Citation: Bandar Abdullah Aloyaydi, Subbarayan Sivasankaran, Hany Rizk Ammar. Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling[J]. AIMS Materials Science, 2019, 6(6): 1033-1048. doi: 10.3934/matersci.2019.6.1033
[1] | Francis V, Jain PK (2018) Investigation on the effect of surface modification of 3D printed parts by nanoclay and dimethyl ketone. Mater Manuf Process 33: 1080-1092. doi: 10.1080/10426914.2017.1401717 |
[2] | Ahn S-H, Montero M, Odell D, et al. (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8: 248-257. doi: 10.1108/13552540210441166 |
[3] | Lanzotti A, Grasso M, Staiano G, et al. (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21: 604-617. |
[4] | Onwubolu GC, Rayegani F (2014) Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int J Manuf Eng 2014: 598531. |
[5] | Domingo-Espin M, Puigoriol-Forcada JM, Garcia-Granada AA, et al. (2015) Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts. Mater Des 83: 670-677. doi: 10.1016/j.matdes.2015.06.074 |
[6] | Popescu D, Zapciu A, Amza C, et al. (2018) FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test 69: 157-166. doi: 10.1016/j.polymertesting.2018.05.020 |
[7] | Rankouhi B, Javadpour S, Delfanian F, et al. (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16: 467-481. |
[8] | Li H, Wang T, Sun J, et al. (2018) The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties. Rapid Prototyp J 24: 80-92. doi: 10.1108/RPJ-06-2016-0090 |
[9] | Liu X, Zhang M, Li S, et al. (2017) Mechanical property parametric appraisal of fused deposition modeling parts based on the gray Taguchi method. Int J Adv Manuf Technol 89: 2387-2397. |
[10] | Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3: 42-53. |
[11] | Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31: 287-295. doi: 10.1016/j.matdes.2009.06.016 |
[12] | Chacón JM, Caminero MA, García-Plaza E, et al. (2017) Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater Des 124: 143-157. doi: 10.1016/j.matdes.2017.03.065 |
[13] | Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58: 242-246. |
[14] | Fernandez-vicente M, Calle W, Ferrándiz S, et al. (2016) Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print Addit Manuf 3: 183-192. doi: 10.1089/3dp.2015.0036 |
[15] | Ziemian C, Sharma M, Ziemian S (2012) Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling, In: Gokcek M, Mechanical Engineering, Rijeka: TechOpen, 158-150. |
[16] | Tsouknidas A, Pantazopoulos M, Katsoulis I, et al. (2016) Impact absorption capacity of 3D-printed components fabricated by fused deposition modelling. Mater Des 102: 41-44. doi: 10.1016/j.matdes.2016.03.154 |
[17] | Torres J, Cotelo J, Karl J, et al. (2015) Mechanical property optimization of FDM PLA in shear with multiple objectives. Jom 67: 1183-1193. doi: 10.1007/s11837-015-1367-y |
[18] | Ruhatiya C, Singh S, Goyal A, et al. (2020) Electrochemical performance enhancement of sodium-ion batteries fabricated with NaNi1/3Mn1/3Co1/3O2 cathodes using support vector regression-simplex algorithm approach. J Electrochem Energy Convers Storage. Available from: https://doi.org/10.1115/1.4044358. |
[19] | Camargo JC, Machado ÁR, Almeida EC, et al. (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Technol 103: 2423-2443. doi: 10.1007/s00170-019-03532-5 |
[20] | Aw Y, Yeoh C, Idris M, et al. (2018) Effect of printing parameters on tensile, dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites. Materials 11: 466. doi: 10.3390/ma11040466 |
[21] | ASTM C (1997) Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (using beam with third-point loading). C-1018. |
[22] | Di Landro L, Sala G, Olivieri D (2002) Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym Test 21: 217-228. doi: 10.1016/S0142-9418(01)00073-3 |
[23] | Ramnath BV, Jeykrishnan J, Elanchezhian C, et al. (2017) Investigation of flexural behaviour of polymer composite golf shaft. Mater Today Proc 4: 9341-9345. doi: 10.1016/j.matpr.2017.07.294 |
[24] | Grasso M, Azzouz L, Ruiz-Hincapie P, et al. (2018) Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens. Rapid Prototyp J 24: 1337-1346. doi: 10.1108/RPJ-04-2017-0055 |
[25] | Alaboodi AS, Sivasankaran S (2018) Experimental design and investigation on the mechanical behavior of novel 3D printed biocompatibility polycarbonate scaffolds for medical applications. J Manuf Process 35: 479-491. doi: 10.1016/j.jmapro.2018.08.035 |