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Abstract: We investigate the existence of ground states for a class of Schrödinger equations with both
a standard power nonlinearity and delta nonlinearity concentrated at finite vertices of the periodic met-
ric graphs G. Using variational methods, if α > 0 and the standard nonlinearity power is L2−subcritical,
we establish the existence of ground states for every mass and every periodic graph. If α < 0 and the
standard nonlinearity power is L2−critical, we show that two types of topological structures on G will
prevent the existence of ground states. Furthermore, for graphs that do not satisfy these two types of
topological structures, ground states exist when the given mass belongs to an appropriate range and the
parameter |α| is small enough.
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1. Introduction and main results

In this paper, we address the existence of ground states for the following NLS energy functionals

Fα,V(u,G) =
1
2

∫
G
|u′|2dx −

1
p

∫
G
|u|pdx −

α

q

∑
v∈V

|u (v)|q , (1.1)

with the mass constraint ∫
G
|u|2dx = µ, (1.2)

where G is a general periodic metric graph, 2 < p ≤ 6, 2 < q < 4, α ∈ R\ {0}, V ⊂ V (G) is a subset of
all the vertices of G, and the number of vertices in V is finite, i.e., #V < +∞.

A metric graph G = (V (G) , E (G)) is defined as a connected network composed of edges E (G)
(may be multiple edges and self-loops) and vertices V (G) (endpoints of the edges). Every edge e may
be bounded or unbounded. A bounded edge e is usually defined as a finite interval e := [0, le], with
le < +∞ denoting the length of e. Any unbounded edge can be referred to as a half-line R+ = [0,+∞).
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The periodic graph G is made up of an infinite number of duplicates of a given compact graph
K , which is called the periodicity cell of G (see Section 2 for a rigorous definition of the Z−periodic
graph). It is readily seen that every edge of a periodic graph G is bounded. For the present paper,
we consider this type of periodic graph, the periodicity cell of which reproduces itself only in one
direction, for example, the ladder-type graph in Figure 1(a) that has been investigated in [1]. We
highlight that this structure of the periodic graph enjoys a Z-symmetry (see [2] and [3] for more details).
As for the periodic graphs, the periodicity cell of which reproduces itself along more than one direction
(Figure 1(b)), we suggest reading [4] for more information.

From the perspective of the topological structure of the graphs in the present paper, without loss of
generality, we can assume that every vertex of G has a degree that is not equal to 2. In this way, it is
natural to exclude the special case of G = R.

(a) (b)

Figure 1. (a) the ladder-type graph; (b) a graph in which the periodicity cell replicates itself
along two directions.

With the description of G as above, we define a function u : G → R as a family of functions
{ue}e∈E(G), where every ue is defined on the bounded interval [0, le]. Lebesgue spaces Lr (1 ≤ r < +∞)
on G can be defined in a natural way, with the norm

∥u∥rLr(G) :=
∑

e∈E(G)

∥ue∥
r
Lr(Ie) .

The Sobolev space H1 (G) is defined as the set of those functions u : G → R such that u = (ue)e∈E(G)

is continuous on G and ue ∈ H1 (Ie), with the natural norm

∥u∥2H1(G) := ∥u′∥2L2(G) + ∥u∥
2
L2(G).

According to the mass constraint (1.2), for every mass µ > 0, we introduce the corresponding space

H1
µ (G) :=

{
u ∈ H1 (G) :

∫
G
|u|2dx = µ

}
.

Thus, by ground states of mass µ we mean the global minimizers of the energy functional (1.1) in
the space H1

µ (G), i.e., the solutions of the following minimization problem

Fα,V(µ,G) := inf
u∈H1

µ(G)
Fα,V(u,G). (1.3)
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Our aim is to clarify, under what conditions, there exists a function u ∈ H1
µ(G) such that Fα,V(u,G) =

Fα,V(µ,G). Without loss of generality, it is readily seen that we only need to consider the nonnegative,
real−valued functions.

Ground states satisfy, for a suitable Lagrange multiplier ω ∈ R, the stationary NLS equation

− u′′ + ωu = |u|p−2 u, (1.4)

on each edge of G, with a standard Kirchhoff boundary condition (see [5] for a discussion)∑
e≻v

due

dx
(v) = 0, for any v ∈ V (G) \V, (1.5)

and the non-Kirchhoff condition (usually referred to as delta interaction)∑
e≻v

due

dx
(v) = −α |u (v)|q−2 u (v) , for any v ∈ V. (1.6)

The condition in (1.6) can be interpreted as an effect of point-like defects or impurities in the prop-
agation medium (see [6, 7] for more about the non-Kirchhoff vertex conditions on graphs).

In the past few years, the study of the nonlinear Schrödinger equations on metric graphs mainly
focuses on three cases: on compact metric graphs (see, for instance, [8–12]), on noncompact metric
graphs with at least one unbounded edge (see [5, 13–16]), and on noncompact metric graphs with no
unbounded edges (see [17–19]). In particular, we refer interested readers to [20–23] and the references
there for more about the present model on noncompact metric graphs with half-lines.

Before stating our main results, we wish to emphasize again that every periodic metric graph G
discussed in the present paper enjoys a Z-symmetry, which means that each periodicity cellK connects
only two of all the others.

(a) (b)

Figure 2. (a) a graph satisfying assumption (A1); (b) a graph with a terminal point.

In this paper, we mainly discuss the following two cases:

(Case 1) α > 0, 2 < p < 6, and 2 < q < 4;

(Case 2) α < 0, p = 6, and 2 < q < 4.

In case 1, we present the first conclusion.

Theorem 1.1. Let G be a periodic metric graph. 2 < p < 6 and 2 < q < 4. Then, for every α > 0,
we have

Fα,V(µ,G) ∈ (−∞, 0) , ∀ µ > 0, (1.7)

and ground states of mass µ always exist.
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Compared to the results on noncompact metric graphs with half-lines, Theorem 1.1 has exhibited a
similarity with the real line G = R in [24], where a unique positive ground state exists for any µ > 0.
On the other hand, for general noncompact metric graphs with half-lines, Theorem 1.1 has unveiled a
significant difference with the ones in [23], where the existence of ground states depends not only on
µ, p, q but also on the topological and metric features of the graphs.

In case 2, with the critical exponent p = 6, in order to state our results, we introduce the definition
of a critical mass in [13], which is denoted as

µG :=

√
3

KG
,

with KG denoting the sharp constant of the following inequality:

∥u∥6L6(G) ≤ KG ∥u∥4L2(G) ∥u
′∥

2
L2(G) , ∀ u ∈ H1 (G) . (1.8)

When G = R or R+, there are results

µR =

√
3π
2
= 2µR+ .

It is well known that, for every noncompact metric graph G (see [13]),

µR+ ≤ µG ≤ µR.

In what follows, we introduce two types of topological assumptions on periodic metric graphs, and
they play a significant role in the nonexistence of ground states:

(A1) : Every point x in G can serve as the origin for two disjoint edges extending to infinity,

(A2) : G has a terminal edge.

Here, assumption (A1) is an equivalent deformation of the assumption
(
Hper

)
in [6] (see Figure 2(a)),

and another version of this assumption can be traced back to [5] on graphs with at least a half-line. A
terminal edge in assumption (A2) denotes an edge that ends with a vertex of degree 1 (see Figure 2(b)).
Obviously, these two types of graphs are mutually exclusive.

As for the periodic metric graph G at present, we have (see Proposition 4.1 in [2])

µG =

 µR, if G satisfies assumption (A1),
µR+ , if G satisfies assumption (A2).

(1.9)

Now we state the results of case 2 as follow.

Theorem 1.2. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If G satisfies assumption (A1)
or (A2), then for every α < 0, we have

Fα,V(µ,G) =

 0, for µ ≤ µG,

−∞, for µ > µG,
(1.10)

and ground states do not exist for every µ.
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Theorem 1.3. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If G satisfies neither
assumption, (A1) nor (A2), then for every α < 0, we have

Fα,V(µ,G) =

 0, for µ ≤ µG,

−∞, for µ > µR,
(1.11)

and ground states do not exist when µ ≤ µG. Moreover, if µG < µR, then for every µ ∈ (µG, µR
]
, we can

obtain a value α̃ < 0 (possibly equal to −∞) depending on µ, q,Vand the periodic graph G such that

Fα,V(µ,G) ∈ (−∞, 0) , ∀ α ∈ (α̃, 0) , (1.12)

and ground states exist when µ ∈ (µG, µR
]

and α ∈ (α̃, 0).

Theorems 1.2 and 1.3 provide a comprehensive discussion about the existence of ground states
based on the topological features of the periodic metric graph G. It is obvious that the topological
assumption (A1) or (A2) will prevent the existence of ground states.

For the periodic metric graphs satisfying neither assumption (A1) nor (A2), the precondition µG < µR
in Theorem 1.2 is consistent. For example, the graph G in Figure 3 satisfies neither assumption (A1)
nor (A2). By Proposition 4.2 in [2], we know that µG < µR.

Finally, it is worth mentioning that the condition #V < +∞, which means that there exists a finite
number of point defects, plays an important role throughout the paper in the proofs of all conclusions
in the present paper. In particular, this condition ensures that the ground state energy level Fα,V(µ,G)
is negative for µ ∈ (µG, µR

]
when |α| is small enough.

Figure 3. A periodic metric graph satisfying neither assumption (A1) nor (A2).

The remainder of the paper is organized as follows: In Section 2, we collect some preliminary
results and gives some prior estimates of the ground state energy level Fα,V(µ,G). Section 3 deals with
the proof of Theorem 1.1, which is the existence of ground states when α > 0 and 2 < p < 6. Finally
in Section 4, we investigate the role of the topological properties of graph G in the existence of ground
states when α < 0 and p = 6, i.e., the proofs of Theorems 1.2 and 1.3.

2. Preliminaries

We begin here by collecting some useful tools and preliminary estimates that will be helpful in the
forthcoming sections.

First of all, let us introduce the rigorous definition of a Z−periodic graph borrowed directly from
the Section 2 of [25] (see [25] and references there for more details).
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Let K = (E (K) ,V (K)) be a connected compact graph, with both the number of edges #E (K)
and the number of vertices #V (K) finite. Obviously, every edge e ∈ E (K) has a finite length. Let us
denote two non-empty subsets of V(K) as D and R. Define a function σ : D→ R such that

(i) D ∩ R = ∅;

(ii) σ is bijective.

Let the compact graph K reproduce itself along one direction infinitely many times, as shown in
Figures 1(a), 2, and 3, but not in Figure 1(b). Consider now the set {Ki}i∈Z, denoted as all the duplicates
of K . Corresponding to the two nonempty subsets D and R of V (K), for every i ∈ Z, let us denote Di

and Ri as the duplicates of D and R in V (Ki). It is clear that both Di and Ri are nonempty.
Denote G :=

⋃
i∈ZKi and let σ be a map from Di to Ri+1. We introduce a relation between any two

vertices v,w of G as

v ∼ w⇐⇒


v = w, if v,w ∈ Ki, for some i ∈ Z,

σ (v) = w, if v ∈ Di,w ∈ Ri+1, for some i ∈ Z,

σ (w) = v, if v ∈ Ri+1,w ∈ Di, for some i ∈ Z.

It is not difficult to verify that the relation v ∼ w is well-defined and equivalent on G. Now we can
say that the quotient G := G/ ∼ is a Z-periodic graph with periodicity cell K and the pasting rule σ.

Secondly, let us recall several different versions of the Gagliardo−Nirenberg inequalities applicable
to this article. For every noncompact (with either at least a half-line or infinitely many bounded edges)
metric graph G, we have (see [26]).

∥u∥pLp(G) ≤ Kp∥u∥
p
2+1
L2(G)∥u

′∥
p
2−1
L2(G), ∀ u ∈ H1 (G) and 2 < p < +∞, (2.1)

where Kp > 0 is a generic constant that depends only on the exponent p.
When G does not have a terminal edge, an improved version of the Gagliardo−Nirenberg inequality

will work (see Lemma 4.4 of [13] and the argument in Section 4 of [2]). For every mass µ in (0, µR]
and u ∈ H1

µ (G), there exists a value θu ∈
[
0, µ

]
related to function u such that

∥u∥6L6(G) ≤ 3
(
µ − θu

µR

)2

∥u′∥2L2(G) +CGθ
1
2
u , (2.2)

where CG > 0 is a constant depending only on G.
In addition, we can derive a further Gagliardo−Nirenberg−type inequality about the sum of all

pointwise nonlinearities at the vertices of the periodic metric graph. That is, for every periodic graph
G defined above and q ∈ (2, 4), there exists C > 0, depending on the exponent q and G, such that (see
Lemma 2.2 in [25]) ∑

v∈V(G)

|u (v)|q ≤ C
(
∥u∥qLq(G) + ∥u∥

q
2
L2(G) ∥u

′∥
q
2
L2(G)

)
, ∀ u ∈ H1 (G) . (2.3)

Moreover, the case α = 0 has been studied in [2] on periodic metric graphs, with the minimization
problem as

F (µ,G) := inf
u∈H1

µ(G)
F(u,G),
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where
F(u,G) =

1
2

∫
G
|u′|2dx −

1
p

∫
G
|u|pdx.

For convenience, we state some results obtained in [2] with the next lemma.

Lemma 2.1 ( [2]). Let G be a periodic metric graph. If 2 < p < 6, then we have

F (µ,G) ∈ (−∞, 0) , ∀ µ > 0, (2.4)

and ground states exist at every mass µ. If p = 6 and G satisfies assumptions (A1) or (A2), we have

F (µ,G) =

 0, for µ ≤ µG,

−∞, for µ > µG,
(2.5)

and the infimum is never achieved. If p = 6, µG < µR, and G satisfies neither assumption (A1) nor
(A2), then there exist ground states if and only if µ ∈

[
µG, µR

]
.

Let us make a simple comparison between these two cases: the case α , 0 in the present paper and
the case α = 0 in [2]. Although the results in Theorems 1.1 and 1.2 are somewhat similar to the ones in
Lemma 2.1, Theorem 1.3 shows significant differences, especially at the mass µ = µG. In Theorem 1.3,
ground states do not exist at µ = µG, while exist in Lemma 2.1. Although Theorems 1.1 and 1.2 are
similar in conclusion to Lemma 2.1, considering the actual physical background, they are likely to
represent different physical phenomena.

In particular, when p = 6 and G = R, there exists

F (µ,R) =

 0, for µ ≤ µR,
−∞, for µ > µR,

(2.6)

and the infimum F (µ,R) is attained if and only if µ = µR. When p = 6 and G = R+, there exists

F
(
µ,R+

)
=

 0, for µ ≤ µR+ ,
−∞, for µ > µR+ ,

(2.7)

and the infimum F (µ,R+) is attained if and only if µ = µR+ .
Finally, as for the case α < 0 and p = 6, the next lemma gives an a priori estimate about the

minimization energy level Fα,V(µ,G).

Lemma 2.2. Let G be a periodic metric graph. α < 0 and p = 6. So we have

Fα,V(µ,G) ≤ 0, ∀ µ > 0. (2.8)

Proof. Fix µ > 0, and for every n ∈ N, we define a set as

S n := {e ∈ E (Kn+1) ∪ E (K−n−1) : ∃ v ∈ D (Kn) ∪ R (K−n) such that e ≻ v} ,

which contains all the edges, joining either Kn with Kn+1 or K−n with K−n−1, of G. Obviously, the
number of edges in S n is finite. Then, for every e ∈ S n, one endpoint of e belongs to D (Kn)∪ R (K−n).
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At this time, let xe be the coordinate on e := [0, le]. We set xe (0) = v and then construct a function
un ∈ H1

µ (G) as

un (x) =


an, if x ∈ Ki, for i ∈ {−n, . . . , n} ,
an
le

(le − x) , if x ∈ e, for e ∈ S n,

0, otherwise on G,

, (2.9)

where {an}n∈N is chosen to satisfy

µ = ∥un∥
2
L2(G) = 2n

∫
Kn

|un|
2 dx +

∑
e∈S n

∫
e
|un|

2 dx = 2nL1a2
n +

L2

3
a2

n, (2.10)

for every n ∈ N. Here, L1 represents the measure of K , and L2 represents the total length of all the
edges in S n, i.e.,

L1 =
∑
e∈K

le, and L2 =
∑
e∈S n

le.

Noting that both L1 and L2 are finite, (2.10) entails

an → 0, as n→ ∞,

and furthermore
lim
n→∞

na2
n =

µ

2L1
. (2.11)

Since #V < +∞, then by the definition of (2.9), as n→ ∞, one can check that

un (v) = an, ∀ v ∈ V.

Hence, we have

Fα,V(un,G) =
1
2

∫
G
|u′n|

2dx −
1
6

∫
G
|un|

6dx −
α

q

∑
v∈V

|un (v)|q

=

∑
e∈S n

1
2le

 a2
n −

L1

3
na6

n −
L2

42
a6

n +
|α|

q
aq

n → 0, as n→ ∞,
(2.12)

where we use the facts that an → 0 and the limit in (2.11). By (2.12), it is immediate to see that
(2.8) holds.

3. The case α > 0 and 2 < p < 6

In this section, we focus on searching for a function u ∈ H1
µ (G) such that Fα,V(u,G) = Fα,V(µ,G)

when α > 0, 2 < p < 6, and 2 < q < 4. That is the proof of Theorem 1.1.
We begin with the estimate of the minimization energy level Fα,V(µ,G) in the next lemma.

Lemma 3.1. Let G be a periodic metric graph. 2 < p < 6 and 2 < q < 4. Then, for every α > 0,
we have

Fα,V(µ,G) ∈ (−∞, 0) , ∀ µ > 0. (3.1)
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Proof. Fix µ > 0. On the one hand, since α > 0, for every u ∈ H1
µ (G), it holds

Fα,V(u,G) = F (u,G) −
α

q

∑
v∈V

|u (v)|q ≤ F (u,G) ,

which indicates that
Fα,V(µ,G) ≤ F (u,G) . (3.2)

Combining (2.4) with (3.2), we have

Fα,V(µ,G) < 0. (3.3)

On the other hand, by the inequalities (2.1) and (2.3), for every u ∈ H1
µ (G) we get

Fα,V(u,G) =
1
2
∥u′∥2L2(G) −

1
p
∥u∥pLp(G) −

α

q

∑
v∈V

|u (v)|q

≥
1
2
∥u′∥2L2(G) −

Kp

p
∥u∥

p
2+1
L2(G)∥u

′∥
p
2−1
L2(G) −

α

q

∑
v∈V(G)

|u (v)|q

≥
1
2

(
1 −C1∥u′∥

p
2−3
L2(G) −C2 ∥u′∥

q
2−3
L2(G) −C3 ∥u′∥

q
2−2
L2(G)

)
∥u′∥2L2(G) ,

(3.4)

where
C1 =

1
p

Kpµ
p+2

4 , C2 =
1
q

CαKqµ
q+2

4 and C3 =
1
q
αµ

q
4 .

Observe that C is the constant obtained in (2.3). Since p < 6 and q < 4, (3.4) implies that Fα,V(u,G)
is bounded from below, and we immediately obtain

Fα,V(µ,G) > −∞. (3.5)

The proof is complete.

Proof of Theorem 1.1. For every µ > 0, the estimate of the minimization energy level Fα,V(µ,G)
has been given in Lemma 3.1. We are left to verify the existence of a function u ∈ H1

µ (G) such that
Fα,V(u,G) = Fα,V(µ,G), i.e., ground states of mass µ always exist.

Let {un} be a minimizing sequence for Fα,V(µ,G). Then, for n large enough, by (3.1) and (3.4), we
immediately obtain

0 > Fα,V(un,G) ≥
1
2

(
1 −C1∥u′n∥

p
2−3
L2(G) −C2

∥∥∥u′n
∥∥∥ q

2−3

L2(G) −C3

∥∥∥u′n
∥∥∥ q

2−2

L2(G)

) ∥∥∥u′n
∥∥∥2

L2(G) .

It follows from the facts p < 6 and q < 4 that {un} is bounded in H1 (G). Thereby, up to subse-
quences, there exists a weak limit of {un} in H1 (G), denoted as u so that

un ⇀ u, in H1 (G) .

Moreover, we have
un → u, in L∞loc (G) .
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It follows from the weak lower semicontinuity that

0 ≤ γ =: ∥u∥2L2(G) ≤ lim inf
n→∞

∥un∥
2
L2(G) = µ.

Our aim is to prove γ = µ, i.e., u ∈ H1
µ (G).

Let us first show that γ , 0. If that is not the case, we have γ = 0, i.e., u ≡ 0 on G. Noting the fact
that un → u in L∞loc (G), for every n ∈ N, the function un can achieve its L∞ norm in any periodicity cell
such as K1. In other words, there exists x∗ ∈ K1 such that

∥un∥L∞(G) = un (x∗)→ 0.

Then we have
∥un∥

p
Lp(G) ≤ µ ∥un∥

p−2
L∞(G) → 0, as n→ ∞, (3.6)

and ∑
v∈V

|un (v)|q ≤ (#V) ∥un∥
q
L∞(G) → 0, as n→ ∞. (3.7)

Coupling (3.6) and (3.7) yields

0 > Fα,V(µ,G) = lim
n→∞

Fα,V(un,G) = lim
n→∞

1
2

∥∥∥u′n
∥∥∥2

L2(G) ≥ 0,

which leads to a contradiction.
On the other hand, if we assume that 0 < γ < µ, then according to the Brezis−Lieb lemma [27] and

un → u in L∞loc (G), one can see that

Fα,V(un,G) = Fα,V(un − u,G) + Fα,V(u,G) + o (1) , as n→ ∞. (3.8)

Observing that {un} is bounded in H1 (G), we have

∥un − u∥2L2(G) = ∥un∥
2
L2(G) − 2 ⟨un, u⟩L2(G) + ∥u∥

2
L2(G) + o (1)

= µ − ∥u∥2L2(G) + o (1)→ µ − γ, as n→ ∞.
(3.9)

For n large enough, it follows from 0 < γ < µ that

0 < ∥un − u∥2L2(G) < µ,

and let us denote

φn :=
√
µ

∥un − u∥L2(G)
(un − u) .

It is obvious that φn ∈ H1
µ (G). Thus, by the definition of Fα,V (µ,G), it can be obtained that

Fα,V (µ,G) ≤ Fα,V (φn,G) = Fα,V

( √
µ

∥un − u∥L2(G)
(un − u) ,G

)
=

( √
µ

∥un − u∥L2(G)

)2 1
2

∥∥∥u′n − u′
∥∥∥2

L2(G) −

( √
µ

∥un − u∥L2(G)

)p 1
p
∥un − u∥pLp(G)

−

( √
µ

∥un − u∥L2(G)

)q
α

q

∑
v∈V

|(un − u) (v)|q

<
µ

∥un − u∥2L2(G)

Fα,V (un − u,G) ,

(3.10)

Electronic Research Archive Volume 32, Issue 7, 4199–4217.



