Research article

Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups

  • Received: 28 November 2024 Revised: 26 December 2024 Accepted: 02 January 2025 Published: 23 January 2025
  • In this paper, I define and classify the algebraic Schouten solitons associated with the Bott connection on three-dimensional Lorentzian Lie groups with three different distributions.

    Citation: Jinguo Jiang. Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups[J]. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017

    Related Papers:

  • In this paper, I define and classify the algebraic Schouten solitons associated with the Bott connection on three-dimensional Lorentzian Lie groups with three different distributions.



    加载中


    [1] R. S. Hamilton, The Ricci flow on surfaces, in mathematics and general relativity, Contemp. Math., 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419
    [2] G. Perelman, The entropy formula for the ricci flow and its geometric applications, preprint, arXiv: math/0211159. https://doi.org/10.48550/arXiv.math/0211159
    [3] J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319 (2001), 715–733. https://doi.org/10.1007/PL00004456 doi: 10.1007/PL00004456
    [4] W. Batat, K. Onda, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), 138–152. https://doi.org/10.1016/j.geomphys.2016.11.018 doi: 10.1016/j.geomphys.2016.11.018
    [5] F. Etayo, R. Santamaría, Distinguished connections on $(J^2 = \pm 1)$-metric manifolds, Arch. Math., 52 (2016), 159–203. https://doi.org/10.5817/AM2016-3-159 doi: 10.5817/AM2016-3-159
    [6] Y. Wang, Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, Chin. Ann. Math. Ser. B, 43 (2022), 443–458. https://doi.org/10.1007/s11401-022-0334-5 doi: 10.1007/s11401-022-0334-5
    [7] S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2
    [8] S. Azami, Generalized Ricci solitons associated to perturbed canonical connection and perturbed Kobayashi-Nomizu connection on three-dimensional Lorentzian Lie groups, Afr. Mat., 35 (2024), 36. https://doi.org/10.1007/s13370-024-01184-7 doi: 10.1007/s13370-024-01184-7
    [9] J. A. Alvarez López, P. Tondeur, Hodge decomposition along the leaves of a Riemannian foliation, J. Funct. Anal., 99 (1991), 443–458. https://doi.org/10.1016/0022-1236(91)90048-A doi: 10.1016/0022-1236(91)90048-A
    [10] F. Baudoin, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations, in Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds, 1 (2016), 259–321. https://doi.org/10.4171/162-1/3
    [11] R. K. Hladky, Connections and curvature in sub-Riemannian geometry, Houston J. Math., 38 (2012), 1107–1134.
    [12] F. Baudoin, E. Grong, K. Kuwada, A. Thalmaier, Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations, Calc. Var. Partial Differ. Equations, 58 (2019), 1308. https://doi.org/10.1007/s00526-019-1570-8 doi: 10.1007/s00526-019-1570-8
    [13] T. Wu, Y. Wang, Affine Ricci solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups, Turkish J. Math., 45 (2021), 2773–2816. https://doi.org/10.3906/mat-2105-49 doi: 10.3906/mat-2105-49
    [14] J. Yang, J. Miao, Algebraic Schouten solitons of Lorentzian Lie groups with Yano connections, Commun. Anal. Mech., 15 (2023), 763–791. https://doi.org/10.3934/cam.2023037 doi: 10.3934/cam.2023037
    [15] S. Liu, Algebraic schouten solitons of three-dimensional lorentzian lie groups, Symmetry, 15 (2023), 866. https://doi.org/10.3390/sym15040866 doi: 10.3390/sym15040866
    [16] T. H. Wears, On algebraic solitons for geometric evolution equations on three-dimensional Lie groups, Tbilisi Math. J., 9 (2016), 33–58. https://doi.org/10.1515/tmj-2016-0018 doi: 10.1515/tmj-2016-0018
    [17] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math., 21 (1976), 293–329. https://doi.org/10.1016/S0001-8708(76)80002-3 doi: 10.1016/S0001-8708(76)80002-3
    [18] S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, J. Geom. Phys., 9 (1992), 295–302. https://doi.org/10.1016/0393-0440(92)90033-W doi: 10.1016/0393-0440(92)90033-W
    [19] G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2017), 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005 doi: 10.1016/j.geomphys.2006.10.005
    [20] L. A. Cordero, P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Appl., 17 (1997), 129–155.
    [21] A. Derdziński, C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc., 47 (1983), 15–26. https://doi.org/10.1112/plms/s3-47.1.15 doi: 10.1112/plms/s3-47.1.15
    [22] H. R. Salimi Moghaddam, On the geometry of some para-hypercomplex Lie groups, Arch. Math., 45 (2009), 159–170.
    [23] G. F. Ramandi, S. Azami, V. Pirhadi, Generalized lorentzian Ricci solitons on 3-dimensional Lie groups associated to the Bott Connection, AUT J. Math. Comput., 5 (2024), 305–319. https://doi.org/10.22060/AJMC.2023.22329.1153 doi: 10.22060/AJMC.2023.22329.1153
    [24] R. B. Chamazkoti, Lorentz Ricci solitons of four-dimensional non-Abelian nilpotent Lie groups, Mediterr. J. Math., 19 (2022), 111. https://doi.org/10.1007/s00009-022-02024-3 doi: 10.1007/s00009-022-02024-3
    [25] S. Azami, G. Fasihi-Ramandi, V. Pirhadi, Generalized Ricci solitons on non-reductive four-dimensional homogeneous spaces, J. Nonlinear Math. Phys., 30 (2023), 1069–1093. https://doi.org/10.1007/s44198-023-00116-6 doi: 10.1007/s44198-023-00116-6
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(64) PDF downloads(9) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog