Research article

$ \alpha $-robust error analysis of two nonuniform schemes for Caputo-Hadamard fractional reaction sub-diffusion problems

  • Received: 26 October 2024 Revised: 29 December 2024 Accepted: 14 January 2025 Published: 23 January 2025
  • In this paper, we focused on the Caputo-Hadamard fractional reaction sub-diffusion equations. By using the nonuniform L1 scheme and nonuniform Alikhanov scheme in the temporal domain, we formulated two efficient numerical schemes, where the second order difference method was used in the spatial dimension. Furthermore, we derived the stability and convergence of these proposed schemes. Remarkably, both derived numerical methods exhibited $ \alpha $-robustness, that is, it remained valid when $ \alpha\rightarrow 1^- $. Numerical experiments were given to demonstrate the theoretical statements.

    Citation: Xingyang Ye, Xiaoyue Liu, Tong Lyu, Chunxiu Liu. $ \alpha $-robust error analysis of two nonuniform schemes for Caputo-Hadamard fractional reaction sub-diffusion problems[J]. Electronic Research Archive, 2025, 33(1): 353-380. doi: 10.3934/era.2025018

    Related Papers:

  • In this paper, we focused on the Caputo-Hadamard fractional reaction sub-diffusion equations. By using the nonuniform L1 scheme and nonuniform Alikhanov scheme in the temporal domain, we formulated two efficient numerical schemes, where the second order difference method was used in the spatial dimension. Furthermore, we derived the stability and convergence of these proposed schemes. Remarkably, both derived numerical methods exhibited $ \alpha $-robustness, that is, it remained valid when $ \alpha\rightarrow 1^- $. Numerical experiments were given to demonstrate the theoretical statements.