4209

where we use the facts that ∥un − u∥2L2(G) < µ, p > 2, q > 2, and α > 0. Combining (3.9) with (3.10),
we have

lim inf
n→∞

Fα,V (un − u,G) ≥
µ − γ

µ
Fα,V (µ,G) . (3.11)

Noting that
√

µ

γ
u ∈ H1

µ (G) and
√

µ

γ
> 1, then by similar calculations in (3.10), we have

Fα,V (µ,G) ≤ Fα,V

(√
µ

γ
u,G

)
<
µ

γ
Fα,V (u,G) ,

that is
Fα,V (u,G) >

γ

µ
Fα,V (µ,G) . (3.12)

Combining (3.8) with (3.11) and (3.12), it then follows that

Fα,V (µ,G) = lim
n→∞

Fα,V(un,G)

>
µ − γ

µ
Fα,V (µ,G) +

γ

µ
Fα,V (µ,G) = Fα,V (µ,G) ,

which leads to a contradiction, and thus γ = µ, i.e., u ∈ H1
µ (G) is a ground state for Fα,V(µ,G). The

proof is complete.

4. The case α < 0 and p = 6

This section is devoted to the proof of Theorems 1.2 and 1.3. First of all, we spit the proof of
Theorem 1.2 into the following two lemmas.

For the graphs satisfying assumption (A1), we have the following nonexistence result:

Lemma 4.1. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If G satisfies assumption (A1),
then for every α < 0, we have

Fα,V(µ,G) =

 0, for µ ≤ µR,

−∞, for µ > µR,
(4.1)

and the infimum is never achieved.

Proof. Let G satisfy assumption (A1). By (1.9), we have

µG = µR.

When µ ∈ (0, µR], by substituting (1.8) into (1.1), then for every u ∈ H1
µ (G) we get

Fα,V(u,G) =
1
2
∥u′∥2L2(G) −

1
6
∥u∥6L6(G) −

α

q

∑
v∈V

|u (v)|q

≥
1
2

1 − (
µ

µG

)2 ∥u′∥2L2(G) −
α

q

∑
v∈V

|u (v)|q ,
(4.2)
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which implies that
Fα,V(µ,G) ≥ 0. (4.3)

Combining (2.8) and (4.3), we have

Fα,V(µ,G) = 0, ∀ µ ≤ µR. (4.4)

When µ > µR, by (2.6), there exists ψ ∈ H1
µ (R), supported on [0, 1], such that

F (ψ,R) < 0.

Denote
ψλ (x) :=

√
λψ (λx) , ∀ λ > 0.

It is obvious that ψλ (x) ∈ H1
µ (R) and ψλ is supported on

[
0, 1

λ

]
.

Now given any e ∈ E (G) with its length le := |e|, i.e., e = [0, le]. Let λ0 := 1
le

and for every
λ ≥ λ0 we have ψλ ∈ H1

µ (0, le). Thus, we construct functions {ψλ}λ≥λ0
, supported on e, which can be

considered as elements in H1
µ (G). Furthermore, it holds

Fα,V(ψλ,G) = Fα,V(ψλ, e)→ λ2F (ψ,R) −
α

q

∑
e≻v

|ψλ (v)|q

= λ2F (ψ,R)→ −∞, as λ→ +∞,

since ψλ (0) = ψλ (le) = 0 and F (ψ,R) < 0. This implies that

Fα,V(µ,G) = −∞, ∀ µ > µR. (4.5)

Finally, let us explain that the infimum is not achieved for any µ > 0. If µ > µR, the result is trivial.
If µ < µR, we just need to show that the inequality in (4.2) is strict. Indeed, if, on the contrary, we get
∥u′∥2L2(G) = 0, and u is a constant on G. This is impossible since G is noncompact. If µ = µR, suppose
by contradiction that u ∈ H1

µ (G) is a global minimizer of (1.1) such that

Fα,V(u,G) = F(u,G) −
α

q

∑
v∈V

|u (v)|q = 0. (4.6)

By a similar analysis in Proposition 3.3 in [5], together with the corresponding boundary conditions
in (1.5) and (1.6), we can immediately obtain

u > 0, on G. (4.7)

Combining (4.6) with (4.7), we have

F(u,G) =
α

q

∑
v∈V

|u (v)|q < 0.

It follows that
F (µ,G) < 0, (4.8)

which contradicts the fact that F (µ,G) = 0 in (2.5), and the proof is complete.
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For the graphs satisfying assumption (A2), we have the next result.

Lemma 4.2. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If G satisfies assumption (A2),
then for any α < 0, we have

Fα,V(µ,G) =

 0, for µ ≤ µR+ ,

−∞, for µ > µR+ ,
(4.9)

and the infimum is never achieved.

Proof. Let G satisfy assumption (A2). There exists

µG = µR+ .

Then, by a completely analogous analysis in Lemma 4.1, with µR being replaced by µR+ , we con-
clude that the result of Lemma 4.2 is valid.

Proof of Theorem 1.2. According to the results of Lemmas 4.1 and 4.2, one can check that the
conclusion in Theorem 1.2 is clearly valid.

Next, for the graphs satisfying neither assumption (A1) nor assumption (A2), we give the following
lemma concerning the mass µ ≤ µG and µ > µR, at which ground states do not exist.

Lemma 4.3. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If G satisfies neither assumption,
(A1) nor (A2), then for every α < 0, we have

Fα,V(µ,G) =

 0, for µ ≤ µG,

−∞, for µ > µR,
(4.10)

and the infimum is never achieved.

Proof. When µ ≤ µG and µ > µR, through a similar proof in Lemma 4.1, we obtain

Fα,V(µ,G) = 0, ∀ µ ≤ µG,

and
Fα,V(µ,G) = −∞, ∀ µ > µR,

thus (4.10) holds. Meanwhile, the infimum is not achieved.

In order to show that ground states exist at the mass µ ∈ (µG, µR
]
, the following lemma gives a

preliminary estimate about the minimization energy level Fα,V(µ,G).

Lemma 4.4. Let G be a periodic metric graph. p = 6 and 2 < q < 4. If µG < µR, then for every
µ ∈ (µG, µR

]
, there exists α̃ < 0 (possibly equal to −∞) depending on µ, q,V and G so that

Fα,V(µ,G) ∈ (−∞, 0) , for α ∈ (α̃, 0) . (4.11)
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Proof. Given µ ∈ (µG, µR
]
. On the one hand, for every u ∈ H1

µ (G), it follows from (2.2) that there
exists θu ∈

[
0, µ

]
such that

Fα,V(u,G) =
1
2
∥u′∥2L2(G) −

1
6
∥u∥6L6(G) −

α

q

∑
v∈V

|u (v)|q

≥
1
2

1 − (
µ − θu

µR

)2 ∥u′∥2L2(G) −
CG

6
θ

1
2
u −

α

q

∑
v∈V

|u (v)|q

≥
1
2

1 − (
µ

µR

)2 ∥u′∥2L2(G) −
CG

6
µ

1
2 −

α

q

∑
v∈V

|u (v)|q ,

which indicates that
Fα,V(µ,G) > −∞, ∀ α < 0. (4.12)

On the other hand, by Lemma 2.2, we have

Fα,V(µ,G) ≤ 0, ∀ α < 0.

By the monotonicity of the ground state energy level Fα,V(µ,G) with respect to α, we know that
α 7→ Fα,V(µ,G) is monotone non-increasing. Denote

α̃ = sup
{
α < 0 : Fα,V(µ,G) = 0

}
, (4.13)

which depends on µ, q,V and G. To proceed with the proof, let us consider the sharp constant KG of
the inequality in (1.8), i.e.,

KG := sup
u∈H1(G)\{0}

∥u∥6L6(G)

∥u∥4L2(G) ∥u
′∥

2
L2(G)

. (4.14)

For every ϵ > 0, by the above definition in (4.14), one can see that there exists u ∈ H1
µ (G) satisfying

∥u∥6L6(G) > (KG − ϵ) ∥u∥4L2(G) ∥u
′∥

2
L2(G) = (KG − ϵ) µ2 ∥u′∥2L2(G) .

Then we have

Fα,V(u,G) =
1
2
∥u′∥2L2(G) −

1
6
∥u∥6L6(G) −

α

q

∑
v∈V

|u (v)|q

<
1
2

(
1 −

(KG − ϵ)
3

µ2
)
∥u′∥2L2(G) +

|α|

q

∑
v∈V

|u (v)|q .
(4.15)

Since µ > µG, then as long as we pick ϵ small enough, it holds

1
2
∥u′∥2L2(G)

(
1 −

(KG − ϵ)
3

µ2
)
< 0. (4.16)

Note that #V < +∞, combining (4.15) with (4.16), we have

Fα,V(u,G) < 0, as |α| is small enough,
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which implies that
Fα,V(µ,G) < 0, as |α| is small enough. (4.17)

It is readily seen that α̃ < 0 by the definition in (4.13) and the monotonicity of Fα,V(µ,G) with
respect to α. Moreover, we immediately have

Fα,V(µ,G) < 0, for α ∈ (α̃, 0) . (4.18)

Combining (4.12) with (4.18), we have that (4.11) holds.

Proof of Theorem 1.3. When µ ≤ µG and µ > µR, the result is given in Lemma 4.3. When µ ∈ (µG, µR
]

provided µG < µR, the estimate has been given in Lemma 4.4. We are left to prove the existence of
ground states when µ ∈ (µG, µR

]
and α ∈ (α̃, 0).

Let {un} be a minimizing sequence for Fα,V(µ,G). Then, for n large enough, it follows from the
result in (4.11) and the inequality (2.2) that there exists θun ∈

[
0, µ

]
satisfying

0 > Fα,V(un,G) ≥
1
2

1 − (
µ − θun

µR

)2 ∥∥∥u′n
∥∥∥2

L2(G) −
CG

6
θ

1
2
un −

α

q

∑
v∈V

|un (v)|q

≥
1
2

1 − (
µR − θun

µR

)2 ∥∥∥u′n
∥∥∥2

L2(G) −
CG

6
θ

1
2
un

=
θun

2µR

(
2 −

θun

µR

) ∥∥∥u′n
∥∥∥2

L2(G) −
CG

6
θ

1
2
un .

(4.19)

Noting the fact that θun → 0 contradicts (4.19), as a result, there exists a constant c > 0, depending
on α, µ,G, such that

θun ≥ c.

By (4.19), there exists

c
2µR

∥∥∥u′n
∥∥∥2

L2(G) −
CG

6
µ

1
2 ≤

θun

2µR

(
2 −

θun

µR

) ∥∥∥u′n
∥∥∥2

L2(G) −
CG

6
θ

1
2
un < 0,

which directly indicates that {un} is bounded in H1 (G). Thereby, up to subsequences, there exists a
weak limit of {un} in H1 (G), denoted as u, such that

un ⇀ u, in H1 (G) ,

and
un → u, in L∞loc (G) .

Based on weak lower semicontinuity, it holds

0 ≤ γ := ∥u∥2L2(G) ≤ lim inf
n→∞

∥un∥
2
L2(G) = µ.

If γ = 0, i.e., u ≡ 0 on G, since un → u in L∞loc (G), then for every n ∈ N, the function un can achieve
its L∞ norm in any periodicity cell such as K1. In other words, there exists x∗∗ ∈ K1 such that

∥un∥L∞(G) = un (x∗∗)→ 0.
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Thus, we have
∥un∥

6
L6(G) ≤ ∥un∥

4
L∞(G) µ→ 0, as n→ ∞. (4.20)

and ∑
v∈V

|un (v)|q ≤ (#V) ∥un∥
q
L∞(G) → 0, as n→ ∞. (4.21)

It follows from (4.20) and (4.21) that

0 > Fα,V(µ,G) = lim
n→∞

Fα,V(un,G) = lim
n→∞

1
2

∥∥∥u′n
∥∥∥2

L2(G) ≥ 0,

which leads to a contradiction.
If 0 < γ < µ, by the Brezis−Lieb lemma, one can see that

Fα,V(un,G) = Fα,V(un − u,G) + Fα,V(u,G) + o (1) , as n→ ∞. (4.22)

Since {un} is bounded in H1 (G), we have

∥un − u∥2L2(G) = ∥un∥
2
L2(G) − 2 ⟨un, u⟩L2(G) + ∥u∥

2
L2(G) + o (1)

= µ − ∥u∥2L2(G) + o (1)→ µ − γ, as n→ ∞.
(4.23)

For n large enough, since 0 < γ < µ, we have

0 < ∥un − u∥2L2(G) < µ.

We still denote

φn :=
√
µ

∥un − u∥L2(G)
(un − u) ∈ H1

µ (G) .

Thus, by the definition of Fα,V (µ,G) there exists

Fα,V (µ,G) ≤ Fα,V (φn,G) = Fα,V

( √
µ

∥un − u∥L2(G)
(un − u) ,G

)
=

( √
µ

∥un − u∥L2(G)

)2 1
2

∥∥∥u′n − u′
∥∥∥2

L2(G) −

( √
µ

∥un − u∥L2(G)

)6 1
6
∥un − u∥6L6(G)

−

( √
µ

∥un − u∥L2(G)

)q
α

q

∑
v∈V

|(un − u) (v)|q

<

( √
µ

∥un − u∥L2(G)

)q

Fα,V (un − u,G) ,

(4.24)

where we use the facts that ∥un − u∥2L2(G) < µ, 2 < p < 6, 2 < q < 4, and α < 0. Combining (4.23) with
(4.24), we have

lim inf
n→∞

Fα,V (un − u,G) ≥
(√

µ − γ

µ

)q

Fα,V (µ,G) . (4.25)

Noting that
√

µ

γ
u ∈ H1

µ (G) and
√

µ

γ
> 1, through similar calculations in (4.24), we have

Fα,V (µ,G) ≤ Fα,V

(√
µ

γ
u,G

)
<

(√
µ

γ

)q

Fα,V (u,G) ,
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that is

Fα,V (u,G) >
(√

γ

µ

)q

Fα,V (µ,G) . (4.26)

Coupling (4.22) with (4.25) and (4.26), it then follows that

Fα,V (µ,G) = lim
n→∞

Fα,V(un,G)

>

(√
µ − γ

µ

)q

Fα,V (µ,G) +
(√

γ

µ

)q

Fα,V (µ,G)

>

(√
µ − γ

µ

)2

Fα,V (µ,G) +
(√

γ

µ

)2

Fα,V (µ,G) = Fα,V (µ,G) ,

where we use the facts that 0 < γ < µ, q > 2 and Fα,V (µ,G) < 0. This leads to a contradiction.
To sum up, we conclude that γ = µ, i.e., u ∈ H1

µ (G) is a ground state for Fα,V(µ,G). The proof
is complete.
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