Citation: Jie Feng, Mattheos Santamouris. Numerical techniques for electromagnetic simulation of daytime radiative cooling: A review[J]. AIMS Materials Science, 2019, 6(6): 1049-1064. doi: 10.3934/matersci.2019.6.1049
[1] | Founda D, Santamouris M (2017) Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci Rep 7: 10973. doi: 10.1038/s41598-017-11407-6 |
[2] | Santamouris M, Feng J (2018) Recent progress in daytime radiative cooling: is it the air conditioner of the future? Buildings 8: 168. doi: 10.3390/buildings8120168 |
[3] | Eriksson TS, Jiang SJ, Granqvist CG (1985) Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering. Sol Energy Mater 12: 319-325. doi: 10.1016/0165-1633(85)90001-2 |
[4] | Eriksson TS, Jiang SJ, Granqvist CG (1985) Dielectric function of sputter-deposited silicon dioxide and silicon nitride films in the thermal infrared. Appl Opt 24: 745-746. doi: 10.1364/AO.24.000745 |
[5] | Miyazaki H, Okada K, Jinno K, et al. (2016) Fabrication of radiative cooling devices using Si2N2O nano-particles. J Ceram Soc JPN 124: 1185-1187. doi: 10.2109/jcersj2.16164 |
[6] | Berdahl P (1984) Radiative cooling with MgO and/or LiF layers. Appl Opt 23: 370-372. doi: 10.1364/AO.23.000370 |
[7] | Harrison AW, Walton MR (1978) Radiative cooling of TiO2 white paint. Sol Energ 20: 185-188. doi: 10.1016/0038-092X(78)90195-0 |
[8] | Raman AP, Anoma MA, Zhu L, et al. (2014) Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515: 540-544. doi: 10.1038/nature13883 |
[9] | Bao H, Yan C, Wang B, et al. (2017) Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol Energ Mat Sol C 168: 78-84. doi: 10.1016/j.solmat.2017.04.020 |
[10] | Kecebas MA, Menguc MP, Kosar A, et al. (2017) Passive radiative cooling design with broadband optical thin-film filters. J Quant Spectrosc Radiat Transfer 198: 179-186. doi: 10.1016/j.jqsrt.2017.03.046 |
[11] | Hervé A, Drevillon J, Ezzahri Y, et al. (2018) Radiative cooling by tailoring surfaces with microstructures. J Quant Spectrosc Radiat Transfer 221: 155-163. doi: 10.1016/j.jqsrt.2018.09.015 |
[12] | Ono M, Chen K, Li W, et al. (2018) Self-adaptive radiative cooling based on phase change materials. Opt Express 26: A777-A787. doi: 10.1364/OE.26.00A777 |
[13] | Suichi T, Ishikawa A, Hayashi Y, et al (2018) Performance limit of daytime radiative cooling in warm humid environment. AIP Adv 8: 055124. doi: 10.1063/1.5030156 |
[14] | Labriet M, Joshi SR, Kanadia A, et al. (2013) Impacts of climate change on heating and cooling: a worldwide estimate from energy and macro-economic perspectives. Proceedings of SSES Annual Congress, Neuchatel, Suisse. |
[15] | Chen Z, Zhu L, Raman A, et al. (2016) Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat Commun 7: 13729. doi: 10.1038/ncomms13729 |
[16] | Kou J, Jurado Z, Chen Z, et al. (2017) Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4: 626-630. doi: 10.1021/acsphotonics.6b00991 |
[17] | Mouhib T, Mouhsen A, Oualim EM, et al. (2009) Stainless steel/tin/glass coating as spectrally selective material for passive radiative cooling applications. Opt Mater 31: 673-677. doi: 10.1016/j.optmat.2008.07.010 |
[18] | Narayanaswamy A, Mayo J, Canetta C (2014) Infrared selective emitters with thin films of polar materials. Appl Phys Lett 104: 183107. doi: 10.1063/1.4875699 |
[19] | Rephaeli E, Raman A, Fan S (2013) Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 13: 1457-1461. doi: 10.1021/nl4004283 |
[20] | Yang Y, Taylor S, Alshehri H, et al. (2017) Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces. Appl Phys Lett 111: 051904. doi: 10.1063/1.4996865 |
[21] | Zou C, Ren G, Hossain MM, et al. (2017) Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv Opt Mater 5: 1700460. doi: 10.1002/adom.201700460 |
[22] | Hossain MM, Jia B, Gu M (2015) A metamaterial emitter for highly efficient radiative cooling. Adv Opt Mater 3: 1047-1051. doi: 10.1002/adom.201500119 |
[23] | Goldstein EA, Raman AP, Fan S (2017) Sub-ambient non-evaporative fluid cooling with the sky. Nat Energy 2: 17143. doi: 10.1038/nenergy.2017.143 |
[24] | Gentle AR, Smith GB (2010) Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano Lett 10: 373-379. doi: 10.1021/nl903271d |
[25] | Zhai Y, Ma Y, David SN, et al. (2017) Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355: 1062-1066. doi: 10.1126/science.aai7899 |
