units and LSTM, will be 

used to implement the strategy. We intend to use explainable AI for IDS ML/DL-based algorithms 

for the detection and classification of cyberattacks in networks of smart cities. 
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Appendix 

This section provides instructions for setting up Weka-Spark to work with a Hadoop cluster in 

order to continue managing data for the intrusion detection issue in cloud networks for smart cities. 

Weka’s ability to be used as a data mining tool is one of its benefits. Since it was created in Java, it 

can function on any OS as long as JVM is installed (Java Virtual Machine). Applications written for 

Spark can operate on any OS, albeit Windows requires some specialized libraries for execution 

whereas Linux does not. To use the Spark utilities in Weka, in addition to these prerequisites, a 

number of basic setups must be completed. First, the environment variables for Java and Hadoop 

must be established. Second, the Hadoop environment variable’s path must contain both the 

hadoop.dll and the winutils library, and at last DistributedWekaBase and DistributedWekaSpark 

dependencies need to be installed on the Weka. With all of the prior Weka Knowledge Flow settings, 

a result similar to that in Figure A.1 is shown. 

The tool WekaClassifierEvaluationSparkJob is used for J48, RF, and XGBoost training and 

evaluation. It allows assessing a classifier using cross-validation, a distinct dataset, or training data. 

In our case, for training, the training dataset is used while for testing the data, a distinct test dataset is 

employed. The data for training is passed through the ArffHeaderSparkJob, so some of the most 

crucial variables must be indicated, including the path (Copy the datasets’ CSV files to HDFS and 

point the inputFile setting of the ArffHeaderSparkJob to the HDFS location) to the data to execute 

the evaluation and the chosen classifier, stacking. Three base classifiers are added to the stacking 

section’s classifier field, and XGBoost is selected as the meta-classifier. The fields that contain the 

route in HDFS to a different test suite that includes the path detail to the test dataset are some of the 

most crucial fields. 
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Figure A.1. Spark elements in the Weka’s knowledge flow palette. 

Weka’s KnowledgeFlow is an alternative to Weka Explorer with a graphical environment. It is 

well known for its simplicity of use because it is a fairly intuitive work system with a graphical 

interface that allows you to drag the objects from a palette to the workspace and create connections 

between them in various types to obtain the results and information. 

All of the filters, classifiers, regressors, and other tools that are present in the version of Weka 

that is being used can be used in KnowledgeFlow [117]. Additionally, some additional tools can be 

used, such as in the case presented in this work, which is the distributed processing capability of 

Hadoop and Spark. While Explorer only handles batch data, KnowledgeFlow can process data 

incrementally or in large batches [117]. Once the libraries are installed and configured, one can find 

the many Spark jobs that can be carried out in the Weka component palette. The TextViewer is the 

last visualization tool that is suggested; it enables the data to be obtained in text form for subsequent 

analysis and storage. Once the runs are completed, getting the results is quite easy because they are 

stored in the output configuration folder, ‘OutputDir’, as well as in the TextViewer, which allows you 

to view the results of the tests. 

In addition to Weka’s KnowledgeFlow, a Web service offered by Spark that is active on the 

computer where the application driver is running allows for more detailed monitoring of the 

applications and their progress. With access through a Web browser to the website where the cluster 

jobs are monitored through its URL and its web access port, by default this is 8080, you can check if 

the program is discovered running, as well as the resources it has, in addition to other extensive 

capabilities. 
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