Research article Special Issues

Dynamics and optimal control of a stochastic Zika virus model with spatial diffusion


  • Received: 14 July 2023 Revised: 15 August 2023 Accepted: 29 August 2023 Published: 13 September 2023
  • Zika is an infectious disease with multiple transmission routes, which is related to severe congenital disabilities, especially microcephaly, and has attracted worldwide concern. This paper aims to study the dynamic behavior and optimal control of the disease. First, we establish a stochastic reaction-diffusion model (SRDM) for Zika virus, including human-mosquito transmission, human-human sexual transmission, and vertical transmission of mosquitoes, and prove the existence, uniqueness, and boundedness of the global positive solution of the model. Then, we discuss the sufficient conditions for disease extinction and the existence of a stationary distribution of positive solutions. After that, three controls, i.e. personal protection, treatment of infected persons, and insecticides for spraying mosquitoes, are incorporated into the model and an optimal control problem of Zika is formulated to minimize the number of infected people, mosquitoes, and control cost. Finally, some numerical simulations are provided to explain and supplement the theoretical results obtained.

    Citation: Minna Shao, Hongyong Zhao. Dynamics and optimal control of a stochastic Zika virus model with spatial diffusion[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17520-17553. doi: 10.3934/mbe.2023778

    Related Papers:

  • Zika is an infectious disease with multiple transmission routes, which is related to severe congenital disabilities, especially microcephaly, and has attracted worldwide concern. This paper aims to study the dynamic behavior and optimal control of the disease. First, we establish a stochastic reaction-diffusion model (SRDM) for Zika virus, including human-mosquito transmission, human-human sexual transmission, and vertical transmission of mosquitoes, and prove the existence, uniqueness, and boundedness of the global positive solution of the model. Then, we discuss the sufficient conditions for disease extinction and the existence of a stationary distribution of positive solutions. After that, three controls, i.e. personal protection, treatment of infected persons, and insecticides for spraying mosquitoes, are incorporated into the model and an optimal control problem of Zika is formulated to minimize the number of infected people, mosquitoes, and control cost. Finally, some numerical simulations are provided to explain and supplement the theoretical results obtained.



    加载中


    [1] G. W. A. Dick, S. F. Kitchen, A. J. Haddow, Zika virus (Ⅰ). Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 509–-520. https://doi.org/10.1016/0035-9203(52)90042-4 doi: 10.1016/0035-9203(52)90042-4
    [2] F. N. Macnamara, Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria, Trans. R. Soc. Trop. Med. Hyg., 48 (1954), 139–145. https://doi.org/10.1016/0035-9203(54)90006-1 doi: 10.1016/0035-9203(54)90006-1
    [3] J. G. Olson, T. G. Ksiazek, Suhandiman, Triwibowo, Zika virus, a cause of fever in Central Java, Indonesia, Trans. R. Soc. Trop. Med. Hyg., 75 (1981), 389–393. https://doi.org/10.1016/0035-9203(81)90100-0 doi: 10.1016/0035-9203(81)90100-0
    [4] M. R. Duffy, T. H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, et al., Zika virus outbreak on Yap Island, federated states of Micronesia, New. Eng. J. Med., 360 (2009), 2536–2543. https://doi.org/10.1056/NEJMoa0805715 doi: 10.1056/NEJMoa0805715
    [5] C. Zanluca, V. C. A. d. Melo, A. L. P. Mosimann, G. I. V. d. Santos, C. N. D. d. Santos, K. Luz, First report of autochthonous transmission of Zika virus in Brazil, Mem. I. Oswaldo. Cruz., 110 (2015), 569–572. https://doi.org/10.1590/0074-02760150192 doi: 10.1590/0074-02760150192
    [6] J. Rocklöv, M. B. Quam, B. Sudre, M. German, M. U. G. Kraemer, O. Brady, et al., Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe, EBioMedicine, 9 (2016), 250–256. https://doi.org/10.1016/j.ebiom.2016.06.009 doi: 10.1016/j.ebiom.2016.06.009
    [7] P. Watson-Brown, E. Viennet, G. Mincham, C. R. Williams, C. C. Jansen, B. L. Montgomery, et al., Epidemic potential of Zika virus in Australia: implications for blood transfusion safety, Transfusion, 59 (2019), 648–658. https://doi.org/10.1111/trf.15095 doi: 10.1111/trf.15095
    [8] Centers for Diease Control and Prevention, Zika virus, 2018. Available from: https://www.cdc.gov/zika/.
    [9] J. Tataryn, L. Vrbova, M. Drebot, H. Wood, E. Payne, S. Connors, et al., Travel-related Zika virus cases in Canada: October 2015-June 2017, Can. Commun. Dis. Rep., 44 (2018), 18–26. https://doi.org/10.14745/ccdr.v44i01a05 doi: 10.14745/ccdr.v44i01a05
    [10] T. Hashimoto, S. Kutsuna, S. Tajima, E. Nakayama, T. Maeki, S. Taniguchi, et al., Importation of Zika Virus from Vietnam to Japan, November 2016, emphEmerg. Infect. Dis., 23 (2017), 1223–1225. https://doi.org/10.3201/eid2307.170519 doi: 10.3201/eid2307.170519
    [11] H. Jia, M. Zhang, M. Chen, Z. Yang, J. Li, G. Huang, et al., Zika virus infection in travelers returning from coutries with local transmission, Guangdong, China, 2016, Travel Med. Infect. Dis., 21 (2018), 56–61. https://doi.org/10.1016/j.tmaid.2017.11.012 doi: 10.1016/j.tmaid.2017.11.012
    [12] H. Singh, O. P. Singh, N. Akhtar, G. Sharma, A. Sindhania, N. Gupta, et al., First report on the transmission of Zika virus by Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) during the 2018 Zika outbreak in India, Acta Trop., 199 (2019), 1–6. https://doi.org/10.1016/j.actatropica.2019.105114 doi: 10.1016/j.actatropica.2019.105114
    [13] International Travel Health Advisory Network, 2022. Available from: https://www.ithc.cn/article/460057.html.
    [14] World Health Organization, Zika virus, 2018. Available from: https://www.who.int/mediacentre/factsheets/zika/en/.
    [15] K. Russell, S. L. Hills, A. M. Oster, C. C. Porse, G. Danyluk, M. Cone, et al., Male-to-female sexual transmission of Zika virus-United States, January-April 2016, Clin. Infect. Dis., 64 (2017), 211–213. https://doi.org/10.1093/cid/ciw692 doi: 10.1093/cid/ciw692
    [16] D. T. Deckard, W. M. Chung, J. T. Brooks, J. C. Smith, S. Woldai, M. Hennessey, et al., Male-to-male sexual transmission of Zika virus-Texas, January 2016, MMWR-Morbid. Mortal. W., 65 (2016), 371–374. http://dx.doi.org/10.15585/mmwr.mm6514a3 doi: 10.15585/mmwr.mm6514a3
    [17] S. Thangamani, J. Huang, C. E. Hart, H. Guzman, R. B. Tesh, Vertical transmission of Zika virus in Aedes aegypti mosquitoes, Am. J. Trop. Med. Hyg., 95 (2016), 1169–1173. https://doi.org/10.4269/ajtmh.16-0448 doi: 10.4269/ajtmh.16-0448
    [18] S. Du, Y. Liu, J. Liu, J. Zhao, C. Champagne, L. Tong, et al., Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments, Nat. Commun., 10 (2019), 1–11. https://doi.org/10.1038/s41467-019-09256-0 doi: 10.1038/s41467-019-09256-0
    [19] Microcephaly Epidemic Research Group, Microcephaly in infants, Pernambuco state, Brazil, 2015, Emerg. Infect. Dis., 22 (2016), 1090–1093. https://doi.org/10.3201/eid2206.160062
    [20] L. S. Munoz, P. Barreras, C. A. Pardo, Zika virus-associated neurological disease in the adult: Guillain-Barré syndrome, encephalitis, and myelitis, Semin. Reprod. Med., 34 (2016), 273–279. https://dx.doi.org/10.1055/s-0036-1592066 doi: 10.1055/s-0036-1592066
    [21] F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer Press, 2001.
    [22] D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, et al., Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: A mathematical modeling analysis, Sci. Rep., 6 (2016), 1–6. https://doi.org/10.1038/srep28070 doi: 10.1038/srep28070
    [23] F. B. Agusto, S. Bewick, W. F. Fagan, Mathematical model of zika virus with vertical transmission, Infec. Dis. Model, 2 (2017), 244–267. https://doi.org/10.1016/j.idm.2017.05.003 doi: 10.1016/j.idm.2017.05.003
    [24] H. Zhao, L. Wang, S. M. Oliva, H. Zhu, Modeling and dynamics analysis of Zika transmission with limited medical resources, B. Math. Biol., 82 (2020), 99. https://doi.org/10.1007/s11538-020-00776-1 doi: 10.1007/s11538-020-00776-1
    [25] L. Wang, H. Zhao, S. M. Oliva, H. Zhu, Modeling the transmission and control of Zika in Brazil, Sci. Rep-UK, 7 (2017), 7721. https://doi.org/10.1038/s41598-017-07264-y doi: 10.1038/s41598-017-07264-y
    [26] X. Yuan, Y. Lou, D. He, J. Wang, D. Gao, A Zika Endemic Model for the Contribution of Multiple Transmission Routes, B. Math. Biol., 83 (2021), 111. https://doi.org/10.1007/s11538-021-00945-w doi: 10.1007/s11538-021-00945-w
    [27] L. Wang, H. Zhao, Modeling and dynamics analysis of Zika transmission with contaminated aquatic environments, Nonlinear Dynam., 104 (2021), 845–862. https://doi.org/10.1007/s11071-021-06289-3 doi: 10.1007/s11071-021-06289-3
    [28] W. Fitzgibbon, J. Morgan, G. Webb, An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak in Rio De Janeiro, Theor. Biol. Med. Model, 14 (2017), 7. https://doi.org/10.1186/s12976-017-0051-z doi: 10.1186/s12976-017-0051-z
    [29] Y. Cai, K. Wang, W. Wang, Global transmission dynamics of a Zika virus model, Appl. Math. Lett., 92 (2019), 190–195. https://doi.org/10.1016/j.aml.2019.01.015 doi: 10.1016/j.aml.2019.01.015
    [30] F. Li, X. Zhao, Global dynamics of a reaction–diffusion model of Zika virus transmission with seasonality, B. Math. Biol., 83 (2021), 43. https://doi.org/10.1007/s11538-021-00879-3 doi: 10.1007/s11538-021-00879-3
    [31] Y. Zhao, D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718–727. https://doi.org/10.1016/j.amc.2014.05.124 doi: 10.1016/j.amc.2014.05.124
    [32] Z. Shi, X. Zhang, D. Jiang, Dynamics of an avian influenza model with half-saturated incidence, Appl. Math. Comput., 355 (2019), 399–416. https://doi.org/10.1016/j.amc.2019.02.070 doi: 10.1016/j.amc.2019.02.070
    [33] L. Xue, X. Cao, H. Wan, Releasing Wolbachia-infected mosquitos to mitigate the transmission of Zika virus, J. Math. Anal. Appl., 496 (2021), 124804 https://doi.org/10.1016/j.jmaa.2020.124804 doi: 10.1016/j.jmaa.2020.124804
    [34] X. Ran, L. Hu, L. Nie, Z. Teng, Effects of stochastic perturbation and vaccinated age on a vector-borne epidemic model with saturation incidence rate, Appl. Math. Comput., 394 (2021), 125798. https://doi.org/10.1016/j.amc.2020.125798 doi: 10.1016/j.amc.2020.125798
    [35] T. Y. Miyaoka, S. Lenhart, J. F. C. A. Meyer, Optimal control of vaccination in a vector-borne reaction–diffusion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077–1104. https://doi.org/10.1007/s00285-019-01390-z doi: 10.1007/s00285-019-01390-z
    [36] E. Bonyah, M. A. Khan, K. O. Okosun, S. Islam, A theoretical model for Zika virus transmission, Plos One, 12 (2017), e0185540. https://doi.org/10.1371/journal.pone.0185540 doi: 10.1371/journal.pone.0185540
    [37] M. A. Khan, S. W. Shah, S. Ullah, J. F. Gómez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal-Real., 50 (2019), 144–170. https://doi.org/10.1016/j.nonrwa.2019.04.006 doi: 10.1016/j.nonrwa.2019.04.006
    [38] C. A. Manore, K. S. Hickmann, S. Xu, H. J. Wearing, J. M. Hyman, Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus, J. Theor. Biol., 356 (2014), 174–191. https://doi.org/10.1016/j.jtbi.2014.04.033 doi: 10.1016/j.jtbi.2014.04.033
    [39] L. Xue, X. Fang, J. M. Hyman, Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika, PLos. Negl. Trop. Dis., 12 (2018), e0006666. https://doi.org/10.1371/journal.pntd.0006666 doi: 10.1371/journal.pntd.0006666
    [40] M. Besnard, S. Lastere, A. Teissier, V. Cao-Lormeau, D. Musso, Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014, Eurosurveillance, 19 (2014), 20751. https://doi.org/10.2807/1560-7917.ES2014.19.13.20751 doi: 10.2807/1560-7917.ES2014.19.13.20751
    [41] C. Bowman, A. B. Gumel, P. van den Driessche, J. Wu, H. Zhu, A mathematical model for assessing control strategies against West Nile virus, B. Math. Biol., 67 (2005), 1107–1133. https://doi.org/10.1016/j.bulm.2005.01.002 doi: 10.1016/j.bulm.2005.01.002
    [42] M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, Plos One, 7 (2012), e49085. https://doi.org/10.1371/journal.pone.0049085 doi: 10.1371/journal.pone.0049085
    [43] E. Chikaki, H. Ishikawa, A dengue transmission model in Tailand considering sequential infections with all four serotypes, J. Infect. Dev. Countr., 3 (2009), 711–722. https://doi.org/10.3855/jidc.616 doi: 10.3855/jidc.616
    [44] X. Mao, Stochastic differential equations and applications, second edition, Horwood Press, Chichester, 2007.
    [45] K. Liu, Stationary distributions of second order stochastic evolution equations with memory in Hilbert spaces, Stoch. Proc. Appl., 130 (2020), 366–393. https://doi.org/10.1016/j.spa.2019.03.015 doi: 10.1016/j.spa.2019.03.015
    [46] R. M. Dudley, Real Analysis and Probability, second edition, Cambridge University Press, 2003.
    [47] H. J. Kushner, Existence results for optimal stochastic controls, J. Optim. Theory. Appl., 15 (1975), 347–359. https://doi.org/10.1007/BF00933203 doi: 10.1007/BF00933203
    [48] J. Yong, X. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations, Springer Press, 1999.
    [49] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/s0036144500378302 doi: 10.1137/s0036144500378302
    [50] O. J. Brady, M. A. Johansson, C. A. Guerra, S. Bhatt, N. Golding, D. M. Pigott, et al., Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings, Parasite. Vector., 6 (2013), 351. https://doi.org/10.1186/1756-3305-6-351 doi: 10.1186/1756-3305-6-351
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1088) PDF downloads(159) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog