Citation: Biao Tang, Weike Zhou, Yanni Xiao, Jianhong Wu. Implication of sexual transmission of Zika on dengue and Zika outbreaks[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5092-5113. doi: 10.3934/mbe.2019256
[1] | D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11 (1998), 480–496. |
[2] | S. B. Halstead, Dengue, The Lancet, 370 (2007), 1644–1652. |
[3] | WHO, Dengue and severe dengue, Fact sheet No. 117, Available from: http://www.who.int/mediacentre/factsheets/fs117/en/(accessed 2 February 2018). |
[4] | A. Gulland, WHO urges countries in dengue belt to look out for Zika, BMJ, 352 (2016), i595. |
[5] | G. W. Dick, S. F. Kitchen and A. J. Haddow, Zika virus (I). Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 509–520. |
[6] | A. J. Johnson, O. L. Kosoy, J. J. Laven, et al., Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007, Emerg. Infect. Dis., 14 (2008), 1232–1239. |
[7] | V. M. Cao-Lormeau, C. Roche, A. Teissier, et al., Zika virus, French Polynesia, South Pacific, 2013, Emerg. Infect. Dis., 20 (2014), 1085–1086. |
[8] | G. S. Campos, A. C. Bandeira and S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerg. Infect. Dis., 21 (2015), 1885–1886. |
[9] | WHO, Zika situation report, Available from: http://www.who.int/emergencies/zika-virus/situation-report/20-january-2017/en/(accessed 20 January 2017). |
[10] | I. Kautner, M. J. Robinson and U. Kuhnle, Dengue virus infection: Epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention, J. Pediatr., 131 (1997), 516–524. |
[11] | B. Atkinson, P. Hearn, B. Afrough, et al., Detection of Zika virus in semen, Emerg. Infect. Dis., 22 (2016), 940. |
[12] | A. C. Gourinat, O. O'Connor, E. Calvez, et al., Detection of Zika virus in urine, Emerg. Infect. Dis., 21 (2015), 84–86. |
[13] | D. Musso, C. Roche, T. X. Nhan, et al., Detection of Zika virus in saliva, J. Clin. Virol., 68 (2015), 53–55. |
[14] | J. Moreira, T. M. Peixoto, A. M. Siqueira, et al., Sexually acquired Zika virus: a systematic review, Clin. Microbiol. Infec. 23 (2017), 296–305. |
[15] | A. Davidson, S. Slavinski, K. Komoto, et al., Suspected female-tomale sexual transmission of Zika virus–New York City, 2016, MMWR Morb Mortal Wkly Rep., 65 (2016), 716–717. |
[16] | D. Gao, Y. Lou, D. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 28070. |
[17] | F. B. Agusto, S. Bewick and W. F. Fagan, Mathematical model for Zika virus dynamics with sexual transmission route, Ecol. Complex., 29 (2017), 61–81. |
[18] | F. Brauer, C. Castillo-Chavez, A. Mubayi, et al., Some models for epidemics of vector-transmitted diseases, Inf. Dis. Model., 1 (2016), 79–87. |
[19] | D. Baca-Carrasco and J. X. Velasco-Hernández, Sex, mosquitoes and epidemics: an evaluation of Zika disease dynamics, Bull. Math. Biol., 78 (2016), 2228–2242. |
[20] | C. R. Kim, M. Counotte and K. Bernstein, Investigating the sexual transmission of Zika virus, Lancet Glob. Healthy, 6 (2018), e24–e25. |
[21] | O. Maxian, A. Neufeld, E. J. Talis, et al., Childs Zika virus dynamics: When does sexual transmission matter? Epidemics, 21 (2017), 48–55. |
[22] | S. K. Sasmal, I. Ghosh, A. Huppert, et al., Modeling the Spread of Zika Virus in a Stage-Structured Population: Effect of Sexual Transmission, Bull. Math. Biol., 80 (2018), 3038–3067. |
[23] | C. M. Saad-Roy, J. Ma and P. van den Driessche, The effect of sexual transmission on Zika virus dynamics, J. Math. Biol., 77 (2018), 1917–1941. |
[24] | C. M. Saad-Roy, P. van den Driessche and J. Ma, Estimation of Zika virus prevalence by appearance of microcephaly, BMC Infect. Dis., 16 (2016), 754. |
[25] | S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreakin Barranquilla, Colombia, and estimation of the relative role of sexual transmission, Epidemics, 17 (2016), 50–55. |
[26] | Y. A. Terefe, H. Gaff, M. Kamga, et al., Mathematics of a model for Zika transmission dynamics, Theor. Biosci., 137 (2018), 209–218. |
[27] | A. Allard, B. M. Althouse and L. Hébert-Dufresne, The risk of sustained sexual transmission of Zika is underestimated, PLoS Pathog., 13 (2017), e1006633. |
