Citation: Yanfeng Liang, David Greenhalgh. Estimation of the expected number of cases of microcephaly in Brazil as a result of Zika[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8217-8242. doi: 10.3934/mbe.2019416
[1] | E. Massad, F. A. B. Coutinho, M. N. Burattini, et al., Estimation of R0 from the initial phase of an outbreak of a vector-borne infection, Trop. Med. Int. Health, 15 (2010), 120-126. |
[2] | G. Adamu, M. Bawa, M. Jiya, et al., A mathematical model for the dynamics of Zika virus via homotopy perturbation method, J. Appl. Sci. Environ. Manage., 21 (2017), 615-623. |
[3] | E. Bonyah and K. O. Okosun, Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., 6 (2016), 673-679. |
[4] | C. Ding, N. Tao and Y. Zhu, A mathematical model of Zika virus and its optimal control, In Proc. of the 35th CCC Conf., 2016, Chengdu, China, (2016), 2642-2645. |
[5] | G. González-Parra and T. Benincasa, Mathematical modeling and numerical simulations of Zika in Colombia considering mutation, Math. Comput. Simul., 163 (2019), 1-8. |
[6] | N. K. Goswami, A. K. Srivastav, M. Ghosh, et al., Mathematical modeling of Zika virus disease with nonlinear incidence and optimal control, in J. Phys. Conf. Ser., 1000 (2018), 1-16. |
[7] | B. Mahatoa and B. K. Mishrab, Global stability analysis on the transmission dynamics of Zika virus, Int. J. Appl. Eng. Res., 13 (2018), 12296-12303. |
[8] | S. C. Mpeshe, N. Nyerere and S. Sanga, Modeling approach to investigate the dynamics of Zika virus fever: a neglected disease in Africa, Int. J. Adv. Appl. Math. Mech. 4 (2017), 14-21. |
[9] | F. Ndairou, I. Area, J. J. Nieto, et al., Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Math. Meth. Appl. Sci. 41 (2018), 8929-8941. |
[10] | T. O. Oluyo and M. O. Adeyemi, Mathematical analysis of Zika epidemic model, IOSR J. Math., 12 (2016), 21-33. |
[11] | B. Tang, Y. Xiao and J. Wu, Implication of vaccination against dengue for Zika outbreak, Sci. Rep., 6 (2016), article number 35623. |
[12] | B. Tang, W. Zhou, Y. Xiao, et al., Implication of sexual transmission of Zika on dengue and Zika outbreaks, Math. Biosci. Eng., 16 (2019), 5092-5113. |
[13] | N. M. Ferguson, Z. M. Cucunubá, I. Dorigatti, et al., Countering the Zika epidemic in Latin America, Science, 353 (2016), 353-354. |
[14] | M. Andraud, N. Hens, C. Marais, et al., Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PLoS One, 7 (2012), p.e49085. |
[15] | E. Chikak and H. Ishikawa, A dengue transmission model in Thailand considering sequential infections with all four serotypes, J. Infect. Dev. Countr., 3 (2009), 711-722. |
[16] | World Health Organization. Countries: Brazil, 2017. Available from: http://www.who.int/countries/bra/en/. |
[17] | Centers for Disease Control and Prevention, Surveillance and control of Aedes aegypti and Aedes albopictus in the United States, 2017. Available from: https://www.cdc.gov/chikungunya/resources/vector-control.html. |
[18] | D. Focks, N. Alexander and E. Villegas, Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations, UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Disease (TDR), 2006. Available from: http://www.who.int/tdr/publications/documents/aedes_aegypti.pdf. |
[19] | E. Massad, F. A. B. Coutinho, M. N. Burattini, et al., The risk of yellow fever in a dengue-infested area, Trans. R. Soc. Trop. Med. Hyg., 95 (2001), 370-374. |
[20] | G. Chowell, R. Fuentes, A. Olea, et al., The basic reproduction number R0 and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile, Math. Biosci. Eng., 10 (2013), 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[21] | A. K. Supriatna, Estimating the basic reproduction number of dengue transmission during 2002- 2007 outbreaks in Bandung, Indonesia, WHO Regional Office for South-East Asia. Dengue Bulletin, 33 (2009), 21-33. Available from: http://www.who.int/iris/handle/10665/170937. |
[22] | S. Cauchemez, M. Besnard, P. Bompard, et al., Association between Zika virus and microcephaly in French Polynesia, 2013-2015: a retrospective study, The Lancet, 387 (2016), 2125-2132. |
[23] | M. A. Johansson, L. Mier-y-Teran-Romero, J. Reefhuis, et al., Zika and the risk of of microcephaly, N. Engl. J. Med., 375 (2016), 1-4. |
[24] | United Nations, United Nations, department of economic and social affairs, population division. World population prospects: The 2015 revision, (2015). Available from: https://esa.un.org/unpd/wpp/Graphs/DemographicProfiles/. |
[25] | H. Nishiura, K. Mizumoto, K. S. Rock, et al., A theoretical estimate of the risk of microcephaly during pregnancy, Epidemics, 15 (2016), 66-70. |
[26] | J. Liu-Helmersson, H. Stenlund, A. Wilder-Smith, et al., Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential, PLoS One, 9 (2014), e89783. |
[27] | H. S. Rodrigues, M. T. Monteiro and D. M. Torres, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, Math. Meth. Appl. Sci., 39 (2016), 4671-4679. |
[28] | S. Wiwanitkit and V. Wiwanitkit, Predicted pattern of Zika virus infection distribution with reference to rainfall in Thailand, Asian Pac. J. Trop. Med., 9 (2016), 719-720. |
[29] | A. G. Barnett, P. Baker and A. J. Dobson, Analysing seasonal data, The R Journal, 4 (2012). Available from: https://journal.r-project.org/archive/2012/RJ-2012-001/RJ-2012-001.pdf. |
[30] | M. N. Burattini, M. Chen, A. Chow, et al., Modelling the control strategies against dengue in Singapore, Epidemiol. Infect., 136 (2008), 309-319. doi: 10.1017/S0950268807008667 |
[31] | N. M. Ferguson, Z. M. Cucunubá, I. Dorigatti, et al., Supplementary materials for countering the Zika epidemic in Latin America, 2016. Available from: www.sciencemag.org/content/353/6297/353/suppl/DC1. |
[32] | E. Massad, F. A. B. Coutinho, L. F. Lopez, et al., Modelling the impact of global warming on vector-borne infections, Phys. Life Rev., 8 (2011), 169-199. |
[33] | H. S. Rodrigues, M. T. Monteiro and D. M. Torres, Seasonality effects on dengue, In Proc. of the 14th CMMSE Conf. Costa Ballena, Rota, Cadiz, Spain, 2014, (2014), 1084-1091. |
[34] | A. M. Stolwijk, H. Straatman and G. A. Zielhuis, Studying seasonality by using sine and cosine functions in regression analysis, J. Epidemiol. Commun. Health, 53 (1999), 235-238. |
[35] | Pan American Health Organization/World Heath Organization, Zika-epidemiological report Brazil. Washington, D.C: PAHO/WHO, 2017. |
[36] | B. Haynes and A. Boadle, Brazil says Zika-linked microcephaly cases stable at 4,908, Health News, 2016. Available from http://www.reuters.com/article/us-health-zika-brazil-idUSKCN0XN2NP. |
[37] | T. V. de Araújo, L. C. Rodrigues, R. A. de Alencar Ximenes, et al., Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study, The Lancet Infect. Dis., 16 (2016), 1356-1363. |
[38] | F. B. Agusto, A. B. Gumel and P. E. Parham, Qualitative assessment of the role of temperature variations in malaria transmission dynamics, J. Biol. Syst., 23 (2015), 597-630. |
[39] | O. Koutou, B. Traoré and B. Sangoré, Mathematical modelling of malaria transmission global dynamics taking into account the immature stages of the vectors, Adv. in Differ. Equ., 2018, 220. |
[40] | L. Coudeville and G. P. Garnett, Transmission dynamics of the four dengue serotypes in Southern Vietnam and the potential impact of vaccination, PLoS One, 7 (2012), e51244. |
[41] | S. B. Maier, X. Huang, E. Massad, et al., Analysis of the optimal age for dengue vaccination in Brazil with a tetravalent dengue vaccine, Math. Biosci., 294 (2017), 15-32. doi: 10.1016/j.mbs.2017.09.004 |
[42] | D. Gao, Y. Lou, D. He, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), Article Number 28070. |
[43] | L. Wang, H. Zhao, S. M. Oliva, et al., Modelling the transmission and control of Zika in Brazil, Sci. Rep., 7 (2017), article number 7721. |
[44] | M. Amaku, M. N. Burattini, F. A. B. Coutinho, et al., Estimating the size of the HCV infection prevalence: a modelling approach using the incidence of cases reported to an official notification system, Bull. Math. Biol., 78 (2016), 970-990. doi: 10.1007/s11538-016-0170-4 |
[45] | M. Amaku, M. N. Burattini, E. Chaib, et al., Estimating the prevalence of infectious diseases from under-reported age-dependent compulsorily notification databases, Theor. Biol. Med. Model., 14 (2017), 23. |
[46] | P. S. Mead, N. K. Duggal, S. A. Hook, et al., Zika virus shedding in semen of symptomatic infected men, N. Engl. J. Med., 378 (2018), 1377-1385. |
[47] | M. Zamani and V. Zamani, Sexual transmission of Zika virus: an assessment of the evidence, Iran. J. Public Health, 46 (2017), 1305-1306. |
[48] | R. Lowe, C. Barcellos, P. Brasil, et al., The Zika virus epidemic in Brazil: from discovery to future implications, Int. J. Environ. Res. Public Health, 15 (2018), E96. |
[49] | A. J. Kucharski, S. Funk, R. M. Eggo, et al., Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013-14 French Polynesia outbreak, PLoS Negl. Trop. Dis., 10 (2016), e0004726. |
[50] | S. Funk, A. J. Kucharski, A. Camacho, et al., Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus, PLoS Negl. Trop. Dis., 10 (2016), e0005173. |
[51] | M. S. Majumder, M. Santillana, S. R. Mekaru, et al., Utilizing nontraditional data sources for realtime estimation of transmission dynamics during the 2015-2016 Colombian Zika virus disease outbreak, JMIR Public Health Surveill., 2 (2016), e30 |