[26] | Atiganyanun S, Plumley JB, Han SJ, et al. (2018) Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 5: 1181-1187. doi: 10.1021/acsphotonics.7b01492 |
[27] | Mandal J, Fu Y, Overvig AC, et al. (2018) Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362: 315-319. doi: 10.1126/science.aat9513 |
[28] | Xuan Y (2014) An overview of micro/nanoscaled thermal radiation and its applications. Photonic Nanostruct 12: 93-113. doi: 10.1016/j.photonics.2014.02.003 |
[29] | Shin W, MaxwellFDFD, 2019. Available from: http://www.mit.edu/~wsshin/maxwellfdfd.html. |
[30] | Bossy E, SimSonic's website, 2019. Available from: http://www.simsonic.fr/. |
[31] | Warren AGaC, gprMax, 2019. Available from: http://www.gprmax.com/. |
[32] | Software XDES, XFdtd 3D Electromagnetic Simulation Software, 2019. Available from: https://www.remcom.com/xfdtd-3d-em-simulation-software. |
[33] | Meep, Meep, 2019. Available from: https://meep.readthedocs.io/en/latest/. |
[34] | FDTD L, Lumerical FDTD, 2019. Available from: https://www.lumerical.com/. |
[35] | OptiWave, OptiFDTD, 2019. Available from: https://optiwave.com/. |
[36] | Group VLotF, Standard 4, 2019. Available from: https://web.stanford.edu/group/fan/S4/. |
[37] | FRamework CM, CAMFR (CAvity Modelling FRamework), 2019. Available from: http://camfr.sourceforge.net/. |
[38] | OmniSim, OmniSim, 2019. Available from: https://www.photond.com/products/omnisim.htm. |
[39] | Suite CS, CST Studio Suite, 2019. Available from: https://www.cst.com/. |
[40] | Synopsys, BeamPROP Product Overview, 2019. Available from: https://www.synopsys.com/optical-solutions/rsoft/passive-device-beamprop.html. |
[41] | OptiWave, OptiBPM, 2019. Available from: https://optiwave.com/category/products/component-design/optibpm/. |
[42] | INC. C, WAVE OPTICS MODULE, 2019. Available from: https://www.comsol.com/wave-optics-module. |
[43] | CIMNE, ERMES (Electric Regularized Maxwell Equations with Singularities), 2019. Available from: http://tts.cimne.com/ermes/software.html. |
[44] | ANSYS I, ANSYS HFSS 3D Electromagnetic Field Simulator for RF and Wireless Design, 2019. Available from: https://www.ansys.com/Products/Electronics/ANSYS-HFSS. |
[45] | Optiwave, OptiFDTD Technical Background and Tutorials, 2014. Available from: https://optiwave.com/download-1/optifdtd-10-technical-background-and-tutorials/. |
[46] | Yee K (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE T Antenn Propag 14: 302-307. doi: 10.1109/TAP.1966.1138693 |
[47] | Takayama Y, Klaus W (2002) Reinterpretation of the auxiliary differential equation method for FDTD. IEEE Microw Wirel Co 12: 102-104. doi: 10.1109/7260.989865 |
[48] | Liu V, Fan S (2012) S4: A free electromagnetic solver for layered periodic structures. Comput Phys Commun 183: 2233-2244. doi: 10.1016/j.cpc.2012.04.026 |
[49] | Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. ASTROPHYS J 186: 705-714. doi: 10.1086/152538 |
[50] | Rodriguez AW, Reid MTH, Johnson SG (2012) Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys Rev B 86: 220302. doi: 10.1103/PhysRevB.86.220302 |
[51] | Viskanta R, Lall PS (1965) Transient cooling of a spherical mass of high-temperature gas by thermal radiation. J Appl Mech Dec 32: 740-746. doi: 10.1115/1.3627311 |
[52] | Mackowski DW, Tassopoulos M, Rosner DE (1994) Effect of radiative heat transfer on the coagulation dynamics of combustion-generated particles. Aerosol Sci Tech 20: 83-99. doi: 10.1080/02786829408959666 |
[53] | Harrington RF (1993) Field Computation By Moment Method, New York: Wiley-IEEE Press. |
[54] | Wikipedia, Boundary element method, 2019. Availabe from: https://en.wikipedia.org/wiki/Boundary_element_method. |
[55] | Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc RA 106: 558-589. doi: 10.1016/j.jqsrt.2007.01.034 |
[56] | Born M, Wolf E (2013) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6 Eds.,Oxford: Pergamon Press. |
[57] | Wikipedia, Transfer-matrix method (optics), 2019. Availabe from: https://en.wikipedia.org/wiki/Transfer-matrix_method_(optics). |
[58] | Shi S, Chen C, Prather DW (2004) Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers. J Opt Soc Am A 21: 1769-1775. doi: 10.1364/JOSAA.21.001769 |
[59] | Antos R, Veis M (2010) Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals. Opt Express 18: 27511-27524. doi: 10.1364/OE.18.027511 |
[60] | Wikipedia, Plane wave expansion method, 2019. Availabe from: https://en.wikipedia.org/wiki/Plane_wave_expansion_method. |
[61] | Van Roey J, Van der Donk J, Lagasse PE (1981) Beam-propagation method: analysis and assessment. J Opt Soc Am A 71: 803-810. doi: 10.1364/JOSA.71.000803 |
[62] | Zdanowicz M, Marciniak M, Jaworski M, et al. (2007) Finite difference beam propagation method applied to photonic crystal fibres. Proceedings of 9th International Conference on Transparent Optical Networks, Rome, Italy. |
[63] | Rumpf DR, Computational Electromagnetics (CEM) Beam Propagation Method, 2017. Availabe from: https://empossible.net/wp-content/uploads/2019/08/Lecture-5b-Beam-Propagation-Method.pdf. |
[64] | Feit MD, Fleck JA (1978) Light propagation in graded-index optical fibers. Appl Opt 17: 3990-3998. doi: 10.1364/AO.17.003990 |
[65] | Kabir SMR, Rahman BMA, Agrawal A (2017) Finite element time domain method for photonics, In: Agrawal A, Benson T, De La Rue RM, et al. Recent Trends in Computational Photonics, Cham: Springer, 1-37. |
[66] | Sadiku MNO (1989) A simple introduction to finite element analysis of electromagnetic problems. IEEE T Educ 32: 85-93. doi: 10.1109/13.28037 |
[67] | Rylander T, Bondeson A (2002) Stability of explicit-implicit hybrid time-stepping schemes for Maxwell's equations. J Comput Phys 179: 426-438. doi: 10.1006/jcph.2002.7063 |
[68] | Jeong SY, Tso CY, Wong YM, et al. (2018) FDTD simulations inspired by the daytime passive radiative cooling of the Sahara silver ant. Proceedings of 4th International Conference On Building Energy and Environment, Melbourne, Australia. |
[69] | Chan DLC, Soljačić M, Joannopoulos JD (2006) Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Opt Express 14: 8785-8796. doi: 10.1364/OE.14.008785 |
[70] | Didari A, Mengüç MP (2018) A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly. Sci Rep 8: 16891. doi: 10.1038/s41598-018-35082-3 |
[71] | Didari A, Mengüç MP (2014) Analysis of near-field radiation transfer within nano-gaps using FDTD method. J Quant Spectrosc RA 146: 214-226. doi: 10.1016/j.jqsrt.2014.04.002 |
[72] | Didari A, Mengüç MP (2015) Near-field thermal emission between corrugated surfaces separated by nano-gaps. J Quant Spectrosc RA 158: 43-51. doi: 10.1016/j.jqsrt.2015.02.016 |
[73] | Didari A, Mengüç MP (2017) A design tool for direct and non-stochastic calculations of near-field radiative transfer in complex structures: The NF-RT-FDTD algorithm. J Quant Spectrosc RA 197: 95-105. doi: 10.1016/j.jqsrt.2017.03.010 |
[74] | Wu D, Liu C, Xu Z, et al. (2018) The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater Design 139: 104-111. doi: 10.1016/j.matdes.2017.10.077 |
[75] | Shin W (2013) 3D finite-difference frequency-domain method for plasmonics and nanophotonics [PhD thesis]. Stanford University, USA. |
[76] | Wu SR, Lai KL, Wang CM (2018) Passive temperature control based on a phase change metasurface. Sci Rep 8: 7684. doi: 10.1038/s41598-018-26150-9 |
[77] | Marquier F, Arnold C, Laroche M, et al. (2008) Degree of polarization of thermal light emitted by gratings supporting surface waves. Opt Express 16: 5305-5313. doi: 10.1364/OE.16.005305 |
[78] | Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia. |
[79] | Zhou Z, Sun X, Bermel P (2016) Radiative cooling for thermophotovoltaic systems. Proc SPIE 9973: 997308. doi: 10.1117/12.2236174 |
[80] | Solano ME, Faryad M, Lakhtakia A, et al. (2014) Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector. J Opt Soc Am A 31: 2275-2284. doi: 10.1364/JOSAA.31.002275 |
[81] | Huang Y, Pu M, Zhao Z, et al. (2018) Broadband metamaterial as an "invisible" radiative cooling coat. Opt Commun 407: 204-207. doi: 10.1016/j.optcom.2017.09.036 |
[82] | Zhang HH, Wei EI, Huang ZX, et al. (2018) Flexible and accurate simulation of radiation cooling with FETD method. Sci Rep 8: 2652. doi: 10.1038/s41598-018-21020-w |
[83] | Edalatpour S, Francoeur M (2016) Near-field radiative heat transfer between arbitrarily shaped objects and a surface. Phys Rev B 94: 045406. doi: 10.1103/PhysRevB.94.045406 |
[84] | Edalatpour S, Francoeur M (2014) The thermal discrete dipole approximation (T-DDA) for near-field radiative heat transfer simulations in three-dimensional arbitrary geometries. J Quant Spectrosc RA 133: 364-373. doi: 10.1016/j.jqsrt.2013.08.021 |