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Abstract: In this paper, we focused on the Caputo-Hadamard fractional reaction sub-diffusion
equations. By using the nonuniform L1 scheme and nonuniform Alikhanov scheme in the temporal
domain, we formulated two efficient numerical schemes, where the second order difference method
was used in the spatial dimension. Furthermore, we derived the stability and convergence of these
proposed schemes. Remarkably, both derived numerical methods exhibited @-robustness, that is, it
remained valid when @« — 17. Numerical experiments were given to demonstrate the theoretical
statements.
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1. Introduction

In the past, researchers have conducted extensive studies in the fields of fractional calculus and
fractional differential equations (FDEs) [1-4]. To date, numerous scholars have extensively explored
the realm of fractional integrals and derivatives in numerous forms, including Riemann-Liouville,
Caputo, and Riesz integrals and derivatives, among others. However, there exists another type of
fractional derivative that incorporates a logarithmic function in its definition, known as the Hadamard
fractional derivative, which is defined as [2]

!
d
CADY v(x, 1) = f w1_q (logt —log s) 6v(x, s)—s, O<acx<t,
: ’ 5

t/f—l

F_(ﬂ)’
Compared to the Riemann-Liouville and Caputo derivatives, the Caputo-Hadamard derivative, first

introduced in 1892, more accurately captures some complex processes in practical applications. This

includes Lomnitz logarithmic creep law [5, 6] and ultra-slow mechanics [7, 8] , among others. In

where 0 < a < 1, wp(r) = ov(x, s) = (sé—l) v(x, s), and I'(-) representing the Gamma function.
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particular, the logarithmic increase in the mean square displacement of particles during ultra-slow
diffusion has been demonstrated in [9-11]. As a result, the Hadamard fractional operator, whose
kernel is a logarithmic function, has emerged as a natural model for ultra-slow diffusion processes and
has garnered significant attention.

Let Q = (x5, x,), A = (a,T) with a > 0, and we will pay attention to the numerical approximation
for the following Caputo-Hadamard fractional reaction sub-diffusion equation:

D% u(x, 1) — Ou(x, ) + ku(x, ) = f(x,1), (x,1) € QXA, (1.1)
u(x,a) = ¢(x), xeQ, (1.2)
u(x,t) =ulx,t)=0, treA. (1.3)

Here, the real constant « € R is the reaction coefficient, and the source term f(x, ) and the initial data
¢(x) are given functions.

Recent studies have explored various numerical methods for tackling Caputo-Hadamard FDEs,
encompassing the L1 scheme [12], L1-2 scheme, and L2-10 scheme [13]. Moreover, Zhao et al. [14]
introduced a spectral collocation method utilizing mapped Jacobi log orthogonal functions as basis
functions, resulting in an efficient algorithm for solving Hadamard-type FDEs. Based on
block-by-block approach, Ye et al. [15] proposed and analyzed a high order time stepping scheme
having the convergence order more than three for the Caputo-Hadamard fractional differential
equations.

Actually, the aforementioned studies mainly concentrate on the Caputo-Hadamard FDEs that
possess smooth solutions. Recently, numerous efficient numerical methods have been developed for
Caputo FDEs with weakly singular solutions, including the nonuniform L1 scheme [16, 17], the
nonuniform Alikhanov scheme [18-20], convolution quadrature method [21], and the spectral
method [22]. Interested readers can also consult some recent references [23—27] for more numerical
methods about FDE, such as the Alternating Direction Implicit method, extrapolation method,
meshless method, and so on.

Nevertheless, numerical simulations for Caputo-Hadamard fractional reaction sub-diffusion
equation (1.1)—(1.3) with weakly singular solutions remain relatively limited. For Eqs (1.1)—(1.3)
without reaction term, Li et al. [28] proposed an L1 scheme on nonuniform meshes to approximate
the time Caputo-Hadamard fractional derivative and employed the local discontinuous Galerkin
method to approximate the spatial derivative. Later, the Alikhanov scheme with nonuniform time
meshes for Caputo-Hadamard fractional sub-diffusion equations with an initial singularity was
investigated in [29]. The stability and convergence of the resulting discrete scheme were analyzed, but
the error bounds generally contain a constant factor I'(1 — @) or 1/(1 — @) which will blow up as «a
approaches 1°.

Zhang et al. [30] derived a novel a-robust error analysis for convolution-type schemes with general
nonuniform time step for Caputo fractional reaction sub-diffusion equations. By virtue of the ideas
derived in [30], this paper will extend the nonuniform L1 and Alikhanov scheme presented in [28]
and [29] to Caputo-Hadamard fractional sub-diffusion equations with reaction term, and then we will
consider the a-robust error analysis of the proposed schemes. This means that the derived error bounds
will not contain any blowup factor and will remain validasa@ — 1°.

Throughout this paper, we employ C to represent a generic constant that is independent of the mesh,
and it may take different values at different places. Additionally, C exhibits a-robustness, meaning it is
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influenced by «, yet as @ approaches 1, the value of C remains finite, avoiding any potential explosion.
The proposed method in this paper is analyzed under the following regularity assumptions: for all
(x,1) € Q x A, it holds

[
TuxDl ¢ 120.1.2.3.4. (1.4)
ox!
t o-I1
SuCe, 1) < C(1+(log—) ) 1=0,1,2, (1.5)
a

with the regularity parameter o € (0, 1) U (1,2), and §'u(x, 1) = (t2) u(x, 1).

The remainder of this paper is organized as follows. In Section 2, we describe the detailed
construction of the general convolution-type scheme. After that, the abstract result for graded mesh is
applied to two typical numerical schemes, i.e., the widely used L1 scheme and Alikhanov’s scheme.
In Sections 3 and 4, we give a rigorous analysis of the stability and convergence of the L.1 scheme and
Alikhanov’s scheme, and derive a-robust error estimates under specific regularity conditions imposed
on the exact solution. In Section 5, some numerical examples are provided to support the theoretical
statement. Some concluding remarks are given in the final section.

2. Preliminaries

To develop a finite difference scheme for solving (1.1)—-(1.3), we first divide the spatial interval
[x;, x,] into M subintervals with grid size h = % Set discrete grid Q, = {x;|0 < i < M} with
x; = x; + ih. For any grid function w = {w;|lw; = w(x;), x; € Q}, let (ﬁwi be the standard second-order

approximation of #?w(x;), i.e.,

Wist = 2W; + Wiy

FPw(x,) = 62w, = 7

Denote the space of grid functions ‘W = {wlwy = wy, = 0}. For any w,v € ‘W, the discrete L? inner

product and the associate L? norm are given as

M
(w,v) = thivi, W]l := v {w, w).
i=0

Denote Wi — W
wai:lTl_l, 1SZSM,

for any grid functions w, v € ‘W, and it holds
~(&w, V) = (Vaw, Vo). 2.1

We now proceed to the discretization of time. First, we partition the interval [a, T'] arbitrarily with
a=ty<th < - <l <t<---<ty=T,and set

7 = logtr —logti1, 1<k<N,
o = =& 1<k<N-1.
Th+1
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Based on this partition, we derive L1 and Alikhanov’s scheme, which are given in (3.1) and (4.1),
respectively. Second, we further study and discuss these two formulas in the following divisions on the
interval [a, T]:

T\ &INY
tk:a(—) C k=0.1,-.N, r>1,
a

and, correspondingly,

T\(kY
logtkzloga+(log—)(ﬁ), k=0,1,---,N. (2.2)
a

Define v := v(x,1,), th_g := Ot,_; + (1 — O)t,,, and v'"? := B! + (1 — )v" with an offset parameter
6 € [0, 1). Then, the Caputo-Hadamard derivative operator in the problem (1.1) can be approximated
as a convolution as detailed in the succeeding article [28]:

n
DG W(x, ) XD 0 = N AL VA, (2.3)
k=1

k — %1 for k > 1. To conduct our error analysis, we require

where the difference operator is V¥ = v
the following three assumptions.

A1l. The discrete kernels are monotone, meaning that
AP 2 A" > AP > 2 A" forl <n<N.

A2. There exists a constant 4 > 0 such that the discrete kernels satisfy a lower bound

(n)
A2
TATk

Tk ds
f wi_o(logt, —logs)— for1 <k <n<N.
s

Ti-1

A3. There exists a constant p > 0 for which the step size ratios p; satisfy
pr<p forl<k<N-1.

For the graded mesh, it can be checked that the step size ratio is p; < 1. In fact, by using the mean
value theorem, we have

_logt—logti.y K —(k—1)" n!
" logtie —logt,  (k+ 1)y —k !
withn, € (k= 1,k), m € (kk+ 1).

Next, to derive the global consistency error, we introduce the discrete complementary convolution
(DCC) kernels [16]

<1,

Pk

0= ) e 2.4)
AT\ AP~ AP I <k<n-1, -
which are specifically chosen to enforce the identity
ZP;Y?jA;j_)mE 1, for 1<m<n<N. (2.5)

J=m

Futher, a discrete fractional Gronwall inequality is given as follows.
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Lemma 2.1. Assume that A1-A3 hold, 6 € [0, 1), and the nonnegative sequences (g")" el (/ll)l 0 (v
satisfy

ZA(”) Ve < D A0+ T <n <N, (26)

If a constant 11 satisfies 11 > Zﬁal A; and the maximum step size satisfies

1
max 7, < 2.7)

1<n<N V2 max{1, p}ra[(2 — Il

then it holds that

k
V' < E, (2max{1, p}rsI1(log 1,)%) [vo + max Z P(kk_)jg"), (2.8)

J=1

where E,(-) = Z

ma +1) represents the special Mittag-Leffler function.

The proof of this lemma is similar to that in [19].

Lemma 2.2. [31] Forv > 0,8>0,b > a > 0, there holds

b y v+p-1
f (log %) (log )ﬁ’ tds F(v)F(B)( Q) _

s T(v+p)
Lemma 2.3. [19] If g is monotone increasing and h is monotone decreasing on the interval [a, b], and
if both functions are integrable, then

b b b
(b—a)f g(s)h(s)dssf g(t)dtf h(s)ds.

In the following, we derive two important lemmas which are useful in the convergence analysis later
on.

-1

Lemma 2.4. Assume that A1-A2 hold, then we have
Z P, < awia(logt, — loga).

Proof. Denote h(t) = wy.,(logt —loga), then it holds 6k(t) = w,(logt — loga). In one side, it follows
from the definition of the Caputo-Hadamard derivative that

j i d
cHDth(tj) = Zf wi-o(logt; —log s)w,(log s — log a)?s
k=1

J log tx
= Z f wi-o(logt; — T)we(t — log a)dr.
1

k=1 0g Ik—1
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It is easy to check that w;_,(log ¢;— ) is monotone increasing and w, (7 —log a) is monotone decreasing
on the interval [log #;,_;,log #;]. Thus, by Lemma 2.3 and A2, we obtain

J log ty log 1
cHD;’,th(tj) < Z — wi—o(logt; - T)de we(t —loga)dr
k=1 Tk log tx—1 log tx—1

~.

1 i
= Z wl o(logt; —logt)—f wa(logs—loga)—

Tk Ti—1
<7y ZA(’) " (log s — 1o a)— e ZA(]) 5h(s)9 (2.9)
(108 g A e s :

In another side, by the definition of the Caputo-Hadamard derivative and Lemma 2.2, we get again that
CHpye V ds
Dy h(t)) = wi—o(logt; —log s)w,(log s —loga)—
. ; g

1:\"¢ a-1 d
og —J) (log f) Zo (2.10)
S a S

_ 1 f 1
I - o)) J,
Using (2.9), (2.10), and (2.5), we have

n

STR, = 3P Dy

J=1 J=1

ZP(m ZA(]) ftk 6h(s)d—:

75

=7y Z f 6h(s) Pf;')JAy)k
k=1

= JTAf 5h(s)— = Tawi4o(logt, —loga).

to

O
Lemma 2.5. Assume that A1-A2 hold, and for any positive sequence (v")Z:l ,one has
n n t a-1
Z PEI"_)kvk <I'2-a)m, Z T; Mmax (vk (log —k) ) . (2.11)
- j<k<n a
k=1 j=1
Proof. It follows from A2 that
k 1-a
*) 1 3 _s (logty — loga)
Z A, T2 f wi—o(logty —log s) TC—a) (2.12)

Jj=1

Thus, using (2.12) and (2.5), we have

Z P(")kv 1< Z p )kvkﬂ T2 -a) Z(log t —loga)®! A](Ck_)jTj

k=1 j=1
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<ml@-a) ) 7 ) PYAL (logt — loga)™ vy
=1 k=j

n

t a—1 n "
<TQ2-a)my Z T; ]n<1/;cl<>z (vk (log Ek) ) : Z Pika,({Ii)j
<ks< =

=1
n t a-1

=TQ2-a)ry Z T; ]n<1]§1<>§l Ug (log ;) .
J=1 o

3. a-robust error analysis of the L1 scheme

We are now in a position to consider the a-robust error estimate of the L1 scheme. Following [28],
the L1 approximation to the Caputo-Hadamard derivative ¢ Dy V" is given by

n
CUpy v =" AY VA, 3.1)
=1
where the discrete coeflicients Af{?k are defined by

1o d
AP = = f w1_a(log 1, — log )22 (3.2)
n T Ji, s

It is easy to see that Assumption A2 holds with 74 = 1. Using the integral mean-value theorem, one

has
1 1 . e ds 1 (* .\ ds
A(n) _A(n) — f (l _n) _— (1 _n) -
n—k—1 n—k 1—~(1 _ Cl’) Tert Jy 0g s s T Ji, 0g s N

1 t - l_ -
= 1 - —(log = 0, 3.3
I'l-a) [( Og§k+1) (ngk) ] g G-

with &1 € (t, trv1), €k € (tr—1, tx). Thus Assumption A1 holds.
Let u! be the discrete approximation of solution u(x;, t,) for x; € ;,,0 < n < N. The fully discrete
scheme for problem (1.1)—(1.3) is given as

Dl - 5wl + k! = f}, 1<i<M-1,1<n<N, (3.4)
u = o(x;), 0<i<M, (3.5)
uy = uy, =0, 1<n<N, (3.6)

where f" = f(x;, 1,).
We aim to demonstrate the stability and convergence of the scheme (3.4)—(3.6). The stability is
established in the following theorem.

Theorem 3.1. Assume that the assumptions (1.4), (1.5), and A3 hold. Let k. := max{-«, 0}, and v! be
the solutions of the following difference equation:

(D5 -S4 k)i =gl 1<i<M-L1<n<N, 3.7
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VW = o(x,), 0<i<M, (3.8)
vo=Vy =0, 1<n<N. 3.9

If the maximum step size is T < B with

1
5 | (3.10)
V4, max{1,p}[(2 — @)
we have
k .
") < 2E, (4. max{1, p)log 1)) | VIl + 2 max > P Jlgll|. 1 <n < N. o
SK=n ]:1

Proof. After taking the inner product with 2v" on both sides of (3.7), we obtain
2 DG V) = 283V + 2V = 28"V,
By employing the definition of the discrete Caputo-Hadamard derivative given in (3.1) and utilizing

the monotone property given in (3.3), it can be inferred that

— A" R V) = 24" (00,0

n—1
CH 2
(DG v = 240 IVIP -2 ) (A,
k=1

n—1
2 2 2
2 240 IVP = D (AL, = ALV = AL, V|
k=1
n—-1
k112 k112
= S AD, = AP IR~ AT I
k=1

= ) AL VAP, (3.12)
k=1

It follows that

D AVTAVIP = 280, + 260,V < 2(g" 0,

k=1

Noting (2.1), and using the Schwarz inequality, we obtain
DAL VAV < 26, VI + 201" IDl.
k=1

By applying Lemma 2.1 to the above inequality, we obtain the desired estimate (3.11), thereby
completing the proof. O

We now consider the convergence of the scheme. To this end, let u(x, ) be the exact solution of
(1.1)=(1.3), and let {u?|0 < i < M,0 < n < N} be the solution of problem (3.4)—(3.6). Set

el =u(x;,t,)—u;, 0<i<M,0<n<N.
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It is straightforward to obtain the following error equation:

D2 et — el + ke = (R)! +(RY)!, 1<i<M-1,1<n<N, (3.13)
¢ =0, 0<i<M, (3.14)
ey = ey =0, 1<n<N, (3.15)
where
(R)! ="D2 u(x;,1,) =“"D2 ul!, (3.16)
(Ry)! = éﬁu(xi, t,) — 82ul. (3.17)

After conducting stability analysis in Theorem 3.1, if the maximum step size satisfies (3.10), one has,
with C = 2E,(4k, max{1, p}(log t,)%),

k
le"ll < C{lle’ll+ 2 max >" P (IR + ||(Rs)f||>], I<n<N. (3.18)
Ezpa

Under the assumption of spatial regularity given by (1.4), the Taylor expansion provides a direct
demonstration that ||(R,)"|| < Ch?>. When combined with Lemma 2.4, we can further deduce that

anp(’” IR, <C(log ) 1. (3.19)
=1

Now, we only need to estimate the term 3.}_, PfZ"_) SHICRD"II, which will be achieved through the following
lemmas.

Lemma 3.1. [29, Lemma 3.1] Suppose that f(x) has a continuous 6-derivative of n + 1 order in some
field of point xy. A Taylor-like formula with integral remainder is given by

2f( 0)
f(x) = f(xo) +6f(x0)(og x — log xp) +

5"f ( 0)

(log x — log x)* + -

1
(log x — log x)" + — f (5"“ f(s)(logx—logs)”—.
n. Jo A

Lemma 3.2. For any function u € C3((a, T)), the local truncation errors (R,)i.‘ satisfy

k—1
(R)F < APG*+ > (AL - AP )G/, (3.20)
j=1
where
Tk ds
= f (log s — log t;_)|6%u(x;, $)|—, 1 <k <n. (3.21)
t S

Lemma 3.3. Assume that A3 holds, and u(x, t) satisfies the regularity assumption (1.5), then

n a-1 o-2
(n) Tk Ti—1 o
kZ:‘ P, k||(R,)’<|| < C{— + Z T; Jr1<1]§1<)}(1 (log ) (log o ) T,f )
where C = (1 + p)I'(2 — ).
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The proofs of Lemmas 3.2 and 3.3 are left to Appendix 7.1 and 7.2 for brevity.

Theorem 3.2. Let u(x, t) be the exact solution of (1.1)—~(1.3), and let {u?|0 < i < M,0 < n < N} be the
solution of (3.4)—(3.6). Suppose the regularity assumptions (1.4)—(1.5) hold. Set

e =u(x;,t,)—u;, 0<i<M, 0<n<N.

1°

If the maximum step size is T < B,, then the discrete solution is convergent in the L*-norm with
C = 2E,(4x, max{1, p} (log t,)") such that

; 1\
"l < CC (||e°|| + (1og —) 2+ (1 +p)(2 - o) max Ef), (3.22)
a <k<n
where
k a— -1 -2 )
Oy JZ;TJ max (10 —) (1 g—) e, (3.23)

In particular, if graded mesh is used, then it holds
lle"| < 2E,(4k., (logt,)" )(||e°|| + (log ) W+ 202 - a/)( + 477 “ﬁ)N-m"‘ tre2- a}),

with

(3.24)

1
2—a-ro?

{lnn, or>2-a,
3 =

or<2-a.

Proof. By combining (3.18), (3.19) and Lemma 3.3, we arrive at (3.22). We now proceed to examine
the global approximation error on the graded mesh. It is easy to verify 7, < rlog %N k! as follows:

T, = lOg Iy — lOg th—1

lo +10T10kr10 loTlok_lr
= a — — - a— —
g ga gN g ga g N
T
=log—N"(k"—(k-1)")
a
T —r_.1,r—1
<log—N"rk'"". (3.25)
a

Note that o > 0, it follows from (3.23) and (3.25) that

T ‘r o Ho-2)
E?S{(log ) ]+ZT]§£1];¢1<>;(10g ) 2(%)

a-1 r(a—1) 21—
X (log Z) (%) (log Z) N—r(2—a)r2—ak(2—a)(r—l)
a

(log # o1 K\
> a7 \W/ 1 ) 2—a | ™V
Zn max (g ) (1]
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r2—o)
N N7, (3.26)
k-1
Taking into account that
r(2-o) 2r
K <1+ <2 =4
k-1 -
(3.26) can be simplified to
T\" 1 SRR K\
E!'< (log —) N =+ L — » T;max (—) 4k
a o log < = j<ksn \ N
T\" 1 T\ < k\"
< (log —) NS a4 (log —) T, max(—) grr=e-o| (3.27)
a o a = j<ksn \ N
For or > 2 — @, we have from (3.27) that
n T 7 —ro 1 r - T B C -] - or—(z—a
R O R R (I ]
T\" 1 T\ < T
— (log _) N—ra’ — 4+ 4rr2—a (log _) Z (log _)N—rrjr—lj—rNrn(rr—(Z—a)]
a o al a
T\” 1 -
— (log _) N7l = + 4rr3—0zn0'r—(2—(t) Z j_l]
a o =
T\ 1
< (log —) N7 — + 47PN n)
a o
T\ (1 .
< (log —) (— +47n n) N~ mintro:2-a}, (3.28)
al \o
For or < 2 — a, it follows from (3.27) that
T\" 1 T\ < i\
E} < (log —) N7 — 4477 (log —) Tj(i) jm_(z_a)]
a o a — N
T\" 1 T\ ¢ -
< (log —) N7 — + 47y (log —) r(log —)N"j’_1 ( J ) j"’_(2_")
a o a = a N
T\" 1 -
— (lOg _) N—r(r — 4 4rr3—a Z j(Tr—(3—a)] ) (329)
a o .
j=2
Note that
C j(rr—(3—a/) < fn so-r—(3—a)ds — 1 (nr(r—(2—a) _ 1) < 1
- h ro—2-a) T 2—-a-ro’

j=2
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then we get from (3.29) that

o 2-a-ro

T\ (1 47 3-a
;< (l0g - | (— ¥ ”—)N‘"’. (3.30)
a

By utilizing (3.28), (3.30), and (3.23), we achieve the desired global approximation error on the graded
mesh. m|

4. a-robust error analysis of the Alikhanov’s scheme

In this section, we delve into the a-robust error estimate pertaining to the Alikhanov scheme.
Referring to [28], the Alikhanov scheme for the Caputo-Hadamard derivative is expressed as follows:

CHD? (1) =D V'O = ZAff_)vavk for 1<n<N, 4.1)
k=1

with 6 = 5. Here the discrete convolution kernel Ai”_)k is defined as: Ag’) = ag’) if n =1 and, forn > 2,

o=, =1,
n n
(n) _ (n) (n) n) _
A”_k 1%k +pk—1bn—k+1 - bn—k’ k=2,..n-1,
Cl(()n) + Pn—lb(ln), k=n.

Moreover, the discrete coeflicients aﬁl”_) . and bfl”_)k are determined by:

1 In—o d 1 Tk d
ay’ = _f Swa(s) a), = _f Swa(s)—, 1<k<n—1,
S Tk s

Tn 1, tr—1

n—1

" 2 & ds
bnn_k N f (10g s — log tk_1/2)5w'n(s)—, 1<k<n- 1,
Tie(Tk + Tre) Ji s

where {
@,(s5) = —war_o(logt,_g —logs), logti_12 = E(log fr-1 +log ).
As proved in [29], one can verify that Assumptions A1 and A2 hold with 74, = 11/4.

Next, the difference scheme is established. Considering (1.1) at mesh point (x;,?,-), the fully
discrete scheme for problem (1.1) is given as

Dl - k= 1, 1<i<M-1,1<k<N, (4.2)
Lt? = gp(xi), 0<i<M, 4.3)
uy = uy, =0, 1 <k<N. 4.4)

We proceed to assess the stability and convergence of Alikhanov’s scheme.

Theorem 4.1. Assume that the assumptions (1.5) and A3 hold. Let k. := max{-«k,0} and V! be the
solution of the following differential equation:

(““D;, -+ k)i =gi T 1<i<M-1,1<n<N, (4.5)
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Vi = @(xi), 0<i<M, (4.6)
=1 =0, l<n<N. 4.7)

If the maximum step size is T < B, with

1
%, - ’ 4.8)
11k, max{1, p)l 2 — @)
we have
k
. o 0 (k) j—6

Wl < E, (11k, max{1. pl(log 1,)%) | 0]l + 2{2&§Z;Pk_jllgf . 4.9)

]:

Proof. Taking the inner products with 2v"~? on both sides of (4.5), we obtain
2(CHDZ,1-V”_9’ Vn—é)) _ 2(6)25‘}"_9’ vn—e) + 2K(Vn_9, vn—H) — z(fn—é)’ Vn—G)’

Utilizing (3.12), we can further derive
DA VAVIP = 26270 + 26000 < 2(70 ),
k=1
Taking into account (2.1) and applying the Schwarz inequality, we arrive at
DAL VANIE < 26, VIR + 201,
k=1

By applying Lemma 2.1 to the aforementioned inequality, we successfully derive the desired estimate
(4.9), thus, conclusively completing the proof. O

We now consider the convergence of the scheme. To this end, let u(x, ) be the exact solution of
(1.1)—(1.3), and let {u?"?|0 < i < M,0 < n < N} be the solution of problem (4.2)—(4.4). Set

-6 -6
el = u(x;, ty_g) —u; .

It is straightforward to obtain the following error equation:

(D~ +Kel =R, 1<i<M-1,1<n<N, (4.10)
=0, 0<i<M, (4.11)
eg=¢€y;=0, 1<n<N, 4.12)

where R" = (R))! + (R,)" + (R,)! with

(R} ="D% u(x;, t-g) "D 1}~ (4.13)
(R} = 02u(x;, ty—g) — Ou(Xi, Lug), (4.14)
(R)! = 02(u(xi, tg) — U™y — k(u(x;, tymg) — ul0). (4.15)
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By the stability analysis in Theorem 4.1, if the maximum step size fulfills the condition stated in (4.8),
one can derive the following inequality:

k
le'll < € (neon +2max 3 PR+ IR+ ||<R,>f||>) (4.16)
Eepa

with C = E, (11«, max({1, p}(log ,)?) .
Now, our sole task is to estimate the terms 27:1 Pi"_)jll(R,)"ll and Z?zl P;”_)jll(Rt)”ll, which we will
accomplish by utilizing the lemmas outlined below.

Lemma 4.1. Assume that A3 holds, and u(x, t) satisfies the regularity assumption (1.5), then

" o) j i b\ h1\72 5
D PR < €L+ (log 2] max (log 1) 23). @.17)
= g a 2<k<n a

Proof. Setv(t) = (5?( — K)u(x;, t). Using the Taylor-like formula given in Lemma 3.1, we derive

1 d
V(fj) = V(tj_(.)) + 5V(lj_g)(10g t— log fj_g) + f 62V(S)(10g I — lOg S)—s, (4.18)
tji-g s
RN ds
V(tj_l) = V(tj_g) + 5V(lj_9)(10g ti1 — log tj_g) + f 0 V(S)(lOg fi1— lOg S)? 4.19)
1j-6

By combining (4.18) and (4.19), we obtain

Ov(t;1) + (1 — O)W(t;) = (1) + 0 f " u(s)(log s - log tj_l)d—;

1j-1

Vo, ds
+(1-6) o v(s)(logt; —log s)—.
Tji- s
This leads to the following expression for (Rl)f :

. = d 1j d
R)! = —0 f §v(s)(log s — log zj_])Ts —(1-0) f 8v(s)(log1; — log s)TS. (4.20)
ti—g

tj-1

For j = 1, utilizing the regularity assumption (1.5), we deduce from (4.20) that
t1-9 d g d
IR < 6 f |6v(5)| (log s — log 1) = + (1 — 6) f |62v(s5)| (log 1, — log 5)=
fo s -6 S

'1-6 o-1 d il o-2 d
Cf (log E) T (logt; — logs) (log 5) @
% a s a s

-6

-6 o-1 d 7
< Cf (log 5) ¢ ol 4.21)
a

o s o

IA

Analogously, for 2 < j < N, we have

; e, ds Y, ds
RNl <6 |6%v(s)| (log s — log )=+ (1-0) |6%v(s)| (log; — log )~
i ti—o

Jj-1
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t: o-2 1 j-0 d 1 d
< C(log J—l) f (logs—logtj_l)—s +f (logt; —log s)—s
a - s - s

f o-2
< C(log ’—1) 2. (4.22)
a
It follows from (2.4), A1, and A2 that
11
P" < 1/A) < S Te-ayx. (4.23)

By integrating the information from (4.21) to (4.23) along with Lemma 2.4, we arrive at the conclusion
stated in (4.17). |

Lemma 4.2. Assume that A3 holds and u(x, t) satisfies the regularity assumption (1.5), then

D PUIRYI < C( +iT %)
J=1

o1 \7 3 £, \a1 f, \THa—4 3
+C E 7;max ((log —1) (log —k) (log k) - ) ) (4.24)
= a T

J<k<n %

Proof. It follows from [29] that the local truncation error defined in (4.13) can be bounded by
[R)Y| < ALGE, + Z(A;’OJ = ARG (4.25)

where

fk—1/2 d 3 Ti d
Gh, = (log s — log fr_ 2ICu() = + =% | (log#; — log $)|8°u(s)| =,
loc 2 Ky S

k-1 2 tk—-1/2

5™ ds 5 (™ ds
Gy == | (logs—log_1)’|6u(s)|— + = (log ty41 — log s)|6°u(s)|—.
2 tee S 2 s

143

By the regularity assumption (1.5), it is easy to obtain

9 t o-3
Gl <cl, Gt < C(log M) 2 k2, (4.26)
ag a
and
77 H\o3
Gy <C (—1 + (IOg —1) Ti), 4.27)
(o a
" t1 -3 3 t -3 3
Gl < C((log 2] e+ (g 2 e, ) k22 (4.28)
Similar to (7.8), we have
Z PY AR < Z PO AL G, + Gl = > POG (4.29)
k=1 k=1
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Applying Lemma 2.5 by taking v; = G* in (2.11) to (4.29), we get

wam

lmszwm®gY@

J<k<n

T2 -a) [ A )™
:—( @) ZT max(log k) gk+max{71 max (10g k) gk’Tcllgl}]

4 = j<k<n E 2<k<n
112 - - 1\ 1\
SM 7; max (log —k) G* + pt, max (log —k) G+ 116G
4 = j<ksn a 2<k<n a
i pre-ao Z 1 ”‘)a_1 6"+ 6! (4.30)
=7 P a 2 T; mli); og p 7 .
According to (4.26), (4.27), and (4.28), we have
o o -3 Cr7@ 7 o-3
oA |La Lafogd) w) s o (L flog2) A 431
G < 0 0'+ + oga T, - og — |, ( )
and
k ®) -1\ 5 ®) -1\ 5 AR
G < CA, (log —) 7, + CA, (log —) T, + (log —) Tisl
a a a
Cr7@ ey -3 o t o-3 e
<ot ((log 7) ey (log 5) 2.7 (4.32)
Therefore, combining (4.30), (4.31), and (4.32) we obtain the desired result. |

Theorem 4.2. Let u(x, t) be the exact solution of (1.1)~(1.3), and let {u?|0 < i < M,0 < n < N} be the
solution of (4.2)—(4.4). Suppose the regularity assumptions (1.4)—(1.5) hold. Let

e =u(x;,t,)—u;, 0<i<M, 0<n<N.

If the maximum time step is T < B, then the discrete solution is convergent in the L*-norm with
C = E, (11«, max{1, p}(log t,,)?) such that

0'+‘1/ @ f 1 \02 1, \¢
el <cc( L (log ) max (log %) 24 (log 5) 1w+ Ef), (4.33)
where
n t_ -3 t a—1 t o+a—4 T3
E} =" v max (log M) (log —k) (10g k) it ) (4.34)
=) j<k<n a a Tk
In particular, if graded mesh is used, then it holds that
le"ll < CE, (11x.(log 1,)" )(N min{o2) +(log ) hz) 4.35)
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Proof. By combining (3.19), (4.16), Lemma 4.1 and Lemma 4.2, we arrive at (4.33). We now proceed
to examine the global approximation error on the graded mesh. Due to (2.2) and (3.25), we can estimate
the righthand side of (4.33) term by term as follows. It easy to check that

o+a 1

T T o+a 1 r(oc+a)
"o (log ‘) (_) < Sy, (4.36)
a N

(o g

Further, it holds that

_ o— r(c=3) 3
303 _ 3 (100 1 )‘T ’ ( T) (1 ( T) 3r 3030-1)
=1, |log— <l 1 N 2
79 T2( og—| <(log— ¥ og — r

<CN™. (4.37)

For the third term in the righthand side of (4.33), we have

1\ fr o-2
(log —) max (log Ll ) Ti
a

a/ 2<k<n
T\ (k—1\“?
<C max [(log —) (—) N_Z’r2k2(r_l))
2<ksn a N

2<k<n 2<k<n

r(2-o)
<CN™" max (k 1) kK2 < CN™ max k"7 2.
If ro > 2, then max k72 = n’"2 < N2 If ro- < 2, then max k’“~% = 2’2 < 1. Thus, we obtain

2<k<n 2<k<n

t, a fr -2 .
(log —) max (log g) 70 < CN-Minizral, (4.38)
a

a 2<k<n

Moreover, we have

1 o-3 1 \@-1 t o+a—4 T3
(log ﬂ) (log —k) Y+ (log —k) k;‘
a a a T
T -3 k -1 r(o=3) T a—1 k r(a-1) T o 3 _a
S(log E) (—N ) (log 2) (ﬁ) (rlog -N k 1) 7
T o+a—4 k r(oc+a—4) T 3
+ (log —) (—) (rlog —N""(k+ 1)’_1) T
a N a

T o+a—1 k r(3—0) k +1 3(r=1)
__—a.3 - —r(c+a—1)7,r(c-1)-3-a)
=7,r (log a) N k ((—k — 1) + (—k )

SCT]—QN—F(G'+(I— l)kr(a-_ D-(G-a)
T\ (1 —ra
=C (10 —) —_ N_r(0-+(l—1)kr((r_])_(3_a,)
0] (5)

<CkD=Grm) y=rie=h, (4.39)
Combining (4.34) and (4.39), we obtain

Jj<k<n

n
B <€ o max ke O-oN oD
=2
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n

<C)» N7j " max k"o GO NT@=D, (4.40)

j<k<
=2 I

If ro > 3 — @, we have from (4.40) that

El <C Y N7j w7 O ONT@D < ONC K" < ClnnN -G, (4.41)
=2 =2

If ro < 3 — a, we get from (4.40) that

E' < CZ N jr—l jr((r—l)—(3—a/) N@D < cNTT Z jr(T—(4—a). (4.42)
j=2 =2
Note that
c jm'—(4—a/) < fn Sra'—(4—a)ds — 1 (nra'—(3—(l) _ 1) < 1 (443)
= - h ro—(3—-a) T 3-a-ro’
then we have from (4.42) that
E;Z = 3—al—r(TN_(3_a)' (444)

By combining (4.36), (4.37), (4.38), (4.41), and (4.44), we achieve the desired global approximation
error (4.35) on the graded mesh. O

5. Numerical expertiments

In this section, we present several numerical examples to validate the theoretical result stated in
Theorem 3.2 and Theorem 4.2. In our computations, the spatial domain Q = [0, 7] is uniformly dividerd
into M parts, and the time interval A is divided into N subintervals using graded meshes 7, = a (%)WN) .
The grading constant r > 1 controls the extent to which the time levels are concentrated near t = a. As
r increases, the initial step sizes become smaller than the later ones, which can be visually observed in

Figure 1.
Example 5.1. Consider the problem (1.1)—(1.3) with

a=1,T=2,k=2, f(x,t) = (sinx)(I'(1 + @) + (log H)* + « - (log ©)).

It can be verified that the corresponding exact solution is u(x, t) = (sin x)(log 1)* and o = «a.

Since the spacial accuracy is standard for the second order central difference scheme, we only
explore the convergence rate of the time stepping scheme. To this end, we calculate the L? errors
between the exact and numerical solutions

Error(M,N) = max ||¢"||.
1<k<N

Electronic Research Archive Volume 33, Issue 1, 353-380.



371

® b ° ° ° ® ey — ° ° ®
a 13 t T a B t4 T
!! t!
c)r=3 dr=4

Figure 1. The temporal meshes on [a, T] with N = 5.

In Tables 1-3, we list the temporal L? errors for the L1 scheme by taking fixed M and increasing
N for different @. Based on the obtained numerical errors, we further estimate the order of temporal
convergence using the formula as

Error(M,N/2)

Order = log, Error0IN)

Results are also listed in Tables 1-3. As can be observed, the temporal convergence order for the
L1 scheme is close to min{ro,2 — «} for all cases, aligning with the theoretical analysis presented
in Theorem 3.2. In Tables 4-7, we list the temporal L? errors for Alikhanov’s scheme as a function
of N for different @. Also shown are the corresponding decay rates based on graded meshes about
Alikhanov’s scheme. From Tables 4-7, it is observed that the convergence rate is close to min{ro, 2}
in time.

Table 1. Numerical results for Example 5.1 with r = 2, M = 500 (L1 scheme).

N a=03 a=0.5 a=0.7

Error(M,N) Order Error(M,N) Order Error(M,N) Order
64 1.1134x 1072 — 2.6984 x 1073 — 9.4560 x 107+ —
128 7.9395x 1073 0.5153 1.3721x1073 0.9757 4.0801 x 10™* 1.2126
256 54559 x 107 0.5412 69778 x 10™* 0.9756 1.7224x 10™* 1.2442
512 3.7010 x 10™* 0.5599 3.5227 x 10™* 0.9861 7.1677 x 107> 1.2648
min{ro, 2 — a} 0.6 1.0 1.3

Example 5.2. Consider the problem (1.1) with

a=2T=3k=—1,f(x,1) = sin(x) - (r(l +a) + (log é)& + - (log %)“).
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Table 2. Numerical results for Example 5.1 with » = 3, M = 500 (L1 scheme).

N a=0.73 a=0.5 a=07

Error(M,N) Order Error(M,N) Order Error(M,N) Order
64 3.7010 x 107% - 7.0310 x 1074 - 6.2060 x 107 —
128 2.0350x 1073 0.8629 2.6509 x 10™* 1.4072 2.5489 x 10™* 1.2838
256 1.1093 x 1073 0.8797 9.7726 x 10> 1.4397 1.0412x 10™* 1.2917
512 59718 x 107 0.8890 3.5547 x 107> 1.4590 4.2399 x 107> 1.2961
min{ro, 2 — a} 0.9 1.5 1.3

Table 3. Numerical results for Example 5.1 with r =

a

a2 M =100 (L1 scheme).

N a=0.5 a=0.7 a=09

Error(M,N) Order Error(M,N) Order Error(M,N) Order
32 1.7972 x 1073 — 24367 x107° - 1.9017 x 1073 —
64 7.0306 x 107*  1.3541 1.1229x 1073 1.1176 1.0393x 107 0.8716
128 2.6507 x 107*  1.4072 4.9963 x 107* 1.1683 5.5426 x 10* 0.9070
256 97719 x 107> 1.4397 2.1701 x 10™* 1.2031 2.8970 x 10™* 0.9360
min{ro, 2 — a} 1.5 1.3 1.1

Table 4. Numerical results for Example 5.1 with r = 1/, M = 500 (Alikhanov’s scheme).

N a=03 a=0.5 a=0.7

Error(M,N) Order Error(M,N) Order Error(M,N) Order
32 27134 x 1073 — 2.7984 x 107 — 24560 x 1073 —
64 1.4395x 107* 0.9746 1.4721 x 1073 0.9757 1.2811 x 107 0.9426
128 7.4559 x 107* 0.9871 6.9776 x 10™* 0.9839 6.7224 x 10™* 0.9622
256 3.7010 x 10™* 0.9935 4.5227 x 10™* 0.9860 3.1677 x 10™* 0.9809
min{ro, 2} 1.0 1.0 1.0

Table 5. Numerical results for Example 5.1 with r = 1, M = 500 (Alikhanov’s scheme).

N a=03 a=0.5 a=0.8

Error(M,N) Order Error(M,N) Order Error(M,N) Order
64 22791 x 1072 — 1.7493 x 1072 — 3.7540 x 107°  —
128 2.4622x 1072 0.1838 1.3208 x 1072 0.4053 2.2841 x107* 0.7240
256 2.1453 x 1072 0.1982 9.8096 x 10™® 0.4291 1.3224 x 107 0.7552
512 1.8563 x 1072 0.2117 7.1924 x 10™* 0.4477 8.1627 x 10™* 0.7658
min{ro, 2} 0.3 0.5 0.8
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Table 6. Numerical results for Example 5.1 with r = 3, M = 100 (Alikhanov’s scheme).

N a=0.73 a=0.5 a=0..8

Error(M,N) Order Error(M,N) Order Error(M,N) Order
16 52002 x 1073 — 1.1646 x 1073 — 22565 x 107 —
32 3.0471 x 107 0.7711 4.3955x 10™* 1.4057 5.8962 x 107> 1.9362
64 1.7190 x 1073 0.8259 1.5959 x 107* 1.4616 1.4430x 10~ 2.0308
128 9.4796 x 107* 0.8587 5.6967 x 107> 1.4862 3.3768 x 107° 2.0953
min{ro, 2} 0.9 1.5 2

Table 7. Numerical results for Example 5.1 with r = 2/a, M = 300 (Alikhanov’s scheme).

N a=0.5 a=0.7 a=09

Error(M,N) Order Error(M,N) Order Error(M,N) Order
16 59243 x 1074 — 41200 x 107* — 1.6522 x 107* —
32 1.6398 x 107* 1.8531 1.1720x 10™* 1.8136 5.0273x 10~ 1.7165
64 42850 x 1075 1.9361 3.3138x 107> 1.9008 1.4495x 10~ 1.7942
128 1.0862x 10> 1.9801 8.0773x 107 1.9582 4.0215x10™° 1.8497
min{ro-, 2} 2 2 2

It can be verified that the corresponding exact solution is u(x, t) = (sin x)(log é)“ and o = .

Tables 8 and 9 display the temporal L? errors by taking fixed M and increasing N for the L1 scheme
and Alikhanov’s scheme with x = —1, respectively. Additionally, the maximum time step size 7, as
well as the conditions B; and B, defined in (3.10) and (4.8), respectively, are also presented. The
convergent results displayed show that the rate of convergence in time is in agreement with Theorem
3.2 and Theorem 4.2. It is worth noting that when « approaches 17, the convergence order in the time
direction is also in accordance with the theoretical analysis.

Table 8. Numerical results for Example 5.2 with r = 3, M = 500 (L1 scheme).

N a=03 a=0.5 a =099 T
Error(M,N) Order Error(M,N) Order Error(M,N) Order

32 6.2201 x 1073 — 1.8010 x 1073 — 2.6758 x 107+ — 3.6837 x 1072

64 3.3333 x 1072 0.8999 6.4494 x 107+ 1.4816 1.3421 x 1074 0.9954 1.8711 x 1072

128 1.7863 x 1073 0.9000 2.2925 x 10™* .4922  6.5942 x 10~ 1.0252 9.4290 x 1073

256 9.5724 x 107 0.9000 8.1375 x 107> 1.49427 3.2376 x 107> 1.0262 4.7330 x 1073

min{ro, 2 — a} 0.9 1.5 1.01 B, =0.2479
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Table 9. Numerical results for Example 5.2 with r = 1, M = 300 (Alikhanov’s scheme).

N a=02 a=0.5 a =0.99 T
Error(M,N) Order Error(M,N) Order Error(M,N) Order

32 2.9061 x 1072 — 1.0479 x 1072 — 43943 x 10~ — 3.6836 x 1072

64 2.5299 x 1072 0.1999 7.4103 x 1072 0.4999 2.2143 x 107> 0.9887 1.8711 x 1072

128 2.2025 x 1072 0.1999 5.2399 x 1073 0.4999 1.1154 x 107> 0.9892 9.4290 x 1073

256 1.9174 x 1072 0.1999 3.7052 x 1073 0.4999 5.6176 x 107° 0.9896 4.7330 x 1073

min{ro, 2} 0.2 0.5 0.99 B, =0.0892

6. Concluding remarks

In this paper, we have proposed L1 and Alikhanov schemes with nonuniform time steps for solving
Caputo-Hadamard fractional reaction sub-diffusion equations. We conduct a rigorous analysis of the
stability and convergence of these two schemes, and further derive @-robust error estimates under
specific regularity conditions imposed on the exact solution. The derivation of these regularity
assumptions is currently under active investigation and will be the subject of our forthcoming

research.
7. Appendix

7.1. The proof of Lemma 3.2

Proof. Let v(t) = u(x;,t), for 1 < k < n, and using the Taylor-like formula given in Lemma 3.1, we

derive

1 [ _ t
ov(t) — vk 1 = — f vy log ——= — — | 6*v(y)log ——.
T Ji yy T yy

Thus the truncation error at time ¢ = ¢, is given as

(Rt) _C@a u(xl’ n) Clba 4

(lTl

d
= Z f wi_o(logt, —log s) (6v(s) - vak/rk) =
k=1 YTk-1 $
N1 s dyd
= Z —f wi_o(logt, —log s)f 62v(y) log Y O
T

fie1 le-1y S

—Z fwl a(logt—logs»f 6*v(y) log @99

Tr—1

Exchanging the order of integration, we have

n

(Rz)? = Z % ftk

Ik
sd
62v(y)loglf wi—o(logt, —logs)——y
= Tk i li-1 Jy y
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N1 1 sd
- Z —f 6*v(y) log —kf wi_q(logt, —log s)——y
k=1 Tk Th—1 y 173 y
N1 d
=S5 [ vtor on ot - logn
= Tk Ji li-1 y
N1 1 d
o | Pvtor b ops, - ogn T
= Tk y
- Z f 