Let $ a,b,c,d,e,f\in\mathbb N $ with $ a\geq c\geq e>0 $, $ b\leq a $ and $ b\equiv a\ ({\rm{mod}}\ 2) $, $ d\leq c $ and $ d\equiv c\ ({\rm{mod}}\ 2) $, $ f\leq e $ and $ f\equiv e\ ({\rm{mod}}\ 2) $. If any nonnegative integer can be written as $ x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 $ with $ x,y,z\in\mathbb Z $, then the ordered tuple $ (a,b,c,d,e,f) $ is said to be universal over $ \Bbb Z $. Recently, Z.-W. Sun found all candidates for such universal tuples over $ \Bbb Z $. In this paper, we use the theory of ternary quadratic forms to show that 44 concrete tuples $ (a,b,c,d,e,f) $ in Sun's list of candidates are indeed universal over $ \mathbb Z $. For example, we prove the universality of $ (16,4,2,0,1,1) $ over $ \Bbb Z $ which is related to the form $ x^2+y^2+32z^2 $.
Citation: Hai-Liang Wu, Zhi-Wei Sun. Some universal quadratic sums over the integers[J]. Electronic Research Archive, 2019, 27: 69-87. doi: 10.3934/era.2019010
Let $ a,b,c,d,e,f\in\mathbb N $ with $ a\geq c\geq e>0 $, $ b\leq a $ and $ b\equiv a\ ({\rm{mod}}\ 2) $, $ d\leq c $ and $ d\equiv c\ ({\rm{mod}}\ 2) $, $ f\leq e $ and $ f\equiv e\ ({\rm{mod}}\ 2) $. If any nonnegative integer can be written as $ x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 $ with $ x,y,z\in\mathbb Z $, then the ordered tuple $ (a,b,c,d,e,f) $ is said to be universal over $ \Bbb Z $. Recently, Z.-W. Sun found all candidates for such universal tuples over $ \Bbb Z $. In this paper, we use the theory of ternary quadratic forms to show that 44 concrete tuples $ (a,b,c,d,e,f) $ in Sun's list of candidates are indeed universal over $ \mathbb Z $. For example, we prove the universality of $ (16,4,2,0,1,1) $ over $ \Bbb Z $ which is related to the form $ x^2+y^2+32z^2 $.
| [1] |
B. C. Berndt, Number Theory in the Spirit of Ramanujan, Amer. Math. Soc., Providence, RI, 2006.
10.1090/stml/034 2246314 |
| [2] | Cassels J. W. S. (1978) Rational Quadratic Forms. London: Academic Press. |
| [3] |
Dickson L. E. (1927) Quaternary quadratic forms representing all integers. Amer. J. Math. 49: 39-56.
|
| [4] | Dickson L. E. (1939) Modern Elementary Theory of Numbers. Chicago: Univ. of Chicago Press. |
| [5] |
Earnest A. G. (1980) Congruence conditions on integers represented by ternary quadratic forms. Pacific J. Math. 90: 325-333.
|
| [6] |
Earnest A. G. (1984) Representation of spinor exceptional integers by ternary quadratic forms. Nagoya Math. J. 93: 27-38.
|
| [7] | Ge F., Sun Z.-W. (2016) On some universal sums of generalized polygonals. Colloq. Math. 145: 149-155. |
| [8] |
S. Guo, H. Pan and Z.-W. Sun, Mixed sums of squares and triangular numbers (Ⅱ), Integers, 7 (2007), A56, 5pp (electronic).
2373118 |
| [9] |
Jagy W. C. (1996) Five regular or nearly-regular ternary quadratic forms. Acta Arith. 77: 361-367.
|
| [10] |
Jagy W. C., Kaplansky I., Schiemann A. (1997) There are 913 regular ternary forms. Mathematika 44: 332-341.
|
| [11] | W. C. Jagy, Integral Positive Ternary Quadratic Forms, Lecture Notes, 2014. Available from: http://zakuski.math.utsa.edu/~kap/Jagy_Encyclopedia.pdf. |
| [12] |
Jones B. W., Pall G. (1939) Regular and semi-regular positive ternary quadratic forms. Acta Math. 70: 165-191.
|
| [13] |
Ju J., Oh B.-K., Seo B. (2019) Ternary universal sums of generalized polygonal numbers. Int. J. Number Theory 15: 655-675.
|
| [14] |
Y. Kitaoka, Arithmetic of Quadratic Forms, Cambridge Tracts in Math., Vol. 106, Cambridge, 1993.
10.1017/CBO9780511666155 1245266 |
| [15] |
Oh B.-K. (2011) Ternary universal sums of generalized pentagonal numbers. J. Korean Math. Soc. 48: 837-847.
|
| [16] |
Oh B.-K., Sun Z.-W. (2009) Mixed sums of squares and triangular numbers (Ⅲ). J. Number Theory 129: 964-969.
|
| [17] |
O. T. O'Meara, Introduction to Quadratic Forms, Springer, New York, 1963.
0152507 |
| [18] | Ramanujan S. (1917) On the expression of a number in the form $ax^2+by^2+cz^2+dw^2$. Proc. Cambridge Philos. Soc. 19: 11-21. |
| [19] |
Sun Z.-W. (2007) Mixed sums of squares and triangular numbers. Acta Arith. 127: 103-113.
|
| [20] |
Sun Z.-W. (2015) On universal sums of polygonal numbers. Sci. China Math. 58: 1367-1396.
|
| [21] |
Sun Z.-W. (2016) A result similar to Lagrange's theorem. J. Number Theory 162: 190-211.
|
| [22] |
Sun Z.-W. (2017) On $x(ax+1)+y(by+1)+z(cz+1)$ and $x(ax+b)+y(ay+c)+z(az+d)$. J. Number Theory 171: 275-283.
|
| [23] | Z.-W. Sun, Sequence A286944 in OEIS, 2017., Available from: http://oeis.org/A286944. |
| [24] |
Z.-W. Sun, Universal sums of three quadratic polynomials, Sci. China Math., 2018. Available from: https://doi.org/10.1007/s11425-017-9354-4. See also arXiv: 1502.03056.
10.1007/s11425-017-9354-4 |
| [25] | Sun Z.-W. (2018) On universal sums $x(ax+b)/2+y(cy+d)/2+z(ez+f)/2$. Nanjing Univ. J. Math. Biquarterly 35: 85-199. |
| [26] |
Yang T. (1998) An explicit formula for local densities of quadratic forms. J. Number Theory 72: 309-356.
|