Citation: Xiaoguang Li. Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs[J]. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189
[1] | K. Nakamura, D. Matrasulov, U. Salomov, G. Milibaeva, J. Yusupov, T. Ohta, et al., Quantum transport in ladder-type networks: the role of nonlinearity, topology and spin, J. Phys. A: Math. Theor., 43 (2010), 145101. https://doi.org/10.1088/1751-8113/43/14/145101 doi: 10.1088/1751-8113/43/14/145101 |
[2] | S. Dovetta, Mass-constrained ground states of the stationary NLSE on periodic metric graphs, Nonlinear Differ. Equations Appl., 26 (2019), 30. https://doi.org/10.1007/s00030-019-0576-4 doi: 10.1007/s00030-019-0576-4 |
[3] | A. Pankov, Nonlinear schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst., 38 (2018), 697–714. https://doi.org/10.3934/dcds.2018030 doi: 10.3934/dcds.2018030 |
[4] | G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Am. Math. Soc., 186 (2013). https://doi.org/10.1090/surv/186 |
[5] | R. Adami, E. Serra, P. Tilli, NLS ground states on graphs, Calc. Var. Partial Differ. Equations, 54 (2015), 743–761. https://doi.org/10.1007/s00526-014-0804-z |
[6] | R. Adami, F. Boni, A. Ruighi, Non-Kirchhoff vertices and nonlinear schrödinger ground states on graphs, Mathematics, 8 (2020), 617. https://doi.org/10.3390/math8040617 doi: 10.3390/math8040617 |
[7] | A. Kairzhan, D. Noja, D. E. Pelinovsky, Standing waves on quantum graphs, J. Phys. A: Math. Theor., 55 (2022), 243001. https://doi.org/10.1088/1751-8121/ac6c60 doi: 10.1088/1751-8121/ac6c60 |
[8] | C. Cacciapuoti, S. Dovetta, E. Serra, Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86 (2018), 305–327. https://doi.org/10.1007/s00032-018-0288-y doi: 10.1007/s00032-018-0288-y |
[9] | X. Chang, L. Jeanjean, N. Soave, Normalized solutions of $L^{2}$-supercritical NLS equations on compact metric graphs, Ann. Inst. Henri Poincare C, 41 (2024), 933–959. https://doi.org/10.4171/aihpc/88 doi: 10.4171/aihpc/88 |
[10] | S. Dovetta, Existence of infinitely many stationary solutions of the $L^{2}$-subcritical and critical NLSE on compact metric graphs, J. Differ. Equations, 264 (2018), 4806–4821. https://doi.org/10.1016/j.jde.2017.12.025 doi: 10.1016/j.jde.2017.12.025 |
[11] | S. Dovetta, M. Ghimenti, A. M. Micheletti, A. Pistoia, Peaked and low action solutions of NLS equations on graphs with terminal edges, SIAM J. Math. Anal., 52 (2020), 2874–2894. https://doi.org/10.1137/19M127447X doi: 10.1137/19M127447X |
[12] | K. Kurata, M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297. https://doi.org/10.1016/j.jmaa.2020.124297 doi: 10.1016/j.jmaa.2020.124297 |
[13] | R. Adami, E. Serra, P. Tilli, Negative energy ground states for the $L^{2}$-critical NLSE on metric graphs, Commun. Math. Phys., 352 (2017), 387–406. https://doi.org/10.1007/s00220-016-2797-2 doi: 10.1007/s00220-016-2797-2 |
[14] | D. Noja, D. E. Pelinovsky, Standing waves of the quintic NLS equation on the tadpole graph, Calc. Var. Partial Differ. Equations, 59 (2020), 173. https://doi.org/10.1007/s00526-020-01832-3 doi: 10.1007/s00526-020-01832-3 |
[15] | D. Pierotti, N. Soave, Ground states for the NLS equation with combined nonlinearities on noncompact metric graphs, SIAM J. Math. Anal., 54 (2022), 768–790. https://doi.org/10.1137/20M1377837 doi: 10.1137/20M1377837 |
[16] | E. Serra, L. Tentarelli, Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differ. Equations, 260 (2016), 5627–5644. https://doi.org/10.1016/j.jde.2015.12.030 doi: 10.1016/j.jde.2015.12.030 |
[17] | R. Adami, S. Dovetta, A. Ruighi, Quantum graphs and dimensional crossover: the honeycomb, Commun. Appl. Ind. Math., 10 (2019), 109–122. https://doi.org/10.2478/caim-2019-0016 doi: 10.2478/caim-2019-0016 |
[18] | R. Adami, S. Dovetta, E. Serra, P. Tilli, Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs, Anal. PDE, 12 (2019), 1597–1612. https://doi.org/10.2140/apde.2019.12.1597 doi: 10.2140/apde.2019.12.1597 |
[19] | S. Dovetta, E. Serra, P. Tilli, NLS ground states on metric trees: existence results and open questions, J. London Math. Soc., 102 (2020), 1223–1240. https://doi.org/10.1112/jlms.12361 doi: 10.1112/jlms.12361 |
[20] | R. Adami, F. Boni, S. Dovetta, Competing nonlinearities in NLS equations as source of threshold phenomena on star graphs, J. Funct. Anal., 283 (2022), 109483. https://doi.org/10.1016/j.jfa.2022.109483 doi: 10.1016/j.jfa.2022.109483 |
[21] | R. Adami, C. Cacciapuoti, D. Finco, D. Noja, Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. Henri Poincare, 31 (2014), 1289–1310. https://doi.org/10.1016/j.anihpc.2013.09.003 doi: 10.1016/j.anihpc.2013.09.003 |
[22] | F. Boni, R. Carlone, NLS ground states on the half-line with point interactions, Nonlinear Differ. Equations Appl., 30 (2023), 51. https://doi.org/10.1007/s00030-023-00856-w doi: 10.1007/s00030-023-00856-w |
[23] | F. Boni, S. Dovetta, Doubly nonlinear schrödinger ground states on metric graphs, Nonlinearity, 35 (2022), 3283–3323. https://doi.org/10.1088/1361-6544/ac7505 doi: 10.1088/1361-6544/ac7505 |
[24] | F. Boni, S. Dovetta, Prescribed mass ground states for a doubly nonlinear Schrödinger equation in dimension one, J. Math. Anal. Appl., 496 (2021), 124797. https://doi.org/10.1016/j.jmaa.2020.124797 doi: 10.1016/j.jmaa.2020.124797 |
[25] | F. Boni, S. Dovetta, E. Serra, Normalized ground states for Schrödinger equations on metric graphs with nonlinear point defects, preprint, arXiv: 2312.07092v1. |
[26] | L. Tentarelli, NLS ground states on metric graphs with localized nonlinearities, J. Math. Anal. Appl., 433 (2016), 291–304. https://doi.org/10.1016/j.jmaa.2015.07.065 doi: 10.1016/j.jmaa.2015.07.065 |
[27] | H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486–490. https://doi.org/10.1090/S0002-9939-1983-0699419-3 doi: 10.1090/S0002-9939-1983-0699419-3 |