This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.
Citation: Dan Mao, Keli Zheng. Derivations of finite-dimensional modular Lie superalgebras $ \overline{K}(n, m) $[J]. Electronic Research Archive, 2023, 31(7): 4266-4277. doi: 10.3934/era.2023217
This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra $ \overline{K}(n, m) $. To that end, we first describe the $ \mathbb{Z} $-homogeneous derivations of $ \overline{K}(n, m) $. Then we obtain the derivation superalgebra $ Der(\overline{K}) $. Finally, we partly determine the derivation superalgebra $ Der(K) $ by virtue of the invariance of $ K(n, m) $ under $ Der(\overline{K}) $.
[1] | B. DeWitt, Supermanifolds, 2$^{nd}$ edition, Cambridge University Press, Cambridge, 1992. |
[2] | P. Fayet, S. Ferrara, Supersymmetry, Phys. Rep., 32 (1977), 249–334. https://doi.org/10.1016/0370-1573(77)90066-7 doi: 10.1016/0370-1573(77)90066-7 |
[3] | V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, American Mathematical Society, Rhode Island, 2004 |
[4] | V. G. Kac, Lie Superalgebras, Adv. Math., 26 (1977), 8–96. https://doi.org/10.1016/0001-8708(77)90017-2 doi: 10.1016/0001-8708(77)90017-2 |
[5] | Y. Wang, Y. Zhang, The associative forms of the graded Lie superalgebras, Adv. Math., 29 (2000), 65–70. |
[6] | J. Yuan, W. Liu, W. Bai, Associative forms and second cohomologies of Lie superalgebras HO and KO, J. Lie Theory, 23 (2009), 203–215. |
[7] | Q. Mu, Y. Zhang, Infinite-dimensional Hamiltonian Lie superalgebras, Sci. China Math., 53 (2010), 1625–1634. https://doi.org/10.1007/s11425-010-3142-4 doi: 10.1007/s11425-010-3142-4 |
[8] | K. Zheng, Y. Zhang, The natural filtration of finite dimensional modular Lie superalgebras of special type, Abstr. Appl. Anal., 2013 (2013), 891241. https://doi.org/10.1155/2013/891241 doi: 10.1155/2013/891241 |
[9] | K. Zheng, Y. Zhang, W. Song, The natural filtrations of finite-dimensional modular Lie superalgebras of Witt and Hamiltonian type, Pac. J. Math., 269 (2014), 199–218. https://doi.org/10.2140/pjm.2014.269.199 doi: 10.2140/pjm.2014.269.199 |
[10] | J. Yuan, W. Liu, Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras, Front. Math. China, 8 (2013), 203–216. https://doi.org/10.1007/s11464-012-0185-6 doi: 10.1007/s11464-012-0185-6 |
[11] | W. Liu, Y. Zhang, Automorphism groups of restricted cartan-type Lie superalgebras, Commun. Algebr., 34 (2006), 3767–37842. https://doi.org/10.1080/00927870600862615 doi: 10.1080/00927870600862615 |
[12] | W. Xie, Y. Zhang, Second cohomology of the modular Lie superalgebra of cartan type k, Algebr. Colloq., 16 (2009), 309–324. https://doi.org/10.1142/S1005386709000303 doi: 10.1142/S1005386709000303 |
[13] | S. Bouarroudj, P. Grozman, A. Lebedev, D. Leites, Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homol. Homotopy Appl., 12 (2010), 237–278. https://doi.org/10.4310/HHA.2010.v12.n1.a13 doi: 10.4310/HHA.2010.v12.n1.a13 |
[14] | F. Ma, Q. Zhang, The derivation algebra of modular Lie superalgebra k-type, J. Math., 20 (2000), 431–435. https://doi.org/10.13548/j.sxzz.2000.04.015 doi: 10.13548/j.sxzz.2000.04.015 |
[15] | Q. Zhang, Y. Zhang, Derivation algebras of modular Lie superalgebras W and S of Cartan type, Acta Math. Sci., 20 (2000), 137–144. https://doi.org/10.1016/s0252-9602(17)30743-9 doi: 10.1016/s0252-9602(17)30743-9 |
[16] | W. Liu, Y. Zhang, X. Wang, The derivation algebra of the Cartan-type Lie superalgebra HO, J. Algebr., 273 (2004), 176–205. https://doi.org/10.1016/j.jalgebra.2003.10.019 doi: 10.1016/j.jalgebra.2003.10.019 |
[17] | J. Fu, Q. Zhang, C. Jiang, The Cartan-type modular Lie superalgebra KO, Commun. Algebr., 34 (2006), 107–128. https://doi.org/10.1080/00927870500346065 doi: 10.1080/00927870500346065 |
[18] | W. Bai, W. Liu, Superderivations for modular graded lie superalgebras of cartan-type, Algebr. Represent. Theor., 17 (2014), 69–86. https://doi.org/10.1007/s10468-012-9387-6 doi: 10.1007/s10468-012-9387-6 |
[19] | S. Awuti, Y. Zhang, Modular Lie superalgebra $\overline{W}(n, m)$, Northeast Norm. Univ. (Nat. Sci. Ed.), 40 (2008), 7–11. |
[20] | L. Ren, Q. Mu, Y. Zhang, A class of finite-dimensional Lie superalgebras of hamiltonian type, Algebr. Colloq., 18 (2011), 347–360. https://doi.org/10.1142/S1005386711000241 doi: 10.1142/S1005386711000241 |
[21] | K. Zheng, Y. Zhang, J. Zhang, A class of finite dimensional modular Lie superalgebras of special type, Bull. Malays. Math. Sci. Soc., 39 (2016), 381–390. https://doi.org/10.1007/s40840-015-0177-2 doi: 10.1007/s40840-015-0177-2 |
[22] | D. Mao, K. Zheng, Constructions and properties for a finite-dimensional modular Lie superalgebra $K(n, m)$, J. Math., 2021 (2021), 7069556. https://doi.org/10.1155/2021/7069556 doi: 10.1155/2021/7069556 |
[23] | Y. Zhang, Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic, Chin. Sci. Bull., 42 (1997), 720–724. https://doi.org/10.1007/BF03186962 doi: 10.1007/BF03186962 |
[24] | Y. Zhang, W. Liu, Modular Lie Superalgebras, Science Press, Beijing, 2004. |