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Abstract: Zika is an infectious disease with multiple transmission routes, which is related to severe
congenital disabilities, especially microcephaly, and has attracted worldwide concern. This paper aims
to study the dynamic behavior and optimal control of the disease. First, we establish a stochastic
reaction-diffusion model (SRDM) for Zika virus, including human-mosquito transmission, human-
human sexual transmission, and vertical transmission of mosquitoes, and prove the existence, uniqueness,
and boundedness of the global positive solution of the model. Then, we discuss the sufficient conditions
for disease extinction and the existence of a stationary distribution of positive solutions. After that,
three controls, i.e. personal protection, treatment of infected persons, and insecticides for spraying
mosquitoes, are incorporated into the model and an optimal control problem of Zika is formulated
to minimize the number of infected people, mosquitoes, and control cost. Finally, some numerical
simulations are provided to explain and supplement the theoretical results obtained.
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1. Introduction

Zika virus disease, referred to as Zika, is a mosquito-borne infectious disease induced by Zika virus
originally found in rhesus monkeys in the jungle of Uganda in 1947 [1] and afterward isolated from
humans in Uganda and Tanzania in 1952 [2]. In the following decades, only a few cases from Africa
and Southeast Asia were reported sporadically [3] until 2007 when Zika broke out on Yap Island in
Micronesia in the western Pacific Ocean [4]. In early 2015, researchers detected Zika virus infection in
Brazil [5]. The virus spread rapidly to Northern Europe, Australia, the United States, Canada [6-9],
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and then to Japan, China, India, and other countries [10—12], causing great harm to human health. At
present, Zika is still prevalent at a low level in Central and South America. From January 1 to April
30, 2022, a total of 6171 suspected cases of Zika had been reported in Brazil, of which 541 cases were
confirmed [13]. Zika remains an essential global public health challenge.

The reason why Zika spreads fast and widely is mainly its multiple transmission channels. The virus
is primarily propagated to mankind via the biting of infected Aedes aegypti and Aedes albopictus [14].
Meanwhile, it can be spread among humans through heterosexual or homosexual sexual contact [15,16].
In addition, it can also be spread from infected female mosquitoes to their descendants vertically [17]
and from the water contaminated by the urine of the infected person to the mosquitoes in the aquatic
stage [18]. The latency of the virus in the human body is generally 3—14 days [14]. The majority of
infected people are asymptomatic, and only a quarter are believed to develop slight symptoms such
as fever, erythema, conjunctivitis, and arthrodynia, with only a handful of documented fatalities [14].
Although the mortality of Zika virus disease is meager, it is believed that Zika infection during the
gestational period is one of the causes of microcephaly and other congenital malformations in developing
fetuses and newborns [19]. Zika infection is also a trigger factor for Guillain-Barre syndrome, myelitis,
and neuropathy, especially in adults and older children [20]. Unfortunately, there is still no allowable
vaccination or antivirus drug for the virus.

As we all know, mathematical modeling is an effective and indispensable tool for a better
understanding of population dynamics and epidemics [21]. Using this tool, many scholars have
conducted rich and detailed research on the transmission of Zika disease, see [22—27] and their
references. For example, Gao et al. [22] proposed an ordinary differential equation (ODE) model to
examine the influences of media transmission and sexual transmission on the propagation of Zika
disease and carried out a sensitive analysis of basic reproduction number. Agusto et al. [23] established
an ODE model of Zika virus, including human vertical transmission, the birth of babies with
microcephaly, and asymptomatic infection, and studied the dynamic behavior of the model.
Considering the limitation of medical resources during the outbreak of Zika, Zhao et al. built an ODE
model of Zika to investigate the effect of medical resources on the spread of Zika [24]. In addition, due
to the impact of spatial differentiation and spatial mobility of human and vector populations on the
dynamics of vector-borne diseases, some reaction-diffusion models for describing the spatial
transmission of Zika virus have been developed accordingly, see [28-30] and references therein.
However, the transmission of Zika virus is also influenced by temperature, wind, rain, fire, and other
random environmental factors, which are ignored by the deterministic model. Using a stochastic
differential equation (SDE) model to describe the epidemic dynamics can better reflect the actual
phenomenon to some extent. The extinction and persistence of the epidemic driven by random noise
have been studied in some works of literature, see [31-34]. Nevertheless, to our knowledge, there are
few documents on the dynamic analysis of infectious diseases considering both random factors and
spatial diffusion. Therefore, this paper intends to explore the permanence and extinction of Zika disease
described by a random model with spatial diffusion, which includes human-mosquito transmission,
human-human sexual transmission, and vertical transmission of mosquitoes, to fill this gap.

The outbreak and prevalence of Zika have brought enormous economic burdens and health losses to
the local people and government. Therefore, from the perspective of epidemiology and social economics,
it is an essential and meaningful problem to formulate the optimal control strategy for Zika virus, that is,
to achieve the greatest limitation of the disease with the least cost. There have been some studies on the
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optimal control problem of Zika. For instance, the literature [35] introduced vaccination as a control
variable (although the vaccine has not been publicly available yet) and characterized the most economical
and effective vaccination strategy in a reaction-diffusion model of Zika virus by utilizing the optimal
control theory. The control variables (the prevention through mosquito nets, the treatment of infection
patients, and the spraying of insecticides) were selected into the ODE model by authors in [36,37] to
establish an optimal control problem of Zika virus. Their numerical simulation results suggested that it
might be more beneficial to eliminate Zika virus infection if all three control measures are considered.
This paper also plans to adopt three control variables, namely, personal protection, treatment of infected
humans (here we use saturation treatment function due to limited medical resources), and reduction in
the number of mosquitoes, and draw them into the SRDM to generate a stochastic control model of
Zika virus.

The rest of this paper is arranged as follows. In Section 2, we present the model description of Zika
virus and prove the existence, uniqueness, and boundedness of the global positive solution of this model.
In Sections 3 and 4, we discuss the conditions of disease extinction as well as the existence conditions
of the stationary distribution. A stochastic optimal control problem is proposed and the expressions of
the optimal controls are acquired in Section 5. Some numerical simulations are performed in Section 6
to declare and supplement the theoretical contents. At last, a summary is made in Section 7.

2. Model formulation and preliminaries

2.1. Model formulation

4
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ldhsh @ GE ,«""'ldhfh lth,l
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Figure 1. Flow chart of the Zika model. Here (1) = 2000083 (9) = 2altBuluds (3) =
knnEnS IS h Bt ) Bk EnS m Bt X)Bun IS m
B ;;C/hh h’(4) — ,BN}VI;’ /, (5) — kg/JmEm + Gﬂmlm’(6) — h(tX),BNm h ’(7) — h(tx;\,l;m Wm
According to the transmission mechanism of Zika virus, we plot the flow chart in Figure 1. In the
flow chart, S,(t, x), Ex(t, x), I,(t, x), and R, (¢, x) are the number of susceptible, exposed, infected, and
recovered human population at time ¢ and location x, respectively. The total number of humans is
N, =S, + E, + I, + R,. The number of susceptible, exposed, and infected mosquitoes at time ¢ and
position x, are recorded as S, (t, x), E,(t, x), and I,,(¢, x), respectively. Thus, N,, = S,, + E,, + I, 18
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the total amount of mosquitoes. Since only female mosquitoes suck blood and transmit diseases, the
mosquitoes in this paper only refer to female mosquitoes.

A susceptible human may be infected with Zika virus via the bite of an exposed or infected mosquito
at a rate A,,;,(t, x) = b,,(t, x)Bu(kyE,, + 1)/ Ny, or through sexual contact with an exposed or infected
partner at a rate Ay,(t, x) = Bk En + 1;,)/Ny, where b, (t, x) = b(t, x)/N,,, b(t, x) = % is the
total number of bites per day at position x [38,39], and so b,,(t, x) is the average number of bites per
mosquito per day at position x. Susceptible mosquitoes move to the exposed class after biting exposed
or infected humans at a rate Ay, (¢, x) = b;,(t, X)B,(knEp + 1)/ Ny, here by, (t, x) = b(t, x)/N, is the average
number of bites per day for an infectious person at position x. This paper considers the infectivity of
humans and mosquitoes during the exposure period and the modification parameters 0 < kj,, k. k,, < 1
measure the reduction in transmissibility during the exposure period relative to the infection period.

Zika virus can also be spread vertically from infected mothers to newborns and from infected female
mosquitoes to their offspring [17,40]. This paper only deals with vertical transmission in mosquitoes,
neglecting vertical transmission in humans because Zika has a very short transmission period compared
to the human lifespan [26]. We assume that k6u,, E,, + 6u,,1,, of the mosquito’s offspring will be
infected, and thus enter E,, class, where p,, is the average birth rate of mosquitoes, 6 is the proportion
of congenital infections in the progeny of infectious female mosquitoes, and 0 < k < 1 is also a
modification parameter.

Since the symptoms of Zika are slight and rarely fatal, we ignore the human mortality caused by the
disease. And because of the short lifespan of mosquitoes, we assume that infected mosquitoes will not
recover until natural death and that these mosquitoes will not die from Zika.

Based on the above description and the flow chart in Figure 1, and taking into account the move of
humans and mosquitoes, we establish the following reaction-diffusion system for Zika virus

oS,

Bt] =d\AS ) + N — A, X)S 1y — Api(t, X)S 1, — diS s
OE,
s D AE, + (8, X)S 1 + Api(t, X)S 1 — (& + dp)Ep,
ol
(9_: = ;AL + EE, — (y + dy)1,
OR
(')_th = d4ARy, + vl — dyRy,, (2.1)
0S

It =dsAS, + Ay — kg,umEm - Hﬂmlm — (8, X)S 1 — S s
OE,,
7 = d6AEm + keﬂmEm + Hﬂmlm + /lhm(t’ x)Sm - ('fm + dm)Em’
oI,
— =d;AL, + ¢,E, — d 1,

” 7 ¢

for t > 0, x € Q, with the boundary conditions
0 0 0 0 0 0 0
= —E,=—I,=—Ry,=—S8,=—E,=—1,=0, t>0,x€dQ,

omn" " " on " on on on on on

and initial conditions

(Sh(09 X), Eh(o’ X), Ih(o’ X), Rh(o’ X), Sm(o’ X), Em(o’ X), Im(Os X))
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= (S7(x), Ep(x), 1}(x), R)(x), S (x), Ep (%), 1, (x)),

xe Q.

here Q is a bounded region possessing smooth boundary dQ and n is the outward unit normal vector on
00. d,,d,, ds, and d, represent the diffusion coefficients of susceptible, exposed, infected, and recovered
human population, respectively, and ds, dg, and d; denote the diffusion coefficients of susceptible,
exposed, and infected mosquitoes population, respectively, d; > 0, i = 1,2,---,7. The meanings of the
remaining parameters of model (2.1) are explained in Table 1.

Table 1. Parameters in model (2.1).

Parameter =~ Meaning Value or Range Source of data
Ay Recruitment rate of the human population

(per day) 30 [41]
A Recruitment rate of the mosquitoes (per day) 2000 Assumed
Bn Probability of Zika virus spreading from an

infected mosquito to a susceptible human 0.1-0.75 [42]
B Transmission rate from infected humans to

susceptible humans (per day) 0.001-0.1 [22]
B Probability of Zika virus spreading from

an infected human to a susceptible mosquito 0.3-0.75 [43]
ay The maximum number of bites that a susceptible

human will tolerate being bitten (per day) 0.1-50 [39]
Ay Number of times a mosquito would bite a human

(per day) 0.19-0.39 [39]
& Average incubation rate of humans (per day) 0.14-0.25 [39]
én Average incubation rate of mosquitoes (per day) 0.07-0.14 [39]
dy Natural mortality rate of humans (per day) 3.65x 107>

—4.98 x 107 [26]

dy, Natural mortality rate of mosquitoes (per day) 0.029-0.25 [26]
0% Recovery rate of infected humans (per day) 0.07-0.3 [26]
i Natural birth rate of mosquitoes (per day) 0.029-0.25 [26]
0 Proportion of congenital infections in the

progeny of infectious female mosquitoes 0-0.004 [26]
k, ky, knn, k,, Modification parameters 04, 0.1, 0.01, 0.1 [25]

Because parameters in the infectious disease model are often subject to environmental noise and

exhibit random fluctuations to a certain extent, this paper intends to build a stochastic Zika model by
perturbing the natural death rates d;, and d,, for humans and mosquitoes with white noise. In other
words, we will replace dj, and d,, in model (2.1) with d), — o1B,(t) and d,, — 02 B,(2), respectively, where
Bi(t) and B,(¢) are independent standard Brownian motions in the complete probability space (Q2, ¥, IP)
with a filtration {¥;};>0, Which is increasing, right continuous, and satisfies that %, involves all IP-null
sets. oy > 0 and 0, > O are the intensities of the noise. Then the corresponding stochastic system of
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model (2.1) has the following form

dSy = |diASy + Ay = At S 1 = (8, X)) — diS 4 ]dt + 018 d By,

dEy = |dyAE), + Aun(t, 0)S 1 + Dt 0)S 1 = (&, + d)Ey |dt + o\ Eyd By,

dly = [ds Al + &Ey — (y + dy)ly|dt + o 1dB),

dRy, = |dsARy + yI, — dyRy |dt + o\ RydB, (2.2)
dS = |dsAS 1 + Ay — (K, + 1) = Din(t, XS 1y = S |t + 28 By,

dE,, = |d6AE,, + Oun(KEy, + 1)) + Apu(t, X)S 1y — & + dy)En|dt + 02 E,ud By,

dl,, = |dr AL, + £,Ey — dyl,,|dt + o21,dB,,

for t > 0, x € Q, with the boundary conditions

O _0p_ 90, 0, 0, _0 9
om " "o " on" om " on™ on on

and initial conditions

I
|
0

3
I
|
$

=0, tr>0,x€d0,

(Sh(o, )C), Eh(09 X), Ih(()’ )C), Rh(()’ X), Sm(oa )C), Em(O’ X), Im(o’ X))

= (SH(x0), Ep(x), [(x), Ry(%), S (%), Ep (), In(x),  x € Q.

2.2. Preliminaries

Let H = H'(Q) = {¢lp € L*Q), g—)‘é € L*(Q) is generalized partial derivative, i=1,2,3}. H is a
Sobolev space and H < L*(Q) < H’, where H' = H~'(Q) is the dual space of H. || - || and || - ||, are
the norms of H and L*(Q), respectively. |l¢ll*> = |l¢l? + |[V¢|?, and there exists a positive constant ¢
such that [j¢||. < cll¢ll. ¢-,-) indicates the dual product of H and H’. The norm of Euclidean space is
denoted by | - |. H = H’. Denote H* = {¢|p € L*(Q; (0, 0)), g_f,- €eL*(Q),i=1,23L,H =H").In
addition, R, = {(x;,x0,---,x) e R : x; > 0,i = 1,2,--- , I}, R, = [0, 00). LZT([O, T1x Q;RY) is a set of
square integrable and ¥;-adapted stochastic processes. The indicative function of set A is denoted by ya.
a A b = min{a, b}, a vV b = max{a, b}. ¢, represents the partial derivative of ¢ to x. B(t, x) is sometimes
abbreviated to B for convenience without causing confusion.

Theorem 2.1. For any initial value X(0,x) = (S)(x), E)(x), I)(x), R)(x), S 0(x), Ep(x), In(x)) € H*,
stochastic Zika system (2.2) has a unique global  positive solution
X(t,x) = (Sp(t, x), Ex(t, x), I(t, x), Ry(t, x), S ,(t, x), E,.(t, x), L,(t, x)) € H* ont > 0. Moreover, there is

a positive constant Cy such that
f[Sh(t, x) + En(t, x) + I(t, x) + Ry(t, x) + S ,,(t, x) + E,.(t, x) + I,(t, x)|dx < Cy a.s.
o

Theorem 2.1 is an important fundamental theorem, which gives the existence, uniqueness, and
boundness of the positive solution of system (2.2), and its proof is shown in Appendix A. The following
theorem discusses the pth moment boundedness of system (2.2) and its proof can be found in
Appendix B.
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Theorem 2.2. For any p > 0, we have

E sup (IS, 07 + 1Ex (@ O + 1@ O + IR, 0N + 1S 1 (t, 0N + E, (2, 0N + 1Ln(2, OI) < C,

0<t<T

where C is a constant related to p, T, and the original condition and the parameters of system (2.2).

3. Extinction of the disease

In this section, we will discuss the conditions for almost surely exponential extinction of Zika disease.
In general, consider an /-dimensional stochastic reaction-diffusion system by

du(t, x) = (Fv(t, x) + f(t, x, v(t, X))dt + g(t, x,v(t, ))dB(®), 1> 1y, x € O, (3.1
with boundary condition % =0 (¢t > tp, x € Q) and initial condition v(ty, x) = vo(x) (x € Q).

We give the definition of the almost surely exponential stability of system (3.1) [44].

Definition 3.1. The trivial solution of system (3.1) is said to be almost surely exponentially stable if

1
lim sup —| log |u(t, x; to, v0)||Q <0 a.s.

t—o00 t
for all vy € R',, where |log |v(-,x)||Q = fQ log |u(-, x)|dx.
Next, the almost surely exponential extinction of Zika disease will be given in the following theorem.

Theorem 3.2. For any starting value X(0, x) € H* of system (2.2), if

dyV dyV dg Vds — 0, 3.2)
and
+d ' + d,

o2 n ol > 8% —yy é B+ B+ 1t + 1), (33)
then

1

hmwpﬂbg@ﬂu@+&;%h@ﬂ+EMm0+%+¢ﬁﬂqu<0 as.
t—o00 h m

Proof. Let V(1,x) = log (Ex(t, x) + 22211, x) + E,(1, ) + 2591, (1, x)), then

W@@k:j\mwmx
0

Ii(t, x) + E,,(t, x) + L,(t, x))dx.

:fbyamm+@+% En +dy,
) fh

m
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Let A(t, x) = (En(t, x) + S22 1,(t, x) + Ey(t, x) + #5921, (1, x)). By 110s formula, we have

d‘V(t,x)‘Q: fQ AV(t, x)dx

L,(t, x))dx

d m + dp
:fdlog(Eh(t,x)+§h+ R 1t ) + Ent, %) + 2
o

h m

1
) fg {[Aa SlBAE 0 + At 0S40, + A0, 208 140,3) = (6 + d)Enr, )

. +d

¢ SO AL (1.0 + 6,0, = 7+ A1)
+ [d6AEm(t’ x) + gﬂm(kEm(t’ X) + Im(t’ X)) + /lhm(t’ X)Sm([, x) - (é:m + dm)Em(t’ x)]

A(t, %)
+ ;”Attd’") [dr AL (1, %) + £0Epn(t, %) = dL(2, )

1 0'2E (1, x) + 0'212(t x)(g””l”) + 0'2E,2n(t, x) + G%I,z,l(t, x)('f’”;%)2

2 (En(t, %) + 221 1,(1, %) + Ep(t, ) + 2221,,(1, ) ]

o En(t,x) (& + dp)o i I(t, x) 0B, (t,x) (& + dy)oad,(t, x)
T T m LA G T L 2“)}‘”

<

f {dzAEha, x) + dsACEL 1, (1, X)) + doAE (1, %) + dy A, (1, x))
0 Ej(t, %) + S22 1,1, %) + Ep(1, %) + 2591, (1, x)
N WnBr(knEn(t, x) + 1,(1, x)) ,th(kthh(f x) + Ih(f x)) H#m(kEm(l, x) + L(2, X))

Ent,0 + 5% 00 Eyt,x) + ELL0x)  Entx) + 20, x)
. @BnlhnEn(t, )+ 16, X)) (o7 A 0%(5”%)2 N3 N O ED + I + EL + 1)
Ej(t, x) + 22512, x) B((L L) v (2 2)(EL + I + E2, + I2)
o1En(t,x) (& + dp)o (2, x) o E,(t,x)  (En + dy)oal,(t, x)
dB(t dB, (1) vd
T v T way LU A T s T s L) Lo
(do V d5 V dg V d7)|AA(L, )| oI A3
- fg { A(t, x) + @B+ Bin + O + 1 B[(fh)? v (2]

N (0‘1Eh(t, X) N (&n + dp)o 1 (2, x)
A(t, x) &AL, x)

Integrating the above inequality from O to ¢, we get

! Vds VdsVd)|AA
‘V(t,x)| S‘V(O,x)' + f f (d v dy v ds Vd)IAAGS, DN, o
0 e Jo Jo A(s, x)

02 E,(t, X) . (En +dp)oal,(t, x) )de(t)}dx

JaBi(0 + ( At %) EnA( )

2 2
(N O
4 d m dm
BL(5)2 v (2]

ff 0'1Eh(s X) (§h+dh)0'11h(S,x)
A(s, x) ELA(s, x)

+ ftf (am,Bh + Bun + O + 1B — )dxds

)ddel(s)
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0-2Em(s )C) (é‘:m + dm)O-ZIm(sa X)
f f A5, ) EAG B
(dr, V d3 V dg V d7)|AA(s, X))
< ‘V(O, x)'Q + f(; L AG.D) dxds
0'% A 0'%

+ (amﬂh + Bun + Ot + B — |0l + M (1) + M(), (3.4)

8[(52 v (%""’)2])

where
M) = f f (P« ST D e o,
Em m dm Im s
o= f f e e s,

In addition, the quadratic variations of M, and M, are respectively

(M1, My, = f (f (0'1Eh(S, x) N (&n + dp)o 1 I (s, x))dx)zds,
0 0

A(s, x) ErA(s, X)
t
02 Ey(s,%) (& + dp)oalu(s, X)y | \2
M>, M,), = + dx) ds.
(M, M), fo(fQ( oY D))
Therefore
M, M 1 (" E(s, + dp)o 1 1y (s, 2
lim sup My, My), — lim sup _f (f(m (s, X) N (&n + dp)o1(s x))dx) ds < 20110 < oo as.
t—0o0 t t—o0 t 0 0 A(Sa -x) é:hA(S, -x)
M 9 M 1 ! Em b m dﬂ’l Iﬂ’l ] 2
Jim sup <2 M2k _ limsup—f (f("2 (5. %) , Em ¥ dn)Todn(s x))dx) ds < 20|Q])? < o a.s.
t—oo —o0 0 (0] A(S, X) fmA(S’ )C)
Thus, martingale’s strong law of large numbers yields
M, (¢ M, (t
lim sup 1) =0 a.s. and limsup zt() =0 as
t—o0 t—o00
Together with (3.2)—(3.4),, we obtain
+d m + dn
lim sup — |log (Ep(t, x) + & ¥ hlh(t, x)+ E,(t,x)+ 3 L,(t, x)) 0
t—oo h m
(s + B+ O+ s~ —— T g
S\ Ui + Prn + Om + ApPopm
B[(S)? v (finy2]

<0,
which shows that

lim E, (¢, x) = 11m I(t,x) = hm E,.(t,x) = 11mI 2, x) =0 a.s.

1—00

This completes the proof. O

Conditions (3.2) and (3.3) of Theorem 3.2 suggest that Zika virus will become exponentially extinct
when the diffusion coeflicients of infected people and mosquitoes are very small, that is, they hardly
move, and the intensities of environmental noise are relatively large. There is no doubt that such
conditions are very harsh. In what follows we will talk about the stationary distribution of system (2.2),
which means the persistence of Zika disease.
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4. Stationary distribution

First of all, we give the definition of the stationary distribution of system (2.2) [45]. Let P(H)
represent the space of all probability measures on (H, B(H)), here B(H) denotes the Borel o-algebra
on H. C,(H) is the set of all bounded and continuous real-valued functions on H.

Definition 4.1. A stationary distribution of the positive solution X(#, x), t > 0, of system (2.2) is defined
as a probability measure 7 € P(H) which satisfies

n(g) = n(P,g), t>0,

here n(g) := fﬂ g(@)r(de), Pig(¢) := Eg(1X(1, x, §)lp), and g € Cy(H).
For 1, m, € P(H), a measure on P(H) is defined by

d(m,nz):sup‘fg(¢1)7r1(d¢>1)—fg(¢2)ﬂ2(d¢2),
geN H H

where N := {g : H — R,Ig(¢1) — 8(¢2)l < ll¢1 — ¢oll for any ¢y, ¢, € H and [g()] < 1}. P(H) is
complete under the measure d(-, -) by [46], and then we can get an important lemma as follows, which
provides an assertion for the existence of stationary distribution [45].

Lemma 4.1. Assuming that for arbitrary bounded subset O of H*, p > 1,
(D) iy ee SUD, g0 EIIX (2, 2, 81) = X (1, x, )P = O;

(i1) sup,g SUP4eo E|X(t, x, p)||IP < oo.

Then, X(t, x, ¢),t > 0, has a stationary distribution for initial data ¢ € H™.

Applying Lemma 4.1, we can obtain the conditions for the existence of the steady-state distribution
of system (2.2).

Theorem 4.2. Assume there are constants p > 1,9 >0, and0<c¢; <1 (i =1,2,---,7) such that
N .1 .
2B, + PBunknn +7(p — 1) + @) A; + Ay + EP(P — D)o} < pdy + pBy, 4.1)
and |
(Optn)’ (1 + k) + pkOpty, + €0+ 5(p — 1) + @b A5 + 5P = D)o < pdy, + pBa, 4.2)

where Al = 2,3{;1 \/ﬁfl(l + kS), AAZ = fﬁ \% ’yp, AA3 = 2,827 V,B,’;,(l + k,";,), gl = c1d) A cads A c3dz A cadl,
B, = ¢sds A cedg A cd, then process X(t, x),t > 0, of system (2.2) has a unique stationary distribution
€ P(H).

Proof. To illustrate the existence of steady-state distribution of system (2.2), we need to prove that the
conditions (i) and (if) in Lemma 4.1 hold. Since Theorem 2.2 implies that (i) is true, we only need to
verify (7). To this end, for p > 1,9 > 0, let

D1, x, ¢1, ¢2) = € (yill” + lyall” + [yl + yall” + ysl” + lysll” + lly-117),
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where

Y1 =y1(t, %, @1, ¢02) = Su(t, x, 1) — Su(t, X, $2) 1= S — Snas
Y2 = Wa(t, X, ¢, ¢2) = Ep(t, x,$1) — En(t, X, ¢2) 1= En — Eja,
y3 = y3(6, %, 1, ¢2) = Li(t, x, ¢1) — Li(t, x, $2) = Iy — o,

Va = ya(t, X, d1, ¢2) = Ru(t, x, d1) — Ry(t, X, $2) := Ry — Rpa,
Vs = ys(t, X, 01, 02) = Spu(t, X, $1) = S, X, 42) := Sy — Sz,
Yo = Yo(t, X, d1, $2) = Ep(t, X, $1) — Ep(t, X, $2) := Epit — Epna,
y1 =yt X, 1, 92) = Lu(t, X, §1) = Lu(t, X, $2) = Ly — Lo

Applying Ito’s formula, we deduce
dD(t, x, 1, §2) = IO, x, ¢1, $2)dt + " d(IiI” + lly2ll” + lysll” + yall” + llysl” + llysll” + llyll”). (4.3)

For simplicity, we assume that Nj(t, x,¢;) = N,(t, x, ) = Ny(t,x) and N, (t,x, 1) = N, (t,x,¢5) =
Nm(ta .X). Thus denote /lmhl(t’ X) = bm(t’ x)ﬁh(khEml + Iml)/Nh = Mﬁh(khEml + Iml)’ /lth(t’ )C) =

apNp+a,;, Ny,

bu(t, V)Bu(knEmz + L) [Ny = —22——B(knEpiz + L2), Auni (¢, X) = Bun(knnEny + In1) [Ny, and (2, x) =

apNp+amNp

BrnlknnEnp + Inp)/Ny. By 1t0’s formula and embedding theorem,
dlly1I” =plyillP 21, diAyy = Qi (£ )S 11 = Az, 1S 12) = (A1 (8, X)S 51 — A (2, X)S 12)
1 _ _
= diy)di + 5p(p = Dinll’ Kyr, oynde + pliyillP (1, o1y1)dB,

] ] B
=| = pdily P 29NIE = PP, —— ek Ei St = K EnaS 2 + IS

hNh + amNm
= LS 1)) — plyi P>y, %(kthhlShl — knnEnaS 2 + InS i — InnS m2) — pdnliyill”
h

1
+ 5p(p = Doyl |dr + porilyilI"dB, “4)

S[ = perdiyill” + panBiknllyill”~ sl + panBully: I~ y7ll + Bkl I~ -l
+ pBuly I llysll = peally|I” + %p(lﬂ - 1)(Tf||y1||”]dt + poilnll"dB,
S[( —padi +4(p—1) - pdy + %p(P = DDV + @uBikn) lysll” + (@nBi)lly7ll”
+ Bunknn)” Iyl +,3Zh||y3||”]dt + poilyill’dBy,
here ¢; < 1 is a constant and the last inequality sign takes advantage of the Young inequality. Similarly,
dlly2l” =pllyallP (2, daAyz + At (£, XS w1 = A2 (1, )8 12 + A (8, X)S 51 = Ao (1, )S 1
= (&n + dp)y2)dt + %P(P — Dotlyalldt + pollyal’dB,
<|(= peads +7(p = 1) + pBukin = P& + dy) + %p(p = DDyl + (@B +)

+ (@Bn)’ + Bunku)” + B )Iyill” + B ysll” + (@nBikn)lysll” + ()’ ly7l” ]dt
+ poilly:ll"dB;,
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_ 1
dllysll” =pllysllP (s, dsAys + Exya — (v + di)ys)dt + EP(P — DaillysllPdt + pollysliPdB,

4.6
S[( —pesds +p—1-ply+dy) + %p(p — DoD)llysll” + f,’fllyzll”]dt + poi|lysllPdB, o
dllyall” =pllyall”~>(va, daAys + yys — duya)dt + %P(P - DortllyallPdt + porillysll’d By “n
<[(= pesds + p = 1= pd, + %p(p = DoDlyall? +¥*llys? Jdt + porllyallPdBy,
dllysll” =pllysI"=>(ys, dsAys = kOptmye = Optmy7 = (A1 (£, DS m1 = A (8, X)S ) = dinys)dt
+ %P(P — Da3llysli’de + pollys|I”dB,
(4.8)

1
<|(- pesds +4(p = 1) - pd,, + 520 = D)lysll” + k) 1ysll” + Gpam) 11"
+ (@Bukn)"1y2ll” + (@B)”ly3ll” ]dt + ponallysliPdB,,

dllysll” =pllysll”*(ve, dsAyvs + kOumYs + Optmy7 + A1 (t X)S 1 = Az (t, X)S iz — (€ + do)ye)dt

1
+50(p - Da3llysllPde + posllys|Pd By

1
<[( = peeds + 5(p = 1) + pkbty, = p(&n + d) + 520 = D)lyell” + (k6 llys |1

+ (@nBkin)” + (@nB) Y51 + (@nBukin) 11201 + (@nB)” llysll® ]dt + ponallyell”dBs,
4.9)

- 1
dlly7 " =pliysll" (7, dzAy7 + Enye = dimy7)dt + PP - Da3lly|Pde + poally,II’dB,

(4.10)
1
<|(= perds + p =1 = pdyy+ 5 p(p = D)lyall” + Enllyell Jdi + perllys|I°dBy.

Substituting (4.4)—(4.10) into (4.3), integrating the two sides of (4.3), and seeking mathematical
expectation, then

!
EO(t, x, ¢1, ¢2) <IED(0, x, ¢y, ¢o) + IE f PO(s, x, d1, dr)ds
0
!
+ ]Ef e CH(lyillP + lyall” + Iyl + llyall” + llysll” + lysll? + lly7lIP)d's
0

=E®, x, ¢1,¢,) + E fot(ﬂ + C)D(s, x, ¢y, ¢hr)ds,
where
C7 =max{-pcid; +4(p — 1) — pd), + %P(P — Do + (@B’ (K, + 1) + By, (kh), + 1), —pcads +T(p — 1)
+ pBunknn, — p(&n + dp) + %P(P — D)ot + Bukn)? + &, + 2(Bukn)’, —pesds + p =1 — p(y + dy,)
b 3PP~ D + 28, + 97 + 2B, —peads +p— 1 = pdy + 3p(p = Do —pesds +4(p — 1)

1
- pdm + Ep(p - 1)0-% + (a'm,Bmkm)p + (amﬁm)p’ _pc6d6 + S(P - 1) + pkglum - p(gm + dm) + 551
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1 1
+5p(p - )03 + 2(@uBikn)” + kO, —peads + p— 1 — pd, + 5P = 103 + (O)P (1 + kP)
+ 2(@ufBn)’},

and ¥ + C; > 0. Next, we take the sup and use the Gronwall inequality to get
$1.92€0

sup ED(t, x,¢1,42) < sup ED(0, x, ¢y, ¢p)e” 7",
$1.,42€0 1,920

i.e.,

sup By 17 + [y2ll” + 1lysll” + llyall” + llysll” + llysll” + ly7lI”) < sup E®(O, x, 1, $2)e™".  (4.11)
¢1,42€0 ¢1.,42€0

According to (4.1) and (4.2), C7 < 0. Therefore,

tlim supOIE(||y1||1’+||y2||1’+||y3||1’+||y4||1’+||y5||1’+||y6||1’+||y7||1’) =0.
T p1.pe

Thus, the condition (i) of Lemma 4.1 is proved. Let us now explain the uniqueness of steady-state
distribution of system (2.2).

Suppose 7’ € P(H) is another steady-state distribution for X(z, x),z > 0, of system (2.2). C;,(H)
is a bounded and Lipschitz continuous function family on 4. Then by the definition of stationary
distribution, the Holder inequality, and (4.11), for g € C;,(H), we can derive that

In(g) — 7' (g)l < f IPig(¢1) — Pig(do)ln(dp)n' (dy) < Cser, 120, (4.12)
HxH

here Cg > 0 is a constant. Whereupon, the uniqueness of stationary distribution can be obtained by

setting t — oo in (4.12) when C; < 0. The proof is completed. O

From (4.1) and (4.2) of Theorem 4.2, we find that Zika disease will be persistent when the intensities
of environmental noise are low, while the diffusion coefficients of humans and mosquitoes are relatively
large, which is the opposite of exponential extinction.

5. Optimal control problem

The objective of this section is to illustrate that anti-Zika control strategies can be implemented while
minimizing the cost of implementing these measures. So we formulate a stochastic optimal control
problem by introducing three control variables into system (2.2). The control u (¢, x) denotes the level
of personal protective efforts among the population, so the correlative infectivity is decreased by the
factor (1 — u,(z, x)). The control u;(¢, x) represents the level of treatment for infected people. We choose
saturated treatment rate function f’:i’l’; with treatment rate ¢ > 0 and saturation coefficient @ > 0 due
to the limited medical resources (medical staff, medicines, hospital beds, etc.), where § is the largest
medical resource provided per unit of time. The control u3(#, x) indicates the level of insecticides used
to kill mosquitoes in mosquito breeding grounds, which increases the mosquito mortality rate from d,,
to d,, + cous with killing efficacy cy. In this thesis, 0 < u; < 1 (i = 1,2, 3) means that there is no effort
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(i.e., no control) when the control is zero, and the maximum control is put when the control is one. Let
u = (uy, up, u3z). Thus the stochastic control system for Zika disease will be written as

dSy = |diASy + Ay = (1 = u) At S, = (1 = un) (8, X)S s, — diSy]dt + 018 4d By
=z1(t, x, X, u)dt + 015 ,dB;,

dEy = [dyAE, + (1 = u) At X)S i + (1 = u) (8, X)S 1, — (&, + di)Ep|dt + o\ E,dBy
= 2(t, x, X, uw)dt + o E,dBy,

I
dl, = [d’jAIh + é:hEh - (’y +d)I, — Al ]dt + o 11,dB,
1+ al,
= z3(t, x, X, w)dt + o11,dB;,
B curly
dR;, = [d4ARh + ’)/Ih —dyR;, + I+ a h]dt + o R,dB, (51)

= z4(t, x, X, w)dt + o R, dBy,

dS = |dsAS s + Ay — Opn(KE,y + L) = Dn(t, XS s = (d + Cot3)S ]t + 028 d B
= z5(t, x, X, u)dt + 0,5 ,,dB5,

dE,, = |d6AE,, + Oun(KEy, + 1)) + Apu(t: X)S 1 — G + doy + ou3)E,y|dt + 02 E,dBy
= z6(t, x, X, u)dt + o, E,,dB,,

dl,, = |dr AL, + £,Ep — (dy + cous)l,|dt + o1, d B
= z7(t, x, X, w)dt + 0>1,,dB,,

for t > 0, x € Q, with the boundary conditions

0 0 0 0 0 0 0
8_nSh_a_nEh_a_nIh_a_nRh_(%Sm_(%Em_a_nIm_ y t>0,x€5Q,

and initial conditions
(Sh(o’ )C), Eh(o’ .X), Ih(oa .X), Rh(o’ X), Sm(o’ .X), Em(Oa X), Im(oa X))

= ($)(%), E}(x), (), Ry(x), S (), Ep(x), [0(x)),  x € Q.

Our optimal control study aims at minimizing the number of exposed and infected people, the total
number of mosquitoes, and the cost of executing the control in time interval [0, 7] and region Q. In
order to realize this goal, an objective functional is defined as

T
J(u) = Bf f f FX(t, x), ult, x))dxdt + f @(X(T, x))dx}, (5.2)
0 (0] 0

with
13
f(X, u) = a E, + arly, + azN,, + byju, S, + bouy Iy, + bsusN,, + E Z le/lz
=1
where a;, a>, and aj are positive coefficients of weight of the exposed, infected human and the total
mosquito populations, respectively, by, b,, and b3 are positive coefficients of weigh for the linear costs
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of personal protection, the treatment for infected people, and mosquito control, respectively, ¢y, ¢;, and
c3 are positive coeflicients of weight for the quadratic costs, respectively. A function of X(z, x) at the
terminal time 7 is denoted by ¢(X (T, x)). The next task is to find the optimal control & = (i1y, i1y, it3)
such that
J(it) = min J(u),
uelU

here U is the admissible control set as follows
U = {(u(t, x)|u;(t, x) € [0, 1] is {F}»0 — adapted,t € [0, T],x € Q,i = 1,2,3}. (5.3)

Similar to Theorem 2.1, the existence, uniqueness, and boundness of the positive solution of
system (5.1) can also be verified. Further, we can obtain the boundedness and convexity of
fit,x, X,u)(i=1,2,---,7) and the compactness of U, and then the existence of optimal control # can
be shown according to Theorem 3.1 in [47].

Next, we will makes use of the Pontryagin maximum principle [48] to obtain the optimal control.

Denote A(t.x) = (At Aot X Ayt p(t) = (a0, paltsx), - par(t, ).
X = (X1, X5, X5, X4, X5, X6, X7) = Sy, Epy I, Ry, S 1y Eiy Iy) 18 the optimal state variable of system (5.1)
corresponding to the optimal control i#. Then by the stochastic maximum principle, there exists a pair of
processes (A(7, x), u(t, x)) € L2([0, T1 x Q; R7) x L2([0, T] x Q; R”) that satisfy the following SDE

dA,(t, x) = —g1(X(t, x), a(t, x), At, x), u(t, x))dt + p, (¢, x)d By (1),
d(t, x) = —g2(X(t, x), u(t, x), At, x), u(t, x))dt + po(t, x)dB (1),
dAs(t, x) = —g3(X(t, x), a(t, x), A(t, x), u(t, x))dt + ps(t, x)d By (1),
dAy(t, x) = —g4(X(t, x), a(t, x), A(t, x), u(t, x))dt + pa(t, x)d By (1),
das(t, x) = —gs(X(t, x), a(t, x), At, x), u(t, x))dt + ps(t, x)dBy (1),
dAg(t, x) = —g6(X(t, x), u(t, x), At, x), u(t, x))dt + pe(t, x)dBy (1),
dAy(t, x) = —g7(X(t, x), a(t, x), A, X), u(t, X))dt + p7(t, x)d By (1),
A(T, x) = ox,(X(T, x)),

(5.4)

where

amNm+a/h(Eh+I_h+Rh) = Eh—l—l_h +Rh
= = +( —a)Ay————
a,,N,, + a,N, N,
QmNm + ah(Eh + I_h + Rh) Eh + I_h + Rh]/l
N - =5 |2

21X, @, 4, 1) =di Ay = [(1 = ) +dy|A,

+ (1 = @)y = +(1 =@ _
[( 1) " amNm+QhNh ( 1) hh Nh
@n q 3 ay _
=S | As — | A =S| As + 101 + by,
ANy + Ny ] 5 [ h N, + arN, ] 6 1 14
X 1 S kiSn(S,+ 1, + Ry - I,S
gZ(X’ﬁ,ﬂ’/l) :dZA/lz-i-[(l_ﬁl)/lmhL_(l—ﬁl)ﬁhh i h( h /_12 h) h h]/ll

+ [/_1}1

_ = S _ knnS n(Sh + Iy + Ry) — IS,
-1 -a)dypyy————— -1 —-1u =

[( 1) N+, ( 1B N2
amahﬁmkmSm - ah/_lhmgm]/15 " [a/ma’hﬁmkmgm - a’h/_lhmgm

a’mNm + a'hNh a’mNm + a'hNh

+ é:h + dh]/lz

+&pds — [

]/16 +oup +a,
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S S.(S,+E,+Ry,)—kyE,S
anSh (=), WSy + Ej : n) — knnEp h]/ll
a,N,, + a,N, N2
- S, Sy + Ep+ Ry) — knEyS ),

—la -apa, _9mh

[( i) O (1 = 1)Bn A2 ] 2

Clp ] [amahﬂ
(1 +al))?

&(X, 1, A, 1) =dsAds + (1 = @) Ay

S m — W ApmS m
_[y+dh+$]ﬂ — alh_h
(1 + alh)2 N + anNy,

a’ma'hﬁmsm - a’h/_lhmgm
+ = = A + o1z + ar + brus,
[ @ N, + anN, ] 6 143 2 2Us

J1s

3+[7+

- o Sh S ahgh
X, i, A, =d, Al + (1 — & /lmz—h—'i' 1 —up)Ay,— |1 1-u /lm—
8a( W) =dsAdy [( ) la N,, + a,N, ( ) thh] b [( ) ha N + anNy,
S ah/lthm ah/_lhmgm
+ (1 =—a)yp— b —dydy + | ————— s - | ————" A + T R
( v thh] 27 Tha [amN +ahNh] [osz +a’hNh] oo
amS 1 @S 1
X, it, A, p) =dsAds + |(1 — i) Ay —————— 1= ) Ay —==———-|1
g5( ,Ll) 5 5 [( 1) h mNm =+ a’hNh] [( 1) ha’mNm + Q’hNh]

[/_l a’m(Em + I_m) + Cl’hNh
i amNm + ahNh
+ ous +as + b3bt3,

- an(E,+ 1)+ aN
+d, + C()I/t3j|ﬂ5 + [ﬂhma[ ( iy ) F(]l/h h:l/lﬁ
ANy + ApNp

anBrknSn = AunS
N + othh

anBrknS n = LunSn ] 1
ClmNm + Cthh 2

— (En + dy + cous) [ A6

|+ [ - aa,

a’mihmsm
(l’mN + CL’hNh

86(X. i1, A, ) =dsAdg — [(1 = ))a

+| LS — kOt |As + [ kO, —

a,, N + CYhNh
+ Endy + Oopie + az + byus,
anBnSn — AunS

R0t A1) =doAdy — [(1 = ity )y 2R A+ = ey,
g1(X, i, A, ) =d7A; [( i) o N +a'hNh] [( i)

aBiS 1 — AwnS ]/1
amNm + CZhNh 2
a’m/lthm

a’m/_lhmgm
+| I
Cl’mN + othh

a/mNm + (YhNh
— (dm + couz)d7 + o7 +asz + bius,
and Ny = S+ Ep+1y+Ri, Ny = S+ Epy+ L, Ay = %, A = ﬁhh(k+fh+lh), A =
Define the following Hamilton function:

— O |25 - | — Ot | A

amahﬁ_m (kmEh_"'I_h)
@ Ny +ap Ny

.
H(t, X, u,A,u) = Z(Zi(l, X, X, u), i) +{o 1S, 1) + {1 Ep, o) + (o1 Iy, uz) + (o1 Ry, pa)
P

+ <O-25ma/~15> + <O-2Em’ﬂ6> + <O-21ma/~17> + ff(X(t’ X), l/t(t, x))dx
0 (5.5)

.
= f (Z Zzit, x, X, A + o1 Spuy + o1 Eppiy + o1 Lz + 0 Ry
2 o1

+ 08 wits + 2 E e + ol + f(X(t, x), ult, x)))a’x,

for (£, X,u, A, 1) € [0,T] x H* x U x R7 x R”. So, according to the maximum condition of stochastic

maximum principle, from W—”M Oand0<u; <1,j=1,2,3, we get the following conclusion:
e M]
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Theorem 5.1. Under objective functional (5.2), the expressions for the optimal controls of system (5.1)
are

ity = min { max {—[(Au + Awm)(A2 — 41)8 ), — b15,1,0}, 1},

1
1
Clh 5
(A3 — A4) — ba1,], 0}, 1},

_ : 1
i = mln{max{c—z[1 Tl

1 _ _ _ _
i3 = min { max {—[co(S ,As + E,Ag + I,47) — b3N,,], 0}, 1}.
C3

6. Numerical simulations

In this part, some numerical simulations will be conducted to illustrate our theoretical results
more intuitively. We can write the discrete form (A.4) of the state Eq (2.2) shown in Appendix C
using Milstein’s method [49]. The initial conditions of model (2.2) and model (5.1) are selected as
S?l(x) = 750000 + 200 cos %5, Eg(x) = 150 + 10cos 53, I,?(x) =10 + 5Scos 53, Rg(x) =0, S%x) =

80000 + 100 cos %,E%(x) =100 + 10cos 33, I°(x) = 10 + 2 cos %> X €(0,100).

6.1. Disease extinction

We choose parameters g, = 0.1,8,, = 0.001,5, = 0.3,¢, = 0.1,@, = 0.19,¢, = 0.14,&, =
0.14,d, = 0.000039,d,, = 0.03,y = 0.14, u,, = 0.029,0 = 0.001,d, = 0.012,d, = d3 = 0.0002,d, =
ds = 0.008,ds = d; = 0.0001,0; = 0, = 0.59. Please refer to Table 1 for other parameter values.
Through calculation, conditions (3.2) and (3.3) for the almost surely exponential extinction of Zika
disease in Theorem 3.2 are established at this time. Under these parameter values, we draw the evolutions
of E;, I, E,,, and I, as shown in Figure 2. Here, the left is the spatio-temporal graphs, the right is the
relevant projection graphs, where the curves of different colors indicate the variations of the population
in different regions over time. Obviously, Figure 2 verifies the conclusion of Theorem 3.2.

It can be seen from the above, to make Zika disease almost surely exponentially extinct, on the
one hand, the intensities of noise should be higher; on the other hand, the diffusion coefficients of the
infected people and mosquitoes should be very small, which can guide us on how to eliminate Zika
disease faster.

6.2. The existence of the stationary distribution

In this subsection, the existence of the stationary distribution of system (2.2) will be numerically
simulated. We take g, = 0.23,5,, = 0.10,5,, = 0.33,a;, = 0.1,@,, = 0.26,¢, = 0.2,¢,, = 0.1,0¢ =
0.1,0, = 0.1,d, = 0.6,d, = 0.6,d; = 0.55,dy = 0.58,ds = 0.3,ds = 0.3,d; = 0.25,p = 1.01,¢; =
0.96(i = 1,2,---,7). Other parameter values are the same as those in Figure 2. At this time, conditions
(4.1) and (4.2) in Theorem 4.2 describing the existence of steady-state distribution hold. The trajectories
of the solution of system (2.2) are presented in Figures 3 and 4, whose left side is the spatio-temporal
graphs and the right side is the corresponding projection graphs, which indicate that the system will
achieve a steady state over time 7. Figures 5 and 6 show the evolutions of the solution of the system when
spatial variable x = 10 and their corresponding histograms, from which we can see that the system has a
stationary distribution.
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Figure 2. The spatio-temporal graphs and corresponding projection graphs of Ey, I, E,,, and
I, in model (2.2).
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Figure 4. The spatio-temporal graphs and corresponding projection graphs of S, E,,, and I,,
in model (2.2).

6.3. The impacts of noise and diffusion coefficients on disease

1) The impact of noise on disease

We choose the same parameters as in Figure 2 and take the values of noise as oy = 0, = 0,
oy =0, =0.05,0, =0, =0.3,0; =0, =0.8. Figure 7 describes the variations of I,(t, x) and 1,(z, x)
under different noise intensities when x = 10. We can observe that a smaller noise intensity has a slight
fluctuation in the number of infected people and mosquitoes, however, as the noise intensity enhances,
the number of infected persons and mosquitoes decreases significantly. Therefore, we can consider
random noise as a control strategy, such as human treatment and mosquito repellent spraying, to achieve
the control of Zika disease.
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histograms.

2) The impact of diffusion coefficients on disease

We set diffusion intensity 1 to d; = 0.6,d, = d3 = 0.0002,d, = 0.5,ds = 0.3,ds = d; = 0.0001,
diffusion intensity 2 to d; = 0.6,d, = d3 = 0.1,dy = 0.58,ds = 0.3,ds = 0.18,d; = 0.1, diffusion
intensity 3tod; = d, = 0.6,d; = 0.55,d, = 0.58,ds = d¢ = 0.3,d; = 0.25, 0y = 0, = 0.01, and the
other parameter values are the same as those in Figure 2. The impacts of different diffusion strengths
on infected people and mosquitoes are given in Figure 8, from which we find that with the increasing
movement of infected people and mosquitoes, the number of infected people and mosquitoes also
increases, indicating that controlling the movement of infected people and mosquitoes can reduce the
risk of Zika disease.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 17520-17553.



17542

1,(t10)

0
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
t t

Figure 7. The trajectories of 1,(¢, 10) and 7,,(¢, 10) under different noise intensities.

200

diffusion intensity 1
diffusion intensity 2
diffusion intensity 3

180

160

1,(10)
I (t,10)

0 L L L L L L L L L 0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
t t
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6.4. Optimal controls

Some numerical results of optimal controls will be presented in this subsection. We choose ¢ = 0.5,
a=0.1,¢ =05in(5.1),a; = 0.25,a, =035,a; =0.33,b, =0.1, b, = 0.2, b3 = 0.2, ¢; = 44,
¢, =40, c3 =501n (5.2), and y;(t,x) = 2.0(0 = 1,2,---,7) in (5.4). The remaining parameter values are
consistent with those in Figure 2.

Figure 9 shows the space-time diagrams of optimal controls. Figure 10 is the time evolutions of
optimal controls when space variable x = 10. From these two figures, we can see that the levels of
human control (individual protection #; and medical treatment of the infected people u,) are very high
in the early and middle stages of the disease, but they are low in the later stages; however, the control
level of mosquitoes (#3) has maintained the maximum for a long time, which means that the strength of
control for mosquitoes has exceeded that for humans. Figure 11 demonstrates the trajectories of 1,(z, x)
and 7,,(¢, x) for x = 10 under the four conditions of no control, only controlling humans, only controlling
mosquitoes, and controlling both humans and mosquitoes. We observe that the effects on the disease
of implementing three control variables and no control are very significant. In addition, the control
variables u; and u, have great influence on the changes of infected people, but have little influence on
infected mosquitoes. However, u; has a great impact on both people and mosquitoes. Therefore, to
sum up, reducing the number of mosquitoes is the primary factor to control Zika disease and personal
protection and treatment of the infected humans are also two indispensable measures.
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Figure 9. The space-time diagrams of optimal controls u; (¢, x), u,(¢, x), and u3(t, x).
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This paper presents a stochastic Zika disease model with spatial diffusion, which includes human-
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mosquito transmission, human-human sex transmission, and vertical transmission of mosquitoes, and
studies the dynamic behavior and optimal control of the model. Firstly, we give the conditions for
almost surely exponential extinction of Zika disease, and the result signifies that the Zika disease will
disappear when the diffusion coeflicients of infected people and mosquitoes are very small and the
fluctuations of environmental noise are relatively large. Secondly, we prove the sufficient conditions
for the existence and uniqueness of the steady-state distribution representing the persistence of the
disease, and research suggests that when the strengths of environmental noise are low and the diffusion
coefficients of humans and mosquitoes are relatively large, Zika disease will continue to exist, which
is contrary to the situation of disease extinction. In addition, numerical simulations have shown that
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increasing the intensity of random noise or decreasing the movement of infected people and mosquitoes
can lessen the occurrence of Zika disease. Finally, we take three control variables, namely, individual
protection, medical treatment of the infected people, and insecticides for spraying mosquitoes, into the
model, and derive the expressions of optimal controls according to the Pontryagin maximum principle.
Numerical simulations show that individual protection and treatment of infected persons are very
effective for human beings, but reducing the number of mosquitoes is still the most important measure
to control Zika.

The experiments demonstrate that the growth, survival, propagation, biting rate, transmission, and
infection probability of Aedes aegypti and Aedes albopictus are closely related to the temperature,
which is an essential factor affecting the dynamics of the spread of mosquito-borne diseases [50]. Thus,
incorporating seasonality, establishing a stochastic periodic system, and studying the dynamics and
control of Zika disease are our next exploration directions.
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Appendix A: The proof of Theorem 2.1

Proof. Because of the local Lipschitz continuity of the coefficients of system (2.2), for any given initial
function (S 9(x), ED(x), I)(x), R)(x), S 0(x), ES(x), I0(x)) € H*, there is a unique local solution
(S (1, x), Ep(t, x), I (¢, x), Ry(t, x), S (¢, x), E,.(t, x), L,(t,x)) in t € [0,7,.), x € O, here 7, is the moment
of explosion. To validate the local solution is also global, we only need to prove that 7, = oo a.s. Let &
be large enough such that every component of
(S (®)lo, IEY ()]0, Y (X)| 05 IRY(X)] s 1S 9. (X)|0s |Em (X)l0, 1I0(x)]) is in the interval (i, ko). Then for every
integer k > ko, define a stopping time

Tk = lnf{t € [09 Te)l mln{|Sh(t’ x)lQ’ |Eh(t’ .X)|Q, |Ih(t9 X)lQ, |Rh(ta X)lQ, |Sm(t» X)|Q, |Em(t9 X)|Q, |Im(t’ x)'Q}
1
< % or maX{lSh(t, .X')|Q, |Eh(t’ x)lQ’ |Ih(t7 -x)lQ’ |Rh(t7 x)lQ’ |Sm(t’ x)lQ’ |Em(t’ x)lQ’ |Im(t’ x)lQ} 2 k}

We set inf ) = co (0 denotes the empty set usually) throughout this paper. Apparently, 7 is increasing
constantly as k — oo. Let 7o, = limy_, 7%, accordingly 7, < 7, a.s. As long as we can verify that 7, =
00 a.s., then 7, = oo a.s. This means that (S (¢, x), E,(t, x), I,(t, x), R,(t, x), S . (£, x), E,.(¢, x), L,(t, x)) €
H* a.s. for all t > 0. Before showing that 7., = o a.s., let us prove the boundedness of solution for
every k when ¢ € [0, 7).

Let

N(t) = f{Sh(ta X) + Eh(t9 X) + Ih(t’ -x) + Rh(t9 X) + Sm(t’ .X) + Em(t9 X) + Im(t’ X)}dx,
o
then

d
EN(t)

0 0 0 0 0 0 0
= —S,(t, —E,(t, — I, (t, —R,(t, —S (2, —FE,.(t, —1,(t, x)d
‘gbtuxwﬂtxxnﬁﬂ<m+&;<m+& (1,20 + 5 Bt ) + 5 n(t, 0}
= f {d]ASh(l, x) + b AEL(t, x) + dsALL(t, x) + dyAR(t, x) + dsAS (1, x) + deAE (1, x)

0

+ d7AL(t, x) + A — dip(Sp(t, x) + Ep(2, x) + I(t, X) + Ry(2, X)) + Ay — di(S (2, X)
+ E,(t, x) + L,(t, X)) + 018, B (¢) + 0 E;, B (t) + o1 I, B1(t) + 01 R, B (1)
+ 028 wBa(t) + 02 B Ba(t) + 0oL, Ba(0)|dx

=d; f 2Sh(t, x)dx + d> f iEh(t, x)dx + ds f iIh(t, X)dx + d, f iRh(t, x)dx
90 on 40 on 40 on 40 on

0 0 0
+ ds f —8,.(t, x)dx + dg f —FE,(t,x)dx + dy f — L, (t, x)dx + f(Ah + A,)dx
30 on 40 on Ki1o) on 0
+ f(_dh(Sh(t’ X) + Eh(t’ .X) + I/'l(t5 -x) + Rh(t’ X)) - dm(Sm(t’ x) + Em(t’ X) + Im(ta X)))d.x
0
+f$«wmw+mmm+mmm+&mmmﬂwx
0

+ f 02(S m(t, X) + E(t, x) + L(t, X)) Ba(t)dx
0
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< (Ap+AIOI—VN(@) + f a1 (S (t, x) + Ep(t, x) + Iy(t, x) + Ry, (t, x)) B, (t)dx
Q

+ f 02(S w(t, X) + E(t, x) + L,(t, X)) Ba(t)dx,
(9]

here |Q| stands for the volume of Q, v = d, A d,,.
Consider the following SDE

dZ(t) = [(An + Ap)|Q| = vZ(1)]dt + f o1(Sau(t, x) + En(t, x) + I(t, x) + Ry(2, x))dxdB (1)
Q

+ f 02(S ot X) + Ep(t x) + L (¢, X))dxdBs (1), (A.1)
0

Z(0) = N(0).
By the constant variation method, the solution of equation (A.1) can be obtained as

(An + A0 (Ap + Al Q|
4

Z(t) = — +(Z(0) - Ye ' + M(2),

where M(1) = [[' €™ [ (S (s, )+ Eu(s, )+ Li(s, )+ Ri(s, ))dxdBi(s)+ [ €™ [ oa(S (s, )+
E,.(s, x)+1,(s, x))dxdB;(s) is a continuous local martingale with M(0) = 0 a.s. Combining the stochastic
comparison theorem, we can get that there is a constant Cy > 0 such that N(¢) < Z(r) < Cy a.s. That is,
for each k, when ¢ € [0, 7),

f{Sh(t, x) + Eu(t, x) + I(t, x) + Ry(t, x) + S ,(t, x) + E, (2, x) + 1,(t, x)}dx < Cy a.s. (A2)
Q

Next, we continue to prove that 7., = oo a.s. For any 7' > 0, define V(¢) = (S, S) + (Epn, Ep) +
Uy, Iy + (R Ry) + (S s S i) + {E s Ep) + (L, Iy, t € [0, 7, A T). Using the Ito formula, we have

dV(t) =d(S,, S ) + d{Ep, Ep) + d{I;,, I,) + d(Rp, Ry) + d{S yp, S ) + d{E,s, E,) + d{I,,, L)
=[2(S 1, d\AS j + Apy — At X)S = Awi(t, X)S 1y — diS 1) + o3 1IS WP ]dt + 2(S 1, o718 1)d B (t)
+ [2(E), dyAE) + Ayi(t, X)S 1y + Am(t, X)S )y — (& + dp)En) + 0| Enl*]dt + 2(E},, o Ej)dB (1)
+ [20h, dsAL, + E.E) — (v + diLy + oLt + 2(0y, o1 1,)d By (1)
+ [2(Ry,, dy ARy, + yI), — dyRy) + o3 ||Ry|[*|dt + 2(R;,, o7\ R}, )d B (1)
+ [2(S 1y d5AS 1y + Ay — O(KE,y + 1)) — A (t, X)S 1y — duS ) + 03IIS mll*]dt
+ [2(E, dsAE,, + Ot (KE,y, + Ly) + Apn(t, X)S 1y — (€ + dp)E) + T El*]dt
+ [2(1, dy ALy + EnE, — dyulyy + NP dt + 2(S 1y 0728 YA By (1)
+ 2E , 02E,YdBy(t) + 2(1,, 05 1,,)dBo (7).

Integrating the two ends of the above equation from 0 to 7, A T, taking the expectation, and using (A.2)
and the fundamental inequality, yield

EV(te AT) - V(0))
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T AT
<2E f [dl (S AS 1) + (S h, Ap) + dol Ep, AER) + (Ep, A2, X)S 1) + (Ep, Api(2, X)S 1)
0

+ ds(ly, Al) + &I, En) + daSRy, ARy) + y(Ry, ALy + ds(S 1, AS 1) + (S iy A)
+ d6<Em’ AEm) + Q,le<Em, AkE’m + Im> + <Em’ /lhm(t’ x)Sm> + d7<1m’ Alm> + fm(lm’ Em>

1 1 1 1 1 1 1
+ EU?IIShII2 + 50'%||Eh||2 + EU?IIIhII2 + EU%lthllz + §<T§||Sm||2 + EO%”Emllz + Evﬁlllmllz]dt

T AT
< 2Ef [ — d\IVSAl2 + CAy = IVELE + anBriQUER + 1Enl + 11l7) + 2Bl Exll
0

+ Bllll? = d3lIVLIE + ENELNP + EIIP = dallVRAZ + YIRLEP + YN = dslIVS 12
+ CAy = dl|VEuI? + 20unllEnl + Optmlllnll* + 1B UEMP + IEA? + 14I1P) = do |V LI

1 1 1 1 1
+ Enlllnll® + ERlEnIP + SISl + STENP + 507U + SR + S0301S mll®

2 2 2 2 2
+ 3ONEP + 303t

Thereby,
EV(t, AT)

T AT
<V(0) +2C(AL + AT + E f [cr$||s,,||2 + (4B + 4B + 264 + 203Bm + TDIE
0

+ 2B + 260 + 2y + 2038 + DL + 2y + oDIRAE + T3NS ll® + By + 4601,
+ 4B + 260 + ODNEnI + QanBy + 261y + 26, + O-%)”Imllz]dt

T AT
<C + CzEf IS 4l + NERP + WAl + IRAIE + IS mll® + NEwll + l*)d
0

T
=C, + sz EV (7, A t)dt,
0

where
C;y=V(O0)+2CA, + AT
= ISP+ UENZ + NI + IR + IS 1P + IEn I + DI + 2C(Ay + AT,

C, = max{4amﬁh + 4ﬁhh + 2§h + 2ah,3m + O'%, 2ﬁhh + 25}, + 2)/ + Za/hﬁm + O'%,
20, + 46ty + iy + 2E, + 05}

By taking advantage of the Gronwall inequality, we get

EV(ri AT) < CieT. (A3)
Denote o; = inf|x( g|=k0<<0 V(#) fOr k > ky. Obviously, oy — oo (k — o0). Combine (A.3) to get
Cie®" > EV(1y AT) = E[V(T)X(r<r)] 2 0P (7 < T). Setting k — oo, then P(ry < T) = 0. Thence

P(tw > T) = 1. The proof is completed. O
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Appendix B: The proof of Theorem 2.2

Proof. Define V(t) = (IS, 0N + [|[Ex(t, ONIP + (2, O + [[Ru(2, O + (IS m(, 0P + [|En(2, 017 +
||2,,(¢, x)||P. First, consider p > 2. Making use of the /76 formula, we obtain
dV () =(plIS wllP (S ns diAS 4 + Ap = An(t, X)S 1 = A(t, X)S 1, — 1S 1)
+ PUEW(Ep, d2AE; + Ain(t, X)S 1y + (2, X)S 1, — (€, + di)Ep)
+ PPy, ds AL, + EEy — (v + di)1y) + PRI (Ry,, ds ARy, + ¥, — dyRy,)
+ PIS wllP72(S s dsAS yu + Ay — Ot (KE y + 1) — A2, X)S 10 — dpS )
+ PIEWP " E s dsAE .y + Ot (KE,, + L) + Apn(t, X)S 3y — (Em + d)Ep)

1
+ UL (L dy ALy + EnEpy = dnly) + PP - DS il + IERP + Il + (1RlI)
1
+5p(p - DESUS wll? + IEII + L,lI7))dt + pori (IS all” + NERN + I + IR, B1 (1)
+ poa(IS ull” + IEwl” + 1Lul1")d B (2).
Integrating the two sides of the above equation and taking the supremum and expectation, we can get

E sup (IS (& Ol + 1Ex(, O + It I + 1R, OIF + 1S m(t, NP + [|E(2, 0N + [1Lu(2, )17

0<t<T
<E(IS Il + IEZCOI” + NI + RGN + IS 5, O + NEL oIl + 12, (0)lIP)
t
+ 15 sup f [PIISh(S, OIS s An) + PIERCS, XIP>CEny A (8, )8 1 + A (5, S 1)
0

0<t<T

+ Pl (s, NP> (Ly EERY + PIRL(S, X)IP2Ry, Y1) + PUIS w55 X)P72S s A
+ PUEL(S, NP E s Otm(KE y, + L) + (5, )S ) + P (8, X)Ly EnEnn)

1
+ Ep(p — Dat(IS w(s, O + 1Ex(s, O + 1(s, )1 + IR (s, x)|IP)

1
+5p(p - DS mCs, DI + (s, Ol + (s, X)Ilp)]ds

!
+ I sup f P (IS w(s, NP + IER (s, NP + (s, NP + |IRA(s, x)ll”)dBl(S)‘
0<t<T 0
t
+ IE sup f PEa(IS (s, NP + |Eu(s, 0P + (1L, (s, X)II”)de(S)‘-
0<t<T 0

Using the Young inequality as well as the Burkholder-Davis-Gundy inequality, we can further see that

E sup (IS (@ 07 + 1Ex (@ O + a0 + IRu(2, I + 1S, OIF + (2, O + 112, 0117

0<t<T

< (ISRl + HEROI” + OO + RGO + IS 5, (O + IEp (Ol + 11, (x0)1I7)

t
p P 1
+E sup fo [ATIQIE + ALIQIE +(p = 1+ B}, + 5p(p = DoDIIS (s, DI + (B(p — 1)

0<t<T

1 1
+ &+ afphkl + 5P = DoDIEW(s, OIF + (p— 1+ y" + B8 + 5P - Dod)L(s, 0P
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1 1
+(p-1+ Ep(p — Do)IRu(s, NP + (p— 1+ Ep(p = DEDNS (s, 0II” + (b Bk + pOp,k
1 1
+3(p-D+&+5p(p - DINNE (s, ON” + (ahBf + 67pah + p — 1 + SPp - DEDIn(s, X)I1 |ds

1
+ 51 sup (IS 1, O + NER(E, O + Wa(t, I + IR, O + 1S (2, 0N + | E(, 2117

0<t<T

A
+ 1Lt 0II”) + 16p*0iE sup f (IS 1(s, NP + N ER(s, 0IIP + (s, 0P + [IRA(s, 0)||P)d's
0

0<t<T

f
+16p°03E sup f (1S (8, 0P + 1Em(s, NP + [1Lu(s, )I1P)ds.
0

0<t<T

After organizing, we have

E sup (IS5 Ol + 1Ex(, O + Ia(t, I + 1R, O + 1S (2, NP + [|Ep(t, 0N + [1Lu(2, 2)II7)

0<t<T
!
<C; + & sup f 2C4(IIS 1 (s, 0P + NERCs, O + (s, NP + [[RR(s, OIIP + (IS (s, )11
0<t<T JO

+|En(s, Ol + [|1Lu(s, 0)II)ds,
where

Cs = 2E(IS) NP + IE) NP + Il + IRLON” + IS m (O + | Eg (NP + (0117
+2(A) + ADIQIAT,

Cy=max{p — 1+, + 3p(p — Dot + 16p*c7, 3(p — 1) + & + ayBukn + 3p(p — Do + 16p*o,
p-1l+y’+a B, + %p(p - Dot + 16p*cos, ahBrk) + pOu.k +3(p — 1) + &,
+1p(p — D)ok + 16p*03, apfy + 0Py + p— 1+ 1p(p — Do + 16p*c3).

The Gronwall inequality implies

E sup (IS5 Ol + 1Ex(, O + I, I + 1R, O + 1S (2, NP + [|E(t, 0N + [1Lu(2, )17

0<t<T
SC3 CXP{2C4T} = Cs(p)
Next suppose 0 < p < 2. By the Holder inequality, we have
E sup (IS w(t, O + 1Ex(2, 017 + [t I + 1Rt 7 + 1S it O+ NE(E, I + (2, 2)1I7)
0<t<T

<(E| sup (IS 5t I + Ex(t DI + Wt I + IRyt O + 1S (s DN + |Ep e, 0N + [t 11| 7)?

0<t<T

2.p
=& sup (IS x(@, OII” + [|Ex@, N + 11, NP + 1R, O + 1S m(t, NP + (1 En(t, O + (|12, 0)I17)7)2

0<t<T

2-p P
<(E sup 77 (IS w(t, ) + 1Ex(t, 0 + 1a(t, 0P + 1Ra(E I + 1St DI + WEm(E 0)IF + 1Lt )I))

0<t<T

<(777'C5(2))% := Cq,

here the second inequality sign makes use of the fundamental inequality |x; + x; + -+ + x7]" <
711" + |x%a|” + -+ + |x4]"), Vr > 1. This completes the proof. O
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Appendix C: The discrete form of model (2.2)

The discrete version of model (2.2) is as follows

Suijrn) = 28 nij) + S niij-1)
St = Snip + [ (o) + An = Auni S i jy = Annci, jyS ni.jy

1
2¢2 2
—thh(,-,j)]At + 018 hi, G VAT + EO-lSh(i,j)({li - 1)At,

Epjsry = 2Ep j) + Eng,j1
Enis1.p = Enij + [dz @ x)é * At pS iy + AnncijyS . j

1
—(&n + dh)Eh(i,j)]Af + 01 Eni jui Vat + EO'%Eﬁ(i,j)(flzi - Dat,

Dni jrry = 2nii jy + i j-1y
(ax)?

1 272 2
+o 1Dyl VAt + Eo'llh(i,j)(fn - 1at,

Inivrj) = Inijy + [d3 + By — (v + dh)Ih(i,j)]At

Ry, j+1) = 2Rnii.j) + R, j-1
(ax)?

1 2 p2 2
+0 1Ry, j1i VAT + Eo-th(i,j)(élli — DAt

Rygiv1,j) = Ruj) + [d4 + ¥Ini,j) — dnRu, j)]Af

(A4)

S mj1) = 28 mjy + S mii.j-1)
(ax)?

S m(i+1,j) = S m(i,j) T [dS + Ay — Qﬂm(kEm(i,j) + Im(i,j))

1 202 2
— (i, pS m(i,jy = dmS m(i,j)]At + 02862 VAL + 5038 .G = DAL,
Epij+1) = 2Eni j) + Emi j-1)
(Aax)?

Enis1,j) = Engj) + [de + Ot (kEo,jy + I, j))

1 22 2
+ (i, pS mti,jy = Em + dm)Ema,j)]N + 0B, jyoi VAL + 77 2E (& — DAL,

L jsty = 2L jy + Dni,j—1)
(ax)?

1 272 2
+0 2L jyloi VAL + 5021’"(’? (& = Dat,

Liis1.jy = Dnijy + [d7 + EmEmij) — dmlm(i,j)]m

where {y;, (i(i = 1,2, - --) are independent standard normal variables.
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