In this paper, I define and classify the algebraic Schouten solitons associated with the Bott connection on three-dimensional Lorentzian Lie groups with three different distributions.
Citation: Jinguo Jiang. Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups[J]. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017
In this paper, I define and classify the algebraic Schouten solitons associated with the Bott connection on three-dimensional Lorentzian Lie groups with three different distributions.
[1] | R. S. Hamilton, The Ricci flow on surfaces, in mathematics and general relativity, Contemp. Math., 71 (1988), 237–261. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419 |
[2] | G. Perelman, The entropy formula for the ricci flow and its geometric applications, preprint, arXiv: math/0211159. https://doi.org/10.48550/arXiv.math/0211159 |
[3] | J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319 (2001), 715–733. https://doi.org/10.1007/PL00004456 doi: 10.1007/PL00004456 |
[4] | W. Batat, K. Onda, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), 138–152. https://doi.org/10.1016/j.geomphys.2016.11.018 doi: 10.1016/j.geomphys.2016.11.018 |
[5] | F. Etayo, R. Santamaría, Distinguished connections on $(J^2 = \pm 1)$-metric manifolds, Arch. Math., 52 (2016), 159–203. https://doi.org/10.5817/AM2016-3-159 doi: 10.5817/AM2016-3-159 |
[6] | Y. Wang, Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, Chin. Ann. Math. Ser. B, 43 (2022), 443–458. https://doi.org/10.1007/s11401-022-0334-5 doi: 10.1007/s11401-022-0334-5 |
[7] | S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2 |
[8] | S. Azami, Generalized Ricci solitons associated to perturbed canonical connection and perturbed Kobayashi-Nomizu connection on three-dimensional Lorentzian Lie groups, Afr. Mat., 35 (2024), 36. https://doi.org/10.1007/s13370-024-01184-7 doi: 10.1007/s13370-024-01184-7 |
[9] | J. A. Alvarez López, P. Tondeur, Hodge decomposition along the leaves of a Riemannian foliation, J. Funct. Anal., 99 (1991), 443–458. https://doi.org/10.1016/0022-1236(91)90048-A doi: 10.1016/0022-1236(91)90048-A |
[10] | F. Baudoin, Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations, in Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds, 1 (2016), 259–321. https://doi.org/10.4171/162-1/3 |
[11] | R. K. Hladky, Connections and curvature in sub-Riemannian geometry, Houston J. Math., 38 (2012), 1107–1134. |
[12] | F. Baudoin, E. Grong, K. Kuwada, A. Thalmaier, Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations, Calc. Var. Partial Differ. Equations, 58 (2019), 1308. https://doi.org/10.1007/s00526-019-1570-8 doi: 10.1007/s00526-019-1570-8 |
[13] | T. Wu, Y. Wang, Affine Ricci solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups, Turkish J. Math., 45 (2021), 2773–2816. https://doi.org/10.3906/mat-2105-49 doi: 10.3906/mat-2105-49 |
[14] | J. Yang, J. Miao, Algebraic Schouten solitons of Lorentzian Lie groups with Yano connections, Commun. Anal. Mech., 15 (2023), 763–791. https://doi.org/10.3934/cam.2023037 doi: 10.3934/cam.2023037 |
[15] | S. Liu, Algebraic schouten solitons of three-dimensional lorentzian lie groups, Symmetry, 15 (2023), 866. https://doi.org/10.3390/sym15040866 doi: 10.3390/sym15040866 |
[16] | T. H. Wears, On algebraic solitons for geometric evolution equations on three-dimensional Lie groups, Tbilisi Math. J., 9 (2016), 33–58. https://doi.org/10.1515/tmj-2016-0018 doi: 10.1515/tmj-2016-0018 |
[17] | J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math., 21 (1976), 293–329. https://doi.org/10.1016/S0001-8708(76)80002-3 doi: 10.1016/S0001-8708(76)80002-3 |
[18] | S. Rahmani, Métriques de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, J. Geom. Phys., 9 (1992), 295–302. https://doi.org/10.1016/0393-0440(92)90033-W doi: 10.1016/0393-0440(92)90033-W |
[19] | G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2017), 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005 doi: 10.1016/j.geomphys.2006.10.005 |
[20] | L. A. Cordero, P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat. Appl., 17 (1997), 129–155. |
[21] | A. Derdziński, C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc., 47 (1983), 15–26. https://doi.org/10.1112/plms/s3-47.1.15 doi: 10.1112/plms/s3-47.1.15 |
[22] | H. R. Salimi Moghaddam, On the geometry of some para-hypercomplex Lie groups, Arch. Math., 45 (2009), 159–170. |
[23] | G. F. Ramandi, S. Azami, V. Pirhadi, Generalized lorentzian Ricci solitons on 3-dimensional Lie groups associated to the Bott Connection, AUT J. Math. Comput., 5 (2024), 305–319. https://doi.org/10.22060/AJMC.2023.22329.1153 doi: 10.22060/AJMC.2023.22329.1153 |
[24] | R. B. Chamazkoti, Lorentz Ricci solitons of four-dimensional non-Abelian nilpotent Lie groups, Mediterr. J. Math., 19 (2022), 111. https://doi.org/10.1007/s00009-022-02024-3 doi: 10.1007/s00009-022-02024-3 |
[25] | S. Azami, G. Fasihi-Ramandi, V. Pirhadi, Generalized Ricci solitons on non-reductive four-dimensional homogeneous spaces, J. Nonlinear Math. Phys., 30 (2023), 1069–1093. https://doi.org/10.1007/s44198-023-00116-6 doi: 10.1007/s44198-023-00116-6 |