[28] | M. Dupont-Rouzeyrol, O. O'Connor, E. Calvez, et al., Co-infection with Zika and Dengue Viruses in 2 Patients, New Caledonia, 2014, Emerg. Infect. Dis., 95 (2015), 381–382. |
[29] | R. Pessôa, J. V. Patriota, M. D. L. de Souza, et al., Investigation Into an Outbreak of Dengue-like Illness in Pernambuco, Brazil, Revealed a Cocirculation of Zika, Chikungunya, and Dengue Virus Type 1,Medicine, 95 (2016), e3201. |
[30] | C. S. Vinodkumar, N. K. Kalapannavar, K. G. Basavarajappa, et al., Episode of coexisting infections with multiple dengue virus serotypes in central Karnataka, India, J. Infect. Public Heal., 6 (2013), 302–306. |
[31] | B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), 35623. |
[32] | J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos, Solitons & Fractals, 39 (2009), 936–941. |
[33] | M. Andraud, N. Hens, C. Marais, et al., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS One, 7 (2012), e49085. |
[34] | B. Adams, E. C. Holmes, C. Zhang, et al., Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok, Proc. Natl. Acad. Sci. USA, 103 (2006), 14234–14239. |
[35] | M. Recker, K. B. Blyuss, C. P. Simmons, et al., Immunological serotype interactions and their effect on the epidemiological pattern of dengue, Proc. R. Soc. Lond. B. Biol. Sci., 276 (2009), 2541–2548. |
[36] | H. J. Wearing and P. Rohani, Ecological and immunological determinants of dengue epidemics, Proc. Natl. Acad. Sci. USA, 103 (2006), 11802–11807. |
[37] | O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, 2000. |
[38] | P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. |
[39] | Y. N. Xiao, T. T. Zhao and S. Y. Tang, Dynamics of an infectious disease with media/psychology induced non-sooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. |
[40] | L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150 (1998), 131–151. |
[41] | D. Gao, T. C. Porco and S. G. Ruan, Coinfection dynamics of two diseases in a single host population, J. Math. Anal. Appl., 442 (2016), 171–188. |
[42] | D. A. Cummings, I. B. Schwartz, L. Billings, et al., Dynamic effects of antibody-dependent enhancement on the fitness of viruses, Proc. Natl. Acad. Sci. USA, 102 (2005), 15259–15264. |
[43] | W. Dejnirattisai, A. Jumnainsong, N. Onsirisakul, et al., Cross-reacting antibodies enhance dengue virus infection in humans, Science, 328 (2010), 745–748. |
[44] | N. Ferguson, R. Anderson and S. Gupta, The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens, Proc. Natl. Acad. Sci. USA, 96 (1999), 790–794. |
[45] | S. B. Halstead, Pathogenesis of dengue: challenges to molecular biology, Science, 239 (1988), 476–481. |
[46] | A. S. Charles and R. C. Christofferson, Utility of a dengue-derived monoclonal antibody to enhance Zika infection in vitro, PLoS Curr., 8 (2016). |
[47] | W. Dejnirattisai, P. Supasa, W. Wongwiwat, et al., Dengue virus sero-cross-reactivity drives antibody dependent enhancement of infection with zika virus, Nat. Immunol., 17 (2016), 1102–1108. |
[48] | L. Priyamvada, L. Priyamvada, K. M. Quicke, et al., Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus, Proc. Natl. Acad. Sci. USA, 113 (2016), 7852–7857. |
[49] | A. B. Kawiecki and R. C. Christofferson, Zika Virus-Induced Antibody Response Enhances Dengue Virus Serotype 2 Replication In Vitro, J. Infect. Dis., 214 (2016), 1357–1360. |
[50] | S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, Int. Stat. Rev., 62 (1994), 229–243. |
[51] | S. Marino, B. Ian, I. B. Hogue, et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. |
[52] | S. Y. Tang, Y. N. Xiao, Y. Lin, et al., Campus quarantine (Fengxiao) for curbing emergent infectious diseases: Lessons from mitigating A/H1N1 in Xi'an, China, J. Theor. Biol., 295 (2012), 47–58. |
[53] | M. Besnard, S. Lastère, A. Teissier, et al., Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014, Euro. Surveill., 19 (2014), 20751. |
[54] | B. G. S. A. Pradeep and W. Ma, Global stability of a delayed mosquito-transmitted disease model with stage structure, Electron. J. Differ. Equ., 2015 (2015), 1–19. |
[55] | H. Wei, X. Li and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342 (2008) 895–908. |