Accurate interval prediction of wind speed plays a vital role in ensuring the efficiency and stability of wind power generation. Due to insufficient traditional wind speed interval prediction methods for mining nonlinear features, in this paper, a novel interval prediction method was proposed by combining improved wavelet threshold and deep learning (BiTCN-BiGRU) with the nutcracker optimization algorithm (NOA). First, NOA was used to optimize the wavelet transform (WT) and BiTCN-BiGRU. Second, we applied NOA-WT to smooth the wind speed data. Then, to capture nonlinear features of time series, phase space reconstruction (PSR) was utilized to identify chaotic characteristics of the processed data. Finally, the NOA-BiTCN-BiGRU model was built to perform wind speed interval prediction. Under the same hyperparameters and network structure settings, a comparison with other deep learning methods showed that the prediction interval coverage probability (PICP) and prediction interval mean width (PIMW) of NOA-WT-BiTCN-BiGRU model achieves the best balance, with good prediction accuracy and generalization performance. This research can provide reference and guidance for nonlinear time-series interval prediction in the real world.
Citation: Xinyi Xu, Shaojuan Ma, Cheng Huang. Uncertainty prediction of wind speed based on improved multi-strategy hybrid models[J]. Electronic Research Archive, 2025, 33(1): 294-326. doi: 10.3934/era.2025016
Accurate interval prediction of wind speed plays a vital role in ensuring the efficiency and stability of wind power generation. Due to insufficient traditional wind speed interval prediction methods for mining nonlinear features, in this paper, a novel interval prediction method was proposed by combining improved wavelet threshold and deep learning (BiTCN-BiGRU) with the nutcracker optimization algorithm (NOA). First, NOA was used to optimize the wavelet transform (WT) and BiTCN-BiGRU. Second, we applied NOA-WT to smooth the wind speed data. Then, to capture nonlinear features of time series, phase space reconstruction (PSR) was utilized to identify chaotic characteristics of the processed data. Finally, the NOA-BiTCN-BiGRU model was built to perform wind speed interval prediction. Under the same hyperparameters and network structure settings, a comparison with other deep learning methods showed that the prediction interval coverage probability (PICP) and prediction interval mean width (PIMW) of NOA-WT-BiTCN-BiGRU model achieves the best balance, with good prediction accuracy and generalization performance. This research can provide reference and guidance for nonlinear time-series interval prediction in the real world.
[1] |
V. Vigneshwar, S. Y. Krishnan, R. S. Kishna, R. Srinath, B. Ashok, K. Nanthagopal, Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications, Renewable Sustainable Energy Rev., 115 (2019), 109397. https://doi.org/10.1016/j.rser.2019.109397 doi: 10.1016/j.rser.2019.109397
![]() |
[2] |
M. DeCastro, S. Salvador, M. Gómez-Gesteira, X. Costoya, D. Carvalho, F. J. Sanz-Larruga, et al., Europe, China and the United States: Three different approaches to the development of offshore wind energy, Renewable Sustainable Energy Rev., 109 (2019), 55–70. https://doi.org/10.1016/j.rser.2019.04.025 doi: 10.1016/j.rser.2019.04.025
![]() |
[3] |
J. Chen, G. Q. Zeng, W. Zhou, W. Du, K. D. Lu, Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization, Energy Convers. Manage., 165 (2018), 681–695. https://doi.org/10.1016/j.enconman.2018.03.098 doi: 10.1016/j.enconman.2018.03.098
![]() |
[4] |
D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
![]() |
[5] |
D. L. Donoho, I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., 90 (1995), 1200–1224. https://doi.org/10.1515/9781400827268.833 doi: 10.1515/9781400827268.833
![]() |
[6] | S. Wu, L. Jia, Y. Liu, Ultra-short-term wind energy prediction based on wavelet denoising and multivariate LSTM, in 2021 Power System and Green Energy Conference (PSGEC), IEEE, (2021), 443–447. https://doi.org/10.1109/psgec51302.2021.9541909 |
[7] |
L. Lian, K. He, Wind power prediction based on wavelet denoising and improved slime mold algorithm optimized support vector machine, Wind Eng., 46 (2022), 866–885. https://doi.org/10.1177/0309524x211056822 doi: 10.1177/0309524x211056822
![]() |
[8] |
I. Karijadi, S. Y. Chou, A. Dewabharata, Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method, Renewable Energy, 218 (2023), 119357. https://doi.org/10.1016/j.renene.2023.119357 doi: 10.1016/j.renene.2023.119357
![]() |
[9] |
S. E. Kelly, Gibbs phenomenon for wavelets, Appl. Comput. Harmon. Anal., 3 (1996), 72–81. https://doi.org/10.1006/acha.1996.0006 doi: 10.1006/acha.1996.0006
![]() |
[10] | Y. Lin, J. Cai, A new threshold function for signal denoising based on wavelet transform, in 2010 International Conference on Measuring Technology and Mechatronics Automation, IEEE, (2010), 200–203. https://doi.org/10.1109/icmtma.2010.347 |
[11] | L. Su, G. Zhao, R. Zhang, Translation-invariant wavelet de-noising method with improved thresholding, in IEEE International Symposium on Communications and Information Technology, IEEE, (2005), 619–622. https://doi.org/10.1109/iscit.2005.1566931 |
[12] |
Z. Peng, S. Peng, L. Fu, B. Lu, J. Tang, K. Wang, et al., A novel deep learning ensemble model with data denoising for short-term wind speed forecasting, Appl. Comput. Harmon. Anal., 207 (2020), 112524. https://doi.org/10.1016/j.enconman.2020.112524 doi: 10.1016/j.enconman.2020.112524
![]() |
[13] |
L. Jing-Yi, L. Hong, Y. Dong, Z. Yan-Sheng, A new wavelet threshold function and denoising application, Math. Probl. Eng., 1 (2016), 3195492. https://doi.org/10.1155/2016/3195492 doi: 10.1155/2016/3195492
![]() |
[14] |
Y. Wang, C. Xu, Y. Wang, X. Cheng, A comprehensive diagnosis method of rolling bearing fault based on CEEMDAN-DFA-improved wavelet threshold function and QPSO-MPE-SVM, Entropy, 23 (2021), 1142. https://doi.org/10.3390/e23091142 doi: 10.3390/e23091142
![]() |
[15] | Y. Qian, Image denoising algorithm based on improved wavelet threshold function and median filter, in 2018 IEEE 18th International Conference on Communication Technology (ICCT), IEEE, (2018), 1197–1202. https://doi.org/10.1109/icct.2018.8599921 |
[16] |
H. H. Goh, L. Liao, D. Zhang, W. Dai, C. S. Lim, T. A. Kurniawan, et al., Denoising transient power quality disturbances using an improved adaptive wavelet threshold method based on energy optimization, Energies, 15 (2022), 3081. https://doi.org/10.3390/en15093081 doi: 10.3390/en15093081
![]() |
[17] | Y. Qiao, Q. Li, H. Qian, X. Song, Seismic signal denoising method based on CEEMD and improved wavelet threshold, in IOP Conference Series: Earth and Environmental Science, (2021), 012036. https://doi.org/10.1088/1755-1315/671/1/012036 |
[18] |
C. Hu, F. Xing, S. Pan, R. Yuan, Y. Lv, Fault diagnosis of rolling bearings based on variational mode decomposition and genetic algorithm-optimized wavelet threshold denoising, Machines, 10 (2022), 649. https://doi.org/10.3390/machines10080649 doi: 10.3390/machines10080649
![]() |
[19] |
F. Ji, X. Cai, J. Zhang, Wind power prediction interval estimation method using wavelet-transform neuro-fuzzy network, J. Intell. Fuzzy Syst., 29 (2015), 2439–2445. https://doi.org/10.3233/ifs-151944 doi: 10.3233/ifs-151944
![]() |
[20] |
R. Li, Y. Jin, A wind speed interval prediction system based on multi-objective optimization for machine learning method, Appl. Energy, 228 (2018), 2207–2220. https://doi.org/10.1016/j.apenergy.2018.07.032 doi: 10.1016/j.apenergy.2018.07.032
![]() |
[21] |
Y. Zhang, G. Pan, Y. Zhao, Q. Li, F. Wang, Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution, Energy Convers. Manage., 224 (2020), 113346. https://doi.org/10.1016/j.enconman.2020.113346 doi: 10.1016/j.enconman.2020.113346
![]() |
[22] |
Z. Gan, C. Li, J. Zhou, G. Tang, Temporal convolutional networks interval prediction model for wind speed forecasting, Electr. Power Syst. Res., 191 (2021), 106865. https://doi.org/10.1016/j.epsr.2020.106865 doi: 10.1016/j.epsr.2020.106865
![]() |
[23] |
Y. Liu, H. Qin, Z. Zhang, S. Pei, Z. Jiang, Z. Feng, et al., Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model, Appl. Energy, 260 (2020), 114259. https://doi.org/10.1016/j.apenergy.2019.114259 doi: 10.1016/j.apenergy.2019.114259
![]() |
[24] |
X. Yuan, C. Chen, M. Jiang, Y. Yuan, Prediction interval of wind power using parameter optimized Beta distribution based LSTM model, Appl. Soft Comput., 82 (2019), 105550. https://doi.org/10.1016/j.asoc.2019.105550 doi: 10.1016/j.asoc.2019.105550
![]() |
[25] |
N. Pei, Y. Wu, R. Su, X. Li, Z. Wu, R. Li, et al., Interval prediction of the permeability of granite bodies in a high-level radioactive waste disposal site using LSTM-RNNs and probability distribution, Front. Earth Sci., 10 (2022), 835308. https://doi.org/10.3389/feart.2022.835308 doi: 10.3389/feart.2022.835308
![]() |
[26] |
K. Zhang, X. Yu, S. Liu, X. Dong, D. Li, H. Zang, et al., Wind power interval prediction based on hybrid semi-cloud model and nonparametric kernel density estimation, Energy Rep., 8 (2022), 1068–1078. https://doi.org/10.1016/j.egyr.2022.02.094 doi: 10.1016/j.egyr.2022.02.094
![]() |
[27] |
J. Wang, S. Wang, B. Zeng, H. Lu, A novel ensemble probabilistic forecasting system for uncertainty in wind speed, Appl. Energy, 313 (2022), 118796. https://doi.org/10.1016/j.apenergy.2022.118796 doi: 10.1016/j.apenergy.2022.118796
![]() |
[28] |
X. Peng, H. Wang, J. Lang, W. Li, Q. Xu, Z. Zhang, et al., EALSTM-QR: Interval wind-power prediction model based on numerical weather prediction and deep learning, Energy, 220 (2021), 119692. https://doi.org/10.1016/j.energy.2020.119692 doi: 10.1016/j.energy.2020.119692
![]() |
[29] |
J. Wang, S. Wang, Z. Li, Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression, Renewable Energy, 179 (2021), 1246–1261. https://doi.org/10.1016/j.renene.2021.07.113 doi: 10.1016/j.renene.2021.07.113
![]() |
[30] |
M. Abdel-Basset, R. Mohamed, M. Jameel, M. Abouhawwash, Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems, Knowl.-Based Syst., 262 (2023), 110248. https://doi.org/10.1016/j.knosys.2022.110248 doi: 10.1016/j.knosys.2022.110248
![]() |
[31] | J. Zhou, X. Lu, Y. Xiao, J. Su, J. Lyu, Y. Ma, et al., Sdwpf: A dataset for spatial dynamic wind power forecasting challenge at kdd cup 2022, preprint, arXiv: 2208.04360. |
[32] | L. Tang, J. Liang, CC method to phase space reconstruction based on multivariate time series, in 2011 2nd International Conference on Intelligent Control and Information Processing, IEEE, (2011), 438–441. https://doi.org/10.1109/icicip.2011.6008282 |
[33] |
A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285–317. https://doi.org/10.1007/bfb0086675 doi: 10.1007/bfb0086675
![]() |
[34] |
J. Xue, B. Shen, A novel swarm intelligence optimization approach: sparrow search algorithm, Syst. Sci. Control Eng., 8 (2020), 22–34. https://doi.org/10.1080/21642583.2019.1708830 doi: 10.1080/21642583.2019.1708830
![]() |
[35] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1201/9781003206477-8 |
[36] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |