This work focuses on an exploration of the pointwise Jacobson-type necessary conditions for optimal control problems governed by differential systems with impulse at fixed times; the pointwise Jacobson-type necessary optimality conditions refer to a type of pointwise second-order necessary optimality conditions for optimal singular control in the classical sense. By introducing an impulsive linear matrix Riccati differential equation, we derive the integral representation of the functional second-order variational. Based on this, the integral form of the second-order necessary conditions and the pointwise Jacobson-type necessary conditions are obtained. Incidentally, we have established the Legendre-Clebsch condition and the pointwise Legendre-Clebsch condition. Finally, an example is provided to illustrate the effectiveness of the main result.
Citation: Huifu Xia, Yunfei Peng. Pointwise Jacobson type necessary conditions for optimal control problems governed by impulsive differential systems[J]. Electronic Research Archive, 2024, 32(3): 2075-2098. doi: 10.3934/era.2024094
This work focuses on an exploration of the pointwise Jacobson-type necessary conditions for optimal control problems governed by differential systems with impulse at fixed times; the pointwise Jacobson-type necessary optimality conditions refer to a type of pointwise second-order necessary optimality conditions for optimal singular control in the classical sense. By introducing an impulsive linear matrix Riccati differential equation, we derive the integral representation of the functional second-order variational. Based on this, the integral form of the second-order necessary conditions and the pointwise Jacobson-type necessary conditions are obtained. Incidentally, we have established the Legendre-Clebsch condition and the pointwise Legendre-Clebsch condition. Finally, an example is provided to illustrate the effectiveness of the main result.
[1] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, London, 1989. |
[2] | A. M. Samoilenko, N. A. Perestyuk, Y. Chapovsky, Impusive Differential Equations, World Scientific, Hong Kong, 1995. |
[3] | T. Yang, Impulsive Control Theory, Springer-Verlag, Hong Kong, 2001. |
[4] | S. I. Gurgula, N. A. Perestyuk, On stability of solutions of impulsive systems, Vestn. Kiev Univ., Mat. Mekh, 23 (1981), 33–40. |
[5] | A. Bensoussa, Optimal impulsive control theory, Lect. Notes Control Inf. Sci., (1979), 17–41. https://doi.org/10.1007/bfb0009374 |
[6] | P. L. Lions, B. Perthame, Quasi-variational inequalities and ergodic impulse control, SIAM J. Control Optim., 24 (1986), 604–615. https://doi.org/10.1137/0324036 doi: 10.1137/0324036 |
[7] | Y. Wang, J. Lu, Some recent results of analysis and control for impulsive systems, Commun. Nonlinear Sci. Numer. Simul., 80 (2019), 1–15. https://doi.org/10.1016/j.cnsns.2019.104862 doi: 10.1016/j.cnsns.2019.104862 |
[8] | N. U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM J. Control Optim., 42 (2003), 669–685. https://doi.org/10.1137/S0363012901391299 doi: 10.1137/S0363012901391299 |
[9] | J. P. Belfo, J. M. Lemos, Optimal Impulsive Control for Cancer Therapy, Springer, Switzerland, 2021. https://doi.org/10.1007/978-3-030-50488-5 |
[10] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, 1962. |
[11] | J. Yong, X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999. |
[12] | X. Li, J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhauser, Boston, 1995. |
[13] | H. Frankowska, D. Hoehener, Jacobson type necessary optimality conditions for general control systems, in 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 54 (2015), 1304–1309. https://doi.org/10.1109/cdc.2015.7402391 |
[14] | R. F. Gabasov, F. M. Kirillova, High order necessary conditions for optimality, SIAM J. Control, 10 (1972), 127–168. https://doi.org/10.1137/0310012 doi: 10.1137/0310012 |
[15] | D. J. Bell, D. H. Jacobson, Singular Optimal Control Problems, Academic Press, NewYork, 1975. |
[16] | J. L. Speyer, D. H. Jacobson, Primer on Optimal Control Theory, Society for Industrial and Applied Mathematics, Philadelphia, 2010. |
[17] | B. S. Goh, Necessary conditions for singular extremals involving multiple control variables, SIAM J. Control, 4 (1966), 716–731. https://doi.org/10.1137/0304052 doi: 10.1137/0304052 |
[18] | M. Aronna, J. Bonnans, A. V. Dmitruk, P. Lotito, Quadratic order conditions for bang-singular extremals, preprint, arXiv: 1107.0161. |
[19] | H. Frankowska, D. Tonon, Pointwise second-order necessary optimality conditions for the Mayer problem with control constraints, SIAM J. Control Optim., 51 (2013), 3814–3843. https://doi.or-g/10.1137/130906799 doi: 10.1137/130906799 |
[20] | A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), 256–293. https://doi.org/10.1137/0315019 doi: 10.1137/0315019 |
[21] | H. Schättler, U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York, 2012. |
[22] | D. H. Jacobson, A new necessary condition of optimality for singular control problems, SIAM J. Control, 7 (1969), 578–595. https://doi.org/10.1137/0307042 doi: 10.1137/0307042 |
[23] | D. H. Jacobson, On conditions of optimality for singular control problems, IEEE Trans. Autom. Control, 15 (1970), 109–110. https://doi.org/10.1109/tac.1970.1099361 doi: 10.1109/tac.1970.1099361 |
[24] | D. H. Jacobson, Sufficient conditions for nonnegativity of the second variation in singular and nonsingular control problems, SIAM J. Control, 8 (1970), 403–423. https://doi.org/10.1137/030-8029 doi: 10.1137/030-8029 |
[25] | H. Lou, Second-order necessary/sufficient conditions for optimal control problem in the absence of linear structure, preprint, arXiv: 1008.1020. |
[26] | S. Tang, A second-order maximum principle for singular optimal stochastic controls, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1581–1599. https://doi.org/10.3934/dcdsb.2010.14.1581 doi: 10.3934/dcdsb.2010.14.1581 |
[27] | H. Frankowska, Q. Lü, Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints, ESAIM. Control Optim. Calc. Var., 27 (2021), 1–38. https://doi.org/10.1051/cocv/2021065 doi: 10.1051/cocv/2021065 |
[28] | H. Frankowska, D. Hoehener, Pointwise second-order necessary optimality conditions and second-order sensitivity relations in optimal control, J. Differ. Equations, 262 (2017), 5735–5772. https://doi.org/10.1016/j.jde.2017.02.013 doi: 10.1016/j.jde.2017.02.013 |
[29] | D. Hoehener, Variational approach to second-order optimality conditions for control problems with pure state constraints, SIAM J. Control Optim., 50 (2012), 1139–1173. https://doi.org/10.1137/1108-28320 doi: 10.1137/1108-28320 |
[30] | Q. Cui, L. Deng, X. Zhang, Pointwise second-order necessary conditions for optimal control problems evolved on Riemannian manifolds, C. R. Math., 354 (2016), 191–194. https://doi.org/10.1016/j.crma.2015.09.032 doi: 10.1016/j.crma.2015.09.032 |
[31] | L. Deng, X. Zhang, Second order necessary conditions for endpoints-constrained optimal control problems on Riemannian manifolds, J. Differ. Equations, 272 (2021), 854–910. https://doi.org/10.1016/j.jde.2020.10.005 doi: 10.1016/j.jde.2020.10.005 |
[32] | A. Ashyralyev, Y. A. Sharifov, Optimal control problem for impulsive systems with integral boundary conditions, Electron. J. Differ. Equations, 2013 (2013), 1–11. https://doi.org/10.1063/1.4747627 doi: 10.1063/1.4747627 |
[33] | A. V. Arutyunov, D. Y. Karamzin, F. L. Pereira, N. Y. Chernikova, Second-order necessary optimality conditions in optimal impulsive control problems, Differ. Equations, 54 (2018), 1083–1101. https://doi.org/10.1134/s0012266118080086 doi: 10.1134/s0012266118080086 |
[34] | V. A. Dykhta, The variational maximum principle and second-order optimality conditions for impulse processes and singular processes, Sib. Math. J., 35 (1994), 65–76. https://doi.org/10.100-7/bf02104948 doi: 10.100-7/bf02104948 |
[35] | A. Arutyunov, V. Jacimovic, F. Pereira, Second order necessary conditions for optimal impulsive control problems, J. Dyn. Control Syst., 9 (2003), 131–153. https://doi.org/10.1023/A:10221114-02527 doi: 10.1023/A:10221114-02527 |