Research article

Extension-closed subcategories in extriangulated categories

  • Received: 13 October 2021 Revised: 22 January 2022 Accepted: 21 February 2022 Published: 25 February 2022
  • MSC : 18G25, 18G80

  • In this paper, we mainly focus on extension-closed subcategories of extriangulated categories. Let $ {\mathcal{X}} $ be an extension-closed subcategory. We show that if $ C $ is $ {\mathcal{X}} $-projective and there is a minimal right almost split deflation in $ {\mathcal{X}} $ ending by $ C $, then there is an $ {\mathfrak{s}} $-triangle ending by $ C $ which is very similar to an Auslander-Reiten triangle in $ {\mathcal{X}} $. We also show that if the extriangulated category admits a negative first extension $ {\mathbb{E}}^{-1} $, and $ {\mathcal{X}} $ is self-orthogonal with respect to $ {\mathbb{E}}^{-1} $, then $ {\mathcal{X}} $ has an exact structure.

    Citation: Lingling Tan, Tiwei Zhao. Extension-closed subcategories in extriangulated categories[J]. AIMS Mathematics, 2022, 7(5): 8250-8262. doi: 10.3934/math.2022460

    Related Papers:

  • In this paper, we mainly focus on extension-closed subcategories of extriangulated categories. Let $ {\mathcal{X}} $ be an extension-closed subcategory. We show that if $ C $ is $ {\mathcal{X}} $-projective and there is a minimal right almost split deflation in $ {\mathcal{X}} $ ending by $ C $, then there is an $ {\mathfrak{s}} $-triangle ending by $ C $ which is very similar to an Auslander-Reiten triangle in $ {\mathcal{X}} $. We also show that if the extriangulated category admits a negative first extension $ {\mathbb{E}}^{-1} $, and $ {\mathcal{X}} $ is self-orthogonal with respect to $ {\mathbb{E}}^{-1} $, then $ {\mathcal{X}} $ has an exact structure.



    加载中


    [1] T. Adachi, H. Enomoto, M. Tsukamoto, Intervals of $s$-torsion pairs in extriangulated categories with negative first extensions. Available from: https://arXiv.org/pdf/2103.09549.pdf.
    [2] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-4418-9
    [3] I. Assem, D. Simson, A. Skowroński, Elements of the representation theory of associative algebras, LMSST Vol. 65, Cambridge University Press, Cambridge, 2010. https://doi.org/10.1017/CBO9780511614309
    [4] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra, 69 (1981), 426–454. https://doi.org/10.1016/0021-8693(81)90214-3 doi: 10.1016/0021-8693(81)90214-3
    [5] T. Bühler, Exact categories, Expo. Math., 28 (2010), 1–69. https://doi.org/10.1016/j.exmath.2009.04.004 doi: 10.1016/j.exmath.2009.04.004
    [6] F. Fedele, Almost split morphisms in subcategories of triangulated categories, J. Algebra Appl., 2022. https://doi.org/10.1142/S0219498822502395
    [7] X. Fu, J. Hu, D. Zhang, H. Zhu, Balanced pairs on triangulated categories, arXiv: 2109.00932. Available from: https://arXiv.org/pdf/2109.00932.pdf.
    [8] O. Iyama, H. Nakaoka, Y. Palu, Auslander-Reiten theory in extriangulated categories, arXiv: 1805.03776. Available from: https://arXiv.org/pdf/1805.03776.pdf.
    [9] G. Jasso, S. Kvamme, An introduction to higher Auslander-Reiten theory, Bull. London Math. Soc., 51 (2019), 1–24. https://doi.org/10.1112/blms.12204 doi: 10.1112/blms.12204
    [10] P. Jørgensen, Auslander-Reiten triangles in subcategories, J. K-Theory, 3 (2009), 583–601. https://doi.org/10.1017/is008007021jkt056 doi: 10.1017/is008007021jkt056
    [11] P. Jørgensen, Abelian subcategories of triangulated categories induced by simple minded systems, arXiv: 2010.11799. Available from: https://arXiv.org/pdf/2010.11799.pdf.
    [12] S. Liu, P. Ng, C. Paquette, Almost split sequences and approximations, Algebr. Represent. Th., 16 (2013), 1809–1827. https://doi.org/10.1007/s10468-012-9383-x doi: 10.1007/s10468-012-9383-x
    [13] Y. Liu, H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra, 528 (2019), 96–149. https://doi.org/10.1016/j.jalgebra.2019.03.005 doi: 10.1016/j.jalgebra.2019.03.005
    [14] H. Nakaoka, Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég., 60 (2019), 117–193.
    [15] D. Quillen, Higher algebraic K-theory: I, Bass H. (eds) Higher K-Theories, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1973. https://doi.org/10.1007/BFb0067053
    [16] T. Zhao, Z. Huang, Phantom ideals and cotorsion pairs in extriangulated categories, Taiwan. J. Math., 23 (2019), 29–61. https://doi.org/10.11650/tjm/180504 doi: 10.11650/tjm/180504
    [17] P. Zhou, N-extension closed subcategories of $(n+2)$-angulated categories, arXiv: 2109.02068. Available from: https://arXiv.org/pdf/2109.02068.pdf.
    [18] P. Zhou, B. Zhu, Triangulated quotient categories revisited, J. Algebra, 502 (2018), 196–232. https://doi.org/10.1016/j.jalgebra.2018.01.031 doi: 10.1016/j.jalgebra.2018.01.031
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1821) PDF downloads(83) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog