Citation: Paulo Amorim, Bruno Telch, Luis M. Villada. A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257
[1] | B. Ainseba, M. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal- Real., 9 (2008), 2086–2105. |
[2] | A. Chakraborty, M. Singh, D. Lucy, et.al., Predator-prey model with prey-taxis and diffusion, Math. Comput. Model., 46 (2007), 482–498. |
[3] | T. Goudon, B. Nkonga, M. Rascle, et. al., Self-organized populations interacting under pursuit- evasion dynamics, Physica D: Nonlinear Phenomena, 304–305 (2015), 1–22. |
[4] | T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253–2286. |
[5] | X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator- prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73–77. |
[6] | H. Jin and Z. Wang, Global stability of prey-taxis systems, J. Differ. Equations, 262 (2017), 1257– 1290. |
[7] | J. M. Lee, T. Hillen and M. A. Lewis, Continuous traveling waves for prey-taxis. Bull. Math. Biol., 70 (2008), 654. |
[8] | J. M. Lee, T. Hillen and M. A. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551–573. |
[9] | Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. |
[10] | Y. Tyutyunov, L. Titova and R. Arditi, A Minimal Model of Pursuit-Evasion in a Predator-Prey System.Math. Model. Nat. Pheno., 2 (2007), 122–134. |
[11] | Ke Wang, Qi Wang and Feng Yu, Stationary and time-periodic patterns of two-predator and one- prey systems with prey-taxis, Discrete Contin. Dyn. S., 37 (2016), 505–543. |
[12] | X. Wang, W. Wang and G. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis,Math. Method. Appl. Sci., 38 (2015), 431–443. |
[13] | S. Wu, J. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator–prey model with prey-taxis, J. Differ. Equations, 260, (2016). |
[14] | T.Xiang, Global dynamicsfora diffusive predator-preymodelwith prey-taxisand classicalLotka– Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278–299. |
[15] | Y. Tao and M. Winkler. Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals. Discrete Contin. Dyn. S., 20 (2015), 3165–3183. |
[16] | R. Alonso, P. Amorim and T. Goudon, Analysis of a chemotaxis system modeling ant foraging, Math. Models Methods Appl. Sci., 26 (2016),1785–1824. |
[17] | E. De Giorgi, Sulla differenciabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Acccad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., 3 (1957), 25–43. |
[18] | E. Keller and L. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. |
[19] | E. Keller and L. Segel, Model for Chemotaxis, J. theor. Biol., 30 (1971), 225–234. |
[20] | T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. |
[21] | B. Perthame, Transport Equations in Biology. Birkhäuser Verlag, Basel - Boston - Berlin. |
[22] | L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi- geostrophic equation, Ann. Math., 171 (2010), 1903–1930. |
[23] | L. Caffarelli and A. Vasseur, The De Giorgi method for nonlocal fluid dynamics, in Nonlinear Partial Differential Equations, Advanced Courses in Mathematics–CRM Barcelona (Birhäuser, 2012), 1–38. |
[24] | B. Perthame and A. Vasseur, Regularization in Keller–Segel type systems and the De Giorgi method, Commun. Math. Sci., 10 (2012), 463–476. |
[25] | H. Brézis, Analyse Fonctionnelle, Théorie et Applications (Masson, 1987). |
[26] | A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (208), 169–205. |
[27] | H. Holden, K. H. Karlsen and N. H. Risebro, On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations, Electron. J. Differential Equations, 46 (2003), 1–31. |
[28] | R. Bürger, R. Ruiz-Baier and K. Schneider, Adaptive multiresolution methods for the simulation of waves in excitable media, J. Sci. Comput., 43 (2010), 261–290. |