    加载中


    [1] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [2] A. Kilbas, H Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.3182/20060719-3-PT-4902.00008
    [3] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
    [4] I. Podlubny, Fractional Differential Equations, Acad. Press, 1999.
    [5] R. Garra, F. Mainardi, G. Spada, A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus, Chaos Solitons Fractals, 102 (2017), 333–338. https://doi.org/10.1016/j.chaos.2017.03.032 doi: 10.1016/j.chaos.2017.03.032
    [6] C. Lomnitz, Application of the logarithmic creep law to stress wave attenuation in the solid earth, J. Geophys. Res., 67 (1962), 365–368. https://doi.org/10.1029/JZ067i001p00365 doi: 10.1029/JZ067i001p00365
    [7] S. Denisov, H. Kantz, Continuous-time random walk theory of superslow diffusion, Europhys. Lett., 92 (2010), 30001. https://doi.org/10.1209/0295-5075/92/30001 doi: 10.1209/0295-5075/92/30001
    [8] J. Dr$\ddot{a}$Ger, J. Klafter, Strong anomaly in diffusion generated by iterated maps, Phys. Rev. Lett., 84 (2000), 5998–6001. https://doi.org/10.1103/PhysRevLett.84.5998 doi: 10.1103/PhysRevLett.84.5998
    [9] F. Igl$\acute{o}$i, L. Turban, H. Rieger, Anomalous diffusion in aperiodic environments, Phys. Rev. E, 59 (1999), 1465. https://doi.org/10.1103/PhysRevE.59.1465 doi: 10.1103/PhysRevE.59.1465
    [10] L. Sanders, M. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, T. Ambjornsson, Severe slowing-down and universality of the dynamics in disordered interacting many-body systems: Ageing and ultraslow diffusion, New J. Phys, 16 (2014), 113050. https://doi.org/10.1088/1367-2630/16/11/113050 doi: 10.1088/1367-2630/16/11/113050
    [11] T. Sandev, A. Iomin, H. Kantz, R. Metzler, A. Chechkin, Comb model with slow and ultraslow diffusion, Math. Model. Nat. Phenom., 11 (2016), 18–33. https://doi.org/10.1051/mmnp/201611302 doi: 10.1051/mmnp/201611302
    [12] C. Li, D. Li, J. Wang, L1/LDG method for the generalized time-fractional Burgers equation, Commun. Appl. Math. Comput., 5 (2023), 1299–1322. https://doi.org/10.1016/j.matcom.2021.03.005 doi: 10.1016/j.matcom.2021.03.005
    [13] E. Fan, C. Li, Z. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Commun. Nonlinear Sci. Numer. Simul., 106 (2022), 106096. https://doi.org/10.1016/j.cnsns.2021.106096 doi: 10.1016/j.cnsns.2021.106096
    [14] T. Zhao, C. Li, D Li, Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative, Fract. Calc. Appl. Anal., 26 (2023), 2903–2927. https://doi.org/10.1007/s13540-023-00216-6 doi: 10.1007/s13540-023-00216-6
    [15] X. Ye, J. Cao, C. Xu, A high order scheme for fractional differential equations with the Caputo-Hadamard derivative, J. Comput. Math., 434 (2025), 615–640. https://doi.org/10.4208/jcm.2312-m2023-0098 doi: 10.4208/jcm.2312-m2023-0098
    [16] H. Liao, D Li, J Zhang, Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [17] M. Stynesy, E. O'riordanz, Z. Graciax, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16M1082329 doi: 10.1137/16M1082329
    [18] H. Liao, W Mclean, J. Zhang, A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem, Commun. Comput. Phys., 30 (2021), 567–601. https://doi.org/10.4208/cicp.OA-2020-0124 doi: 10.4208/cicp.OA-2020-0124
    [19] H. Liao, W Mclean, J. Zhang, A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. https://doi.org/10.1137/16M1175742 doi: 10.1137/16M1175742
    [20] B. Zhou, X. Chen, D. Li, Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations, J. Sci. Comput., 85 (2020), 39. https://doi.org/10.1007/s10915-020-01350-6 doi: 10.1007/s10915-020-01350-6
    [21] X. Yang, H. Zhang, The uniform $l^1$ long-time behavior of time discretization for time-fractional partial differential equations with nonsmooth data, Appl. Math. Lett., 124 (2022), 107644. https://doi.org/10.1016/j.aml.2021.107644 doi: 10.1016/j.aml.2021.107644
    [22] D. Hou, M. Azaiez, C. Xu, M$\ddot{u}$ntz spectral method for two-dimensional space-fractional convection-diffusion equation, Commun. Comput. Phys., 26 (2019), 1415–1443. https://doi.org/10.4208/cicp.2019.js60.04 doi: 10.4208/cicp.2019.js60.04
    [23] X. Yang, W. Qiu, H. Chen, H. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
    [24] Z. Sun, L. Ling, A kernel-based meshless conservative Galerkin method for solving Hamiltonian wave equations, SIAM J. Sci. Comput., 44 (2022), A2789–A2807. https://doi.org/10.1137/21M1436981 doi: 10.1137/21M1436981
    [25] H. Zhang, Y. Liu, X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput., 69 (2023), 651–674. https://doi.org/10.1007/s12190-022-01760-9 doi: 10.1007/s12190-022-01760-9
    [26] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [27] Z. Sun, L. Ling, A high-order meshless linearly implicit energy-preserving method for nonlinear wave equations on {R}iemannian manifolds, SIAM J. Sci. Comput., 46 (2024), A3779–A3802. https://doi.org/10.1137/24M1654245 doi: 10.1137/24M1654245
    [28] C. Li, Z. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation, J. Sci. Comput., 85 (2020), 41. https://doi.org/10.1007/s10915-020-01353-3 doi: 10.1007/s10915-020-01353-3
    [29] Z. Wang, C. Ou, S. Vong, A second-order scheme with nonuniform time grids for Caputo-Hadamard fractional sub-diffusion equations, J. Comput. Appl. Math., 414 (2022), 114448. https://doi.org/10.1016/j.cam.2022.114448 doi: 10.1016/j.cam.2022.114448
    [30] J. Zhang, Z. Zhang, C. Zhao, $\alpha$-robust error estimates of general non-uniform time-step numerical schemes for reaction-subdiffusion problems, preprint, arXiv: 2305.07383. https://doi.org/10.48550/arXiv.2305.07383
    [31] Z. Yang, X. Zheng, H. Wang, Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations, Z. Angew. Math. Phys., 72 (2021), 141. https://doi.org/10.1007/s00033-021-01566-y doi: 10.1007/s00033-021-01566-y
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(223) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog