Research article

IOOA: A multi-strategy fusion improved Osprey Optimization Algorithm for global optimization

  • † The authors contributed equally to this work.
  • Received: 27 December 2023 Revised: 23 February 2024 Accepted: 28 February 2024 Published: 07 March 2024
  • With the widespread application of metaheuristic algorithms in engineering and scientific research, finding algorithms with efficient global search capabilities and precise local search performance has become a hot topic in research. The osprey optimization algorithm (OOA) was first proposed in 2023, characterized by its simple structure and strong optimization capability. However, practical tests have revealed that the OOA algorithm inevitably encounters common issues faced by metaheuristic algorithms, such as the tendency to fall into local optima and reduced population diversity in the later stages of the algorithm's iterations. To address these issues, a multi-strategy fusion improved osprey optimization algorithm is proposed (IOOA). First, the characteristics of various chaotic mappings were thoroughly explored, and the adoption of Circle chaotic mapping to replace pseudo-random numbers for population initialization improvement was proposed, increasing initial population diversity and improving the quality of initial solutions. Second, a dynamically adjustable elite guidance mechanism was proposed to dynamically adjust the position updating method according to different stages of the algorithm's iteration, ensuring the algorithm maintains good global search capabilities while significantly increasing the convergence speed of the algorithm. Lastly, a dynamic chaotic weight factor was designed and applied in the development stage of the original algorithm to enhance the algorithm's local search capability and improve the convergence accuracy of the algorithm. To fully verify the effectiveness and practical engineering applicability of the IOOA algorithm, simulation experiments were conducted using 21 benchmark test functions and the CEC-2022 benchmark functions, and the IOOA algorithm was applied to the LSTM power load forecasting problem as well as two engineering design problems. The experimental results show that the IOOA algorithm possesses outstanding global optimization performance in handling complex optimization problems and broad applicability in practical engineering applications.

    Citation: Xiaodong Wen, Xiangdong Liu, Cunhui Yu, Haoning Gao, Jing Wang, Yongji Liang, Jiangli Yu, Yan Bai. IOOA: A multi-strategy fusion improved Osprey Optimization Algorithm for global optimization[J]. Electronic Research Archive, 2024, 32(3): 2033-2074. doi: 10.3934/era.2024093

    Related Papers:

  • With the widespread application of metaheuristic algorithms in engineering and scientific research, finding algorithms with efficient global search capabilities and precise local search performance has become a hot topic in research. The osprey optimization algorithm (OOA) was first proposed in 2023, characterized by its simple structure and strong optimization capability. However, practical tests have revealed that the OOA algorithm inevitably encounters common issues faced by metaheuristic algorithms, such as the tendency to fall into local optima and reduced population diversity in the later stages of the algorithm's iterations. To address these issues, a multi-strategy fusion improved osprey optimization algorithm is proposed (IOOA). First, the characteristics of various chaotic mappings were thoroughly explored, and the adoption of Circle chaotic mapping to replace pseudo-random numbers for population initialization improvement was proposed, increasing initial population diversity and improving the quality of initial solutions. Second, a dynamically adjustable elite guidance mechanism was proposed to dynamically adjust the position updating method according to different stages of the algorithm's iteration, ensuring the algorithm maintains good global search capabilities while significantly increasing the convergence speed of the algorithm. Lastly, a dynamic chaotic weight factor was designed and applied in the development stage of the original algorithm to enhance the algorithm's local search capability and improve the convergence accuracy of the algorithm. To fully verify the effectiveness and practical engineering applicability of the IOOA algorithm, simulation experiments were conducted using 21 benchmark test functions and the CEC-2022 benchmark functions, and the IOOA algorithm was applied to the LSTM power load forecasting problem as well as two engineering design problems. The experimental results show that the IOOA algorithm possesses outstanding global optimization performance in handling complex optimization problems and broad applicability in practical engineering applications.



    加载中


    [1] L. Abualigah, M. A. Elaziz, A. M. Khasawneh, M. Alshinwan, A. H. Gandomi, Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results, Neural Comput. Appl., 34 (2022), 4081–4110. https://doi.org/10.1007/s00521-021-06747-4 doi: 10.1007/s00521-021-06747-4
    [2] Y. F. Cui, Z. Q. Geng, Q. X. Zhu, Y. M. Han, Review: Multi-objective optimization methods and application in energy saving, Energy, 125 (2017), 681–704. https://doi.org/10.1016/j.energy.2017.02.174 doi: 10.1016/j.energy.2017.02.174
    [3] J. Tang, G. Liu, Q. Pan, A Review on Representative swarm intelligence algorithms for solving optimization problems:applications and trends, IEEE/CAA J. Autom. Sin., 8 (2021), 1627–1643. https://doi.org/10.1109/JAS.2021.1004129 doi: 10.1109/JAS.2021.1004129
    [4] M. N. Omidvar, X. D. Li, X. Yao, A review of population-based metaheuristics for large-scale black-box global optimization-Part Ⅰ, IEEE Trans. Evol. Comput., 26 (2022), 802–822. https://doi.org/10.1109/TEVC.2021.3130838 doi: 10.1109/TEVC.2021.3130838
    [5] H. David, G. William, No free lunch theorems for search, Technical Report, 122 (1995), 431–434.
    [6] H. J. Yu, Y. H. Wang, H. M. Jia, L. Abualigah, Modified prairie dog optimization algorithm for global optimization and constrained engineering problems, Math. Biosci. Eng., 20 (2023), 19086–19132. https://doi.org/10.3934/mbe.2023844 doi: 10.3934/mbe.2023844
    [7] C. Ye, W. T. Wang, S. P. Zhang, P. Shao, Optimizing 3D UAV path planning: A multi-strategy enhanced beluga whale optimizer, Lect. Notes Artif. Intell., 14448 (2024), 42–54.
    [8] W. Y. Du, J. Ma, W. J. Yin, Orderly charging strategy of electric vehicle based on improved PSO algorithm, Energy, 271 (2022), 127088. https://doi.org/10.1016/j.energy.2023.127088 doi: 10.1016/j.energy.2023.127088
    [9] D. Tansui, A. Thammano, Hybrid nature-inspired optimization algorithm: hydrozoan and sea turtle foraging algorithms for solving continuous optimization problems, IEEE Access, 8 (2020), 65780–65800. https://doi.org/10.1109/ACCESS.2020.2984023 doi: 10.1109/ACCESS.2020.2984023
    [10] C. L. Zhang, S. F. Ding, A stochastic configuration network based on chaotic sparrow search algorithm, Knowledge-Based Syst., 220 (2021), 106924. https://doi.org/10.1016/j.knosys.2021.106924 doi: 10.1016/j.knosys.2021.106924
    [11] J. O. Agushaka, A. E. Ezugwu, Initialisation approaches for population-based metaheuristic algorithms: A comprehensive review, Appl. Sci., 12 (2022), 896. https://doi.org/10.3390/app12020896 doi: 10.3390/app12020896
    [12] Z. M. Gao, J. Zhao, Y. J. Zhang, Review of chaotic mapping enabled nature-inspired algorithms, Math. Biosci. Eng., 19 (2022), 8215–8258. https://doi.org/10.3934/mbe.2022383 doi: 10.3934/mbe.2022383
    [13] G. Atali, L. Pehlvan, B. Grevn, H. L. Seker, Chaos in metaheuristic based artificial intelligence algorithms: A short review, Turk. J. Electr. Eng. Comput. Sci., 29 (2021), 1354–1367. https://doi.org/10.3906/elk-2102-5 doi: 10.3906/elk-2102-5
    [14] S. Ahmad, M. Sulaiman, P. Kumam, Z. Hussain, M. A. Jan, W. K. Mashwani, et al., A novel population initialization strategy for accelerating Levy flights based multi-verse optimizer, J. Intell. Fuzzy Syst., 39 (2020), 1–17. https://doi.org/10.3233/JIFS-190112 doi: 10.3233/JIFS-190112
    [15] W. A. Hussein, S. Sahran, S. N. H. S. Abdullah, Patch-Levy-based initialization algorithm for Bees Algorithm, Appl. Soft Comput., 23 (2014), 104–121. https://doi.org/10.1016/j.asoc.2014.06.004 doi: 10.1016/j.asoc.2014.06.004
    [16] L. P. Chen, J. H. Gao, A. M. Lopes, Z. Q. Zhang, Z. B. Chu, R. C. Wu, Adaptive fractional-order genetic-particle swarm optimization Otsu algorithm for image segmentation, Appl. Intell., 53 (2023), 26949–26966.
    [17] W. C. Huang, G. G. Zhang, Bearing fault-detection method based on improved grey wolf algorithm to optimize parameters of multistable stochastic resonance, Sensors, 23 (2023), 6529. https://doi.org/10.3390/s23146529 doi: 10.3390/s23146529
    [18] M. L. Zhao, H. A. Zhao, M. Zhao, Particle swarm optimization algorithm with adaptive two-population strategy, IEEE Access, 11 (2023), 62242–62260. https://doi.org/10.1109/ACCESS.2023.3287859 doi: 10.1109/ACCESS.2023.3287859
    [19] Y. Chun, X. Hua, Improved sine cosine algorithm for optimization problems based on self-adaptive weight and social strategy, IEEE Access, 11 (2023), 73053–73061. https://doi.org/10.1109/ACCESS.2023.3294993 doi: 10.1109/ACCESS.2023.3294993
    [20] K. Y. Zhong, Q. F. Luo, Y. Q. Zhou, M. Jiang, TLMPA: Teaching-learning-based marine predators algorithm, AIMS Math., 6 (2021), 1395–1442. https://doi.org/10.3934/math.2021087 doi: 10.3934/math.2021087
    [21] J. Wu, R. J. Nan, L. Chen, Improved salp swarm algorithm based on weight factor and adaptive mutation, J. Exp. Theor. Artif. Intell., 31 (2019), 493–515. https://doi.org/10.1080/0952813X.2019.1572659 doi: 10.1080/0952813X.2019.1572659
    [22] M. Dehghani, P. Trojovsky, Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems, Front. Mech. Eng., 8 (2023), 1126450. https://doi.org/10.3389/fmech.2022.1126450 doi: 10.3389/fmech.2022.1126450
    [23] S. B.Aydemir, A novel arithmetic optimization algorithm based on chaotic maps for global optimization, Evol. Intell., 16 (2022), 981–996. https://doi.org/10.1007/s12065-022-00711-4 doi: 10.1007/s12065-022-00711-4
    [24] T. Y. Wu, H. N. Li, S. C. Chu, CPPE: An improved phasmatodea population evolution algorithm with chaotic maps, Mathmatics, 11 (2023), 1977. https://doi.org/10.3390/math11091977 doi: 10.3390/math11091977
    [25] M. Jamil, X. S. Yang, H. J. Zepernick, Test functions for global optimization: A comprehensive survey, Swarm intell. Bio-Inspired Comput., (2013), 193–222. https://doi.org/10.1016/B978-0-12-405163-8.00008-9 doi: 10.1016/B978-0-12-405163-8.00008-9
    [26] J. C. Bansal, P. K. Singh, N. R. Pal, Particle swarm optimization, Evol. Swarm Intell. Algorithms, (2019), 11–23.
    [27] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [28] L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. A. Al-qaness, A. H. Gandomi, Aquila optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250
    [29] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [30] N. Chopra, M. M. Ansari, Golden jackal optimization: A novel nature-inspired optimizer for engineering applications, Expert Syst. Appl., 198 (2022), 116934. https://doi.org/10.1016/j.eswa.2022.116934 doi: 10.1016/j.eswa.2022.116934
    [31] J. K. Xue, B. Shen, Dung beetle optimizer: A new meta-heuristic algorithm for global optimization, J. Supercomput., 79 (2023), 7305–7336. https://doi.org/10.1007/s11227-022-04959-6 doi: 10.1007/s11227-022-04959-6
    [32] J. Derrac, S. Garcia, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1 (2011), 3–18. https://doi.org/10.1016/j.swevo.2011.02.002 doi: 10.1016/j.swevo.2011.02.002
    [33] Y. Zhang, P. T. Liu, Research on reactive power optimization based on hybrid osprey optimization algorithm, Energies, 16 (2023), 7101. https://doi.org/10.3390/en16207101 doi: 10.3390/en16207101
    [34] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl., 166 (2021), 113917. https://doi.org/10.1016/j.eswa.2020.113917 doi: 10.1016/j.eswa.2020.113917
    [35] S. R. Khuntia, J. L. Rueda, M. A. M. M. van der Meijden, Forecasting the load of electrical power systems in mid- and long-term horizons: A review, IET Gener. Transm. Distrib., 10 (2016), 3971–3977. https://doi.org/10.1049/iet-gtd.2016.0340 doi: 10.1049/iet-gtd.2016.0340
    [36] M. Abumohsen, A. Y. Owda, M. Owda, Electrical load forecasting using LSTM, GRU, and RNN algorithms, Energies, 16 (2023), 2283. https://doi.org/10.3390/en16052283 doi: 10.3390/en16052283
    [37] Y. Yu, X. S. Si, C. H. Hu, J. X. Zhang, A review of recurrent neural networks: LSTM cells and network architectures, Neural Comput., 31 (2019), 1235–1270.
    [38] S. L. Wang, Y. C. Fan, S. Y. Jin, P. Takyi-Aninakwa, C. Fernandez, Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries, Reliab. Eng. Syst. Saf., 230 (2022), 108920. https://doi.org/10.1016/j.ress.2022.108920 doi: 10.1016/j.ress.2022.108920
    [39] S. L. Wang, F. Wu, P. Takyi-Aninakwa, C. Fernandez, D. Stroe, Q. Huang, Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations, Energy, 284 (2023), 128677. https://doi.org/10.1016/j.energy.2023.128677 doi: 10.1016/j.energy.2023.128677
    [40] Y. S. Sun, Y. T. Cheng, T. Liu, Q. Huang, J. N. Guo, W. L. Jin, Research on signal detection of OFDM systems based on the LSTM network optimized by the improved chameleon swarm algorithm, Mathmatics, 11 (2023), 1989. https://doi.org/10.3390/math11091989 doi: 10.3390/math11091989
    [41] N. Bacanin, L. Jovanovic, M. Zivkovic, V. Kandasamy, M. Antonijevic, M. Deveci, et al., Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks, Inf. Sci., 642 (2023), 119122. https://doi.org/10.1016/j.ins.2023.119122 doi: 10.1016/j.ins.2023.119122
    [42] A. Tzanetos, M. Blondin, A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction, Eng. Appl. Artif. Intell., 118 (2022), 105521. https://doi.org/10.1016/j.engappai.2022.105521 doi: 10.1016/j.engappai.2022.105521
    [43] L. Abualigah, M. A. Elaziz, A. Khasawneh, M. Alshinwan, R. Ibrahim, M. A. A. Al-qaness, et al., Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results, Neural Comput. Appl., 34 (2022), 4081–4110. https://doi.org/10.1007/s00521-021-06747-4 doi: 10.1007/s00521-021-06747-4
    [44] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. L. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [45] S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intell., 90 (2020), 103541. https://doi.org/10.1016/j.engappai.2020.103541 doi: 10.1016/j.engappai.2020.103541
    [46] S. M. Li, H. L. Chen, M. J. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [47] P. Trojovsky, M. Dehghani, Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving optimization problems, Biomimetics, 8 (2023), 149. https://doi.org/10.3390/biomimetics8020149 doi: 10.3390/biomimetics8020149
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1448) PDF downloads(157) Cited by(1)

Article outline

Figures and Tables

Figures(14)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog