Citation: Nao Yamamoto, Hyojung Lee, Hiroshi Nishiura. Exploring the mechanisms behind the country-specific time of Zika virusimportation[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3272-3284. doi: 10.3934/mbe.2019163
[1] | G. Benelli and H. Mehlhorn, Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control, Parasitol Res., 115 (2016), 17471754. |
[2] | G. W. Dick, Zika virus. II. Pathogenicity and physical properties, Trans. R. Soc. Trop. Med. Hyg., 46 (1952), 521–534. |
[3] | I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Anticipating the international spread of Zika virus from Brazil, Lancet, 387 (2016), 335336. |
[4] | E. M. Netto, A. Moreira-Soto, C. Pedroso, et al., High Zika virus seroprevalence in Salvador, Northeastern Brazil limits the potential for further outbreaks, MBio, 8 (2017), e01390–17. |
[5] | D. P. Shutt, C. A. Manore, S. Pankavich, et al., Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America, Epidemics, 21 (2017), 63–79. |
[6] | L. Dinh, G. Chowell, K. Mizumoto, et al., Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016, Theor. Biol. Med. Model., 13 (2016), 20. |
[7] | A. J. Kucharski, S. Funk, R. M. Eggo, et al., Transmission dynamics of Zika virus in island popu- lations: a modelling analysis of the 201314 French Polynesia outbreak, PLoS Negl. Trop. Dis., 10 (2016), e0004726. |
[8] | H. Nishiura, R Kinoshita, K. Mizumoto, et al., Transmission potential of Zika virus infection in the South Pacific, Int. J. Infect. Dis., 45 (2016), 95–97. |
[9] | N. H. Ogden, A. Fazil, D. Safronetz, et al., Risk of travel-related cases of Zika virus infection is predicted by transmission intensity in outbreak-affected countries, Parasit. Vectors, 10 (2017), 41. |
[10] | S. Cauchemez, M. Besnard, P. Bompard, et al., Association between Zika virus and microcephaly in French Polynesia, 20132015: a retrospective study, Lancet, 387 (2016), 2125–2132. |
[11] | J. Mlakar, M. Korva, N. Tul, et al., Zika virus associated with microcephaly, N. Engl. J. Med., 374 (2016), 951–958. |
[12] | V. Sikka, V. K. Chattu, R. K. Popli, et al., The emergence of Zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG). J. Glob. Infect. Dis., 8 (2016), 3–15. |
[13] | R. W. Malone, J. Homan, M. V. Callahan, et al., Zika Virus: Medical Countermeasure Develop- ment Challenges, PLoS Negl. Trop. Dis., 10 (2016), 1–26. |
[14] | S. A. Rasmussen, D. J. Jamieson, M. A. Honein, et al., Zika virus and birth defects reviewing the evidence for causality, N. Engl. J. Med., 374 (2016), 1981–1987. |
[15] | F. J. Colón-González, C. A. Peres, C. S. S˜ ao Bernardo, et al., After the epidemic: Zika virus projections for Latin America and the Caribbean, PLoS Negl. Trop. Dis., 11 (2017), e0006007. |
[16] | N. D. Grubaugh, J. T. Ladner, M. U. G. Kraemer, et al., Genomic epidemiology reveals multiple introductions of Zika virus into the United States, Nature, 546 (2017), 401–405. |
[17] | J. P. Messina, M. U. Kraemer, O. J. Brady, et al., Mapping global environmental suitability for Zika virus, Elife, 5 (2016), e15272. |
[18] | R. N. Faria, J. Quick, I. Morales, et al., Establishment and cryptic transmission of Zika virus in Brazil and the Americas, Nature, 546 (2017), 406–410. |
[19] | World Health Organization, Situation ReportZika virus, microcephaly, GuillainBarr syn- drome, 2017. Available from: http://apps.who.int/iris/bitstream/10665/254714/1/ zikasitrep10Mar17-eng.pdf?ua=1. |
[20] | I. I. Bogoch, O. J. Brady, M. U. G. Kraemer, et al., Potential for Zika virus introduction and transmissioninresource-limitedcountriesinAfricaandtheAsia-Pacificregion: amodellingstudy, Lancet Infect. Dis, 16 (2016), 1237–1245. |
[21] | R. Mgling, H. Zeller, J. Revez, et al., ZIKV reference laboratory group and C. Reusken, Status, quality and specific needs of Zika virus (ZIKV) diagnostic capacity and capability in National Reference Laboratories for arboviruses in 30 EU/EEA countries, May 2016, Euro. Surveill., 22 (2017), 30609. |
[22] | J. M. Marshall, S. L. Wu, H. M. Sanchez, et al., Mathematical models of human mobility of relevance to malaria transmission in Africa, Sci. Rep., 8 (2018), 1–12. |
[23] | J. Riou, C. Poletto and P. Y. Bolle, A comparative analysis of Chikungunya and Zika transmission, Epidemics, 19 (2017), 43–52. |
[24] | N. M. Ferguson, Z. M. Cucunub, I. Dorigatti, et al., Countering the Zika epidemic in Latin Amer- ica, Science, 353 (2016), 353–354. |
[25] | K. Sun, Q. Zhang, A. Pastore-Piontti, et al., Quantifying the risk of local Zika virus transmission in the contiguous US during the 2015-2016 ZIKV epidemic, BMC Med., 16 (2018), 195. |
[26] | S. Towers, F. Brauer, C. Castillo-Chavez, et al., Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual trans- mission, Epidemics, 17 (2016), 50–55. |
[27] | Q. Zhang, K. Sun, M. Chinazzi, et al., Spread of Zika virus in the Americas, Proc. Natl. Acad. Sci. USA, 114 (2017), E4334–E4343. |
[28] | L. T. Keegan, J. Lessler and M. A. Johansson, Quantifying Zika: advancing the epidemiology of Zika with quantitative models, J. Infect. Dis., 216 (2017), S884–S890. |
[29] | S. M. Moghadas, A. Shoukat, A. L. Espindola, et al., Asymptomatic transmission and the dynam- ics of Zika infection, Sci. Rep., 7 (2017), 5829. |
[30] | A. Wiratsudakul, P. Suparit and C. Modchang, Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches, Peer. J., 6 (2018), e4526. |
[31] | E. Massad, S. H. Tan, K. Khan, et al., Estimated Zika virus importations to Europe by travellers from Brazil, Glob. Health. Action, 9 (2016), 31669. |
[32] | D. Balcan, B. Gonalves, H. Hu, et al., Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model, J. Comput. Sci., 1 (2010), 132–145. |
[33] | D. Balcan, V. Colizza, B. Goncalves, et al., Multiscale mobility networks and the spatial spreading of infectious diseases, Proc. Natl. Acad. Sci. USA, 106 (2009), 21484–21489. |
[34] | D. Brockmann and D. Helbing, The hidden geometry of complex , network-driven contagion phe- nomena, Science, 342 (2013), 1337–1342. |
[35] | M. R. T. Nunes, G. Palacios, N. R. Faria, et al., Air travel is associated with intracontinental spread of dengue virus serotypes 13 in Brazil, PLoS Negl. Trop. Dis., 8 (2014), e2769. |
[36] | K. Nah, K. Mizumoto, Y. Miyamatsu, et al., Estimating risks of importation and local transmission of Zika virus infection, Peer. J., 4 (2016), e1904. |
[37] | J. Patokallio, Openflights data, 2016. Available from: http://openflights.org/. |
[38] | Central Intelligence Agency, The World Factbook 2017. Available from: https://www.cia. gov/library/publications/the-world-factbook/rankorder/2004rank.html. |
[39] | World Health Organization, Global Health Observatory data repository 2017. Avail- able from: http://data.un.org/Data.aspx?q=Health+expenditure&d=WHO&f=MEASURE_ CODE%3aWHS7_108. |
[40] | S. Otsuki and H. Nishiura, Reduced Risk of Importing Ebola Virus Disease because of Travel Restrictions in 2014: A Retrospective Epidemiological Modeling Study, PLoS One, 11 (2016), e0163418. |
[41] | K. Nah, S. Otsuki, G. Chowell, et al., Predicting the international spread of Middle East respiratory syndrome (MERS), BMC Infect. Dis., 16 (2016), 356. |
[42] | M. N. Burattini, F. A. B. Coutinho, L. F. Lopez, et al., Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in Rio de Janeiro, Brazil, Epidemiol. Infect., 144 (2016), 1904–1906. |