Research article

Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs

  • Received: 06 May 2024 Revised: 16 June 2024 Accepted: 25 June 2024 Published: 01 July 2024
  • We investigate the existence of ground states for a class of Schrödinger equations with both a standard power nonlinearity and delta nonlinearity concentrated at finite vertices of the periodic metric graphs $ G $. Using variational methods, if $ \alpha > 0 $ and the standard nonlinearity power is $ L^{2}- $subcritical, we establish the existence of ground states for every mass and every periodic graph. If $ \alpha < 0 $ and the standard nonlinearity power is $ L^{2}- $critical, we show that two types of topological structures on $ G $ will prevent the existence of ground states. Furthermore, for graphs that do not satisfy these two types of topological structures, ground states exist when the given mass belongs to an appropriate range and the parameter $ \left | \alpha \right| $ is small enough.

    Citation: Xiaoguang Li. Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs[J]. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189

    Related Papers:

  • We investigate the existence of ground states for a class of Schrödinger equations with both a standard power nonlinearity and delta nonlinearity concentrated at finite vertices of the periodic metric graphs $ G $. Using variational methods, if $ \alpha > 0 $ and the standard nonlinearity power is $ L^{2}- $subcritical, we establish the existence of ground states for every mass and every periodic graph. If $ \alpha < 0 $ and the standard nonlinearity power is $ L^{2}- $critical, we show that two types of topological structures on $ G $ will prevent the existence of ground states. Furthermore, for graphs that do not satisfy these two types of topological structures, ground states exist when the given mass belongs to an appropriate range and the parameter $ \left | \alpha \right| $ is small enough.


    加载中


    [1] K. Nakamura, D. Matrasulov, U. Salomov, G. Milibaeva, J. Yusupov, T. Ohta, et al., Quantum transport in ladder-type networks: the role of nonlinearity, topology and spin, J. Phys. A: Math. Theor., 43 (2010), 145101. https://doi.org/10.1088/1751-8113/43/14/145101 doi: 10.1088/1751-8113/43/14/145101
    [2] S. Dovetta, Mass-constrained ground states of the stationary NLSE on periodic metric graphs, Nonlinear Differ. Equations Appl., 26 (2019), 30. https://doi.org/10.1007/s00030-019-0576-4 doi: 10.1007/s00030-019-0576-4
    [3] A. Pankov, Nonlinear schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst., 38 (2018), 697–714. https://doi.org/10.3934/dcds.2018030 doi: 10.3934/dcds.2018030
    [4] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Am. Math. Soc., 186 (2013). https://doi.org/10.1090/surv/186
    [5] R. Adami, E. Serra, P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equations, 54 (2015), 743–761. https://doi.org/10.1007/s00526-014-0804-z
    [6] R. Adami, F. Boni, A. Ruighi, Non-Kirchhoff vertices and nonlinear schrödinger ground states on graphs, Mathematics, 8 (2020), 617. https://doi.org/10.3390/math8040617 doi: 10.3390/math8040617
    [7] A. Kairzhan, D. Noja, D. E. Pelinovsky, Standing waves on quantum graphs, J. Phys. A: Math. Theor., 55 (2022), 243001. https://doi.org/10.1088/1751-8121/ac6c60 doi: 10.1088/1751-8121/ac6c60
    [8] C. Cacciapuoti, S. Dovetta, E. Serra, Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86 (2018), 305–327. https://doi.org/10.1007/s00032-018-0288-y doi: 10.1007/s00032-018-0288-y
    [9] X. Chang, L. Jeanjean, N. Soave, Normalized solutions of $L^{2}$-supercritical NLS equations on compact metric graphs, Ann. Inst. Henri Poincare C, 41 (2024), 933–959. https://doi.org/10.4171/aihpc/88 doi: 10.4171/aihpc/88
    [10] S. Dovetta, Existence of infinitely many stationary solutions of the $L^{2}$-subcritical and critical NLSE on compact metric graphs, J. Differ. Equations, 264 (2018), 4806–4821. https://doi.org/10.1016/j.jde.2017.12.025 doi: 10.1016/j.jde.2017.12.025
    [11] S. Dovetta, M. Ghimenti, A. M. Micheletti, A. Pistoia, Peaked and low action solutions of NLS equations on graphs with terminal edges, SIAM J. Math. Anal., 52 (2020), 2874–2894. https://doi.org/10.1137/19M127447X doi: 10.1137/19M127447X
    [12] K. Kurata, M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297. https://doi.org/10.1016/j.jmaa.2020.124297 doi: 10.1016/j.jmaa.2020.124297
    [13] R. Adami, E. Serra, P. Tilli, Negative energy ground states for the $L^{2}$-critical NLSE on metric graphs, Commun. Math. Phys., 352 (2017), 387–406. https://doi.org/10.1007/s00220-016-2797-2 doi: 10.1007/s00220-016-2797-2
    [14] D. Noja, D. E. Pelinovsky, Standing waves of the quintic NLS equation on the tadpole graph, Calc. Var. Partial Differ. Equations, 59 (2020), 173. https://doi.org/10.1007/s00526-020-01832-3 doi: 10.1007/s00526-020-01832-3
    [15] D. Pierotti, N. Soave, Ground states for the NLS equation with combined nonlinearities on noncompact metric graphs, SIAM J. Math. Anal., 54 (2022), 768–790. https://doi.org/10.1137/20M1377837 doi: 10.1137/20M1377837
    [16] E. Serra, L. Tentarelli, Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differ. Equations, 260 (2016), 5627–5644. https://doi.org/10.1016/j.jde.2015.12.030 doi: 10.1016/j.jde.2015.12.030
    [17] R. Adami, S. Dovetta, A. Ruighi, Quantum graphs and dimensional crossover: the honeycomb, Commun. Appl. Ind. Math., 10 (2019), 109–122. https://doi.org/10.2478/caim-2019-0016 doi: 10.2478/caim-2019-0016
    [18] R. Adami, S. Dovetta, E. Serra, P. Tilli, Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs, Anal. PDE, 12 (2019), 1597–1612. https://doi.org/10.2140/apde.2019.12.1597 doi: 10.2140/apde.2019.12.1597
    [19] S. Dovetta, E. Serra, P. Tilli, NLS ground states on metric trees: existence results and open questions, J. London Math. Soc., 102 (2020), 1223–1240. https://doi.org/10.1112/jlms.12361 doi: 10.1112/jlms.12361
    [20] R. Adami, F. Boni, S. Dovetta, Competing nonlinearities in NLS equations as source of threshold phenomena on star graphs, J. Funct. Anal., 283 (2022), 109483. https://doi.org/10.1016/j.jfa.2022.109483 doi: 10.1016/j.jfa.2022.109483
    [21] R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. Henri Poincare, 31 (2014), 1289–1310. https://doi.org/10.1016/j.anihpc.2013.09.003 doi: 10.1016/j.anihpc.2013.09.003
    [22] F. Boni, R. Carlone, NLS ground states on the half-line with point interactions, Nonlinear Differ. Equations Appl., 30 (2023), 51. https://doi.org/10.1007/s00030-023-00856-w doi: 10.1007/s00030-023-00856-w
    [23] F. Boni, S. Dovetta, Doubly nonlinear schrödinger ground states on metric graphs, Nonlinearity, 35 (2022), 3283–3323. https://doi.org/10.1088/1361-6544/ac7505 doi: 10.1088/1361-6544/ac7505
    [24] F. Boni, S. Dovetta, Prescribed mass ground states for a doubly nonlinear Schrödinger equation in dimension one, J. Math. Anal. Appl., 496 (2021), 124797. https://doi.org/10.1016/j.jmaa.2020.124797 doi: 10.1016/j.jmaa.2020.124797
    [25] F. Boni, S. Dovetta, E. Serra, Normalized ground states for Schrödinger equations on metric graphs with nonlinear point defects, preprint, arXiv: 2312.07092v1.
    [26] L. Tentarelli, NLS ground states on metric graphs with localized nonlinearities, J. Math. Anal. Appl., 433 (2016), 291–304. https://doi.org/10.1016/j.jmaa.2015.07.065 doi: 10.1016/j.jmaa.2015.07.065
    [27] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(529) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog