The bond incident degree (BID) index of a graph $ G $ is defined as $ BID_{f}(G) = \sum_{uv\in E(G)}f(d(u), d(v)) $, where $ d(u) $ is the degree of a vertex $ u $ and $ f $ is a non-negative real valued symmetric function of two variables. A graph is stepwise irregular if the degrees of any two of its adjacent vertices differ by exactly one. In this paper, we give a sharp upper bound on the maximum degree of stepwise irregular graphs of order $ n $ when $ n\equiv 2({\rm{mod}}\;4) $, and we give upper bounds on $ BID_{f} $ index in terms of the order $ n $ and the maximum degree $ \Delta $. Moreover, we completely characterize the extremal stepwise irregular graphs of order $ n $ with respect to $ BID_{f} $.
Citation: Damchaa Adiyanyam, Enkhbayar Azjargal, Lkhagva Buyantogtokh. Bond incident degree indices of stepwise irregular graphs[J]. AIMS Mathematics, 2022, 7(5): 8685-8700. doi: 10.3934/math.2022485
The bond incident degree (BID) index of a graph $ G $ is defined as $ BID_{f}(G) = \sum_{uv\in E(G)}f(d(u), d(v)) $, where $ d(u) $ is the degree of a vertex $ u $ and $ f $ is a non-negative real valued symmetric function of two variables. A graph is stepwise irregular if the degrees of any two of its adjacent vertices differ by exactly one. In this paper, we give a sharp upper bound on the maximum degree of stepwise irregular graphs of order $ n $ when $ n\equiv 2({\rm{mod}}\;4) $, and we give upper bounds on $ BID_{f} $ index in terms of the order $ n $ and the maximum degree $ \Delta $. Moreover, we completely characterize the extremal stepwise irregular graphs of order $ n $ with respect to $ BID_{f} $.
[1] | A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree indices, Discrete Appl. Math., 238 (2018), 32–40. https://doi.org/10.1016/j.dam.2017.12.007 doi: 10.1016/j.dam.2017.12.007 |
[2] | A. Ali, Z. Raza, A. A. Bhatti, Extremal pentagonal chains with respect to bond incident degree indices, Can. J. Chem., 94 (2016), 870–876. https://doi.org/10.1139/cjc-2016-0308 doi: 10.1139/cjc-2016-0308 |
[3] | A. Ali, Z. Raza, A. A. Bhatti, Bond incident degree (BID) indices for some nanostructures, Optoelectron. Adv. Mat., 10 (2016), 108–112. https://doi.org/10.5184/classicalj.112.1.0108 doi: 10.5184/classicalj.112.1.0108 |
[4] | B. Bollobás, P. Erdös, A. Sarkar, Extremal graphs for weights, Discrete Math., 200 (1999), 5–19. https://doi.org/10.1016/S0012-365X(98)00320-3 doi: 10.1016/S0012-365X(98)00320-3 |
[5] | B. Borovicanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH-Commun. Math. Comput. Chem., 78 (2017), 17–100. https://doi.org/10.1016/j.urology.2016.08.056 doi: 10.1016/j.urology.2016.08.056 |
[6] | L. Buyantogtokh, E. Azjargal, B. Horoldagva, S. Dorjsembe, D. Adiyanyam, On the maximum size of stepwise irregular graphs, Appl. Math. Comput., 392 (2021), 125683. https://doi.org/10.1016/j.amc.2020.125683 doi: 10.1016/j.amc.2020.125683 |
[7] | L. Buyantogtokh, B. Horoldagva, K. C. Das, On reduced second Zagreb index, J. Comb. Optim., 39 (2020), 776–791. https://doi.org/10.1007/s10878-019-00518-7 doi: 10.1007/s10878-019-00518-7 |
[8] | K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH-Commun. Math. Comput. Chem., 52 (2004), 103–112. |
[9] | K. C. Das, I. Gutman, B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices of trees, MATCH-Commun. Math. Comput. Chem., 68 (2012), 189–198. |
[10] | M. Enteshari, B. Taeri, Extremal Zagreb indices of graphs of order $n$ with $p$ pendent vertices, MATCH-Commun. Math. Comput. Chem., 86 (2021), 17–28. |
[11] | S. Filipovski, New bounds for the first Zagreb index, MATCH-Commun. Math. Comput. Chem., 85 (2021), 303–312. |
[12] | B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices, Discr. Appl. Math., 178 (2014), 83–88. https://doi.org/10.1016/j.dam.2014.06.011 doi: 10.1016/j.dam.2014.06.011 |
[13] | I. Gutman, Degree-based topological indices, Croat. Chem. Acta., 86 (2013), 351–361. http://dx.doi.org/10.5562/cca2294 doi: 10.5562/cca2294 |
[14] | I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst., 1 (2011), 13–19. |
[15] | I. Gutman, Stepwise irregular graphs, Appl. Math. Comput., 325 (2018), 234–238. https://doi.org/10.1016/j.amc.2017.12.045 doi: 10.1016/j.amc.2017.12.045 |
[16] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH-Commun. Math. Comput. Chem., 86 (2021), 11–16. |
[17] | I. Gutman, Sombor index-one year later, Bulletin Classe de Sciences Mathematiques et Naturelles, Sciences Mathematiques, 45 (2020), 43–55. Available from: https://www.jstor.org/stable/27053354. |
[18] | B. Horoldagva, K. C. Das, On Zagreb indices of graphs, MATCH-Commun. Math. Comput. Chem., 85 (2021), 295–301. |
[19] | B. Horoldagva, I. Gutman, On some vertex-degree-based graph invariants, MATCH-Commun. Math. Comput. Chem., 65 (2011), 723–730. https://doi.org/10.1055/s-0030-1257059 doi: 10.1055/s-0030-1257059 |
[20] | B. Horoldagva, C. Xu, On Sombor index of graphs, MATCH-Commun. Math. Comput. Chem., 86 (2021), 703–713. |
[21] | B. Horoldagva, C. Xu, L. Buyantogtokh, Sh. Dorjsembe, Extremal graphs with respect to the multiplicative sum Zagreb index, MATCH-Commun. Math. Comput. Chem., 84 (2020), 773–786. |
[22] | J. B. Liu, A. Q. Baig, M. Imran, W. Khalid, M. Saeed, M. R.Farahani, Computation of bond incident degree (BID) indices of complex structures in drugs, Eurasian Chem. Commun., 2 (2020), 672–679. https://doi.org/10.33945/SAMI/ECC.2020.6.4 doi: 10.33945/SAMI/ECC.2020.6.4 |
[23] | H. Liu, L. You, Z. Tang, J. B. Liu, On the reduced Sombor index and its applications, MATCH-Commun. Math. Comput. Chem., 86 (2021), 729–753. |
[24] | J. Liu, Q. Zhang, Sharp upper bounds on multiplicative Zagreb indices, MATCH-Commun. Math. Comput. Chem., 68 (2012), 231–240. |
[25] | Y. Rao, A. Aslam, M. U. Noor, A. O. Almatroud, Z. Shao, Bond incident degree indices of catacondensed pentagonal systems, Complexity, 2020, 493576. https://doi.org/10.1155/2020/4935760 doi: 10.1155/2020/4935760 |
[26] | T. Réti, T. Došlić, A. Ali, On the Sombor index of graphs, Contrib. Math., 3 (2021), 11–18. https://doi.org/10.47443/cm.2021.0006 doi: 10.47443/cm.2021.0006 |
[27] | Y. Tang, D. B. West, B. Zhou, Extremal problems for degree-based topological indices, Discrete Appl. Math., 203 (2016), 134–143. https://doi.org/10.1016/j.dam.2015.09.011 doi: 10.1016/j.dam.2015.09.011 |
[28] | K. Xu, K. C. Das, Trees, unicyclic and bicyclic graphs extremal with respect to multiplicative sum Zagreb index, MATCH-Commun. Math. Comput. Chem., 68 (2012), 257–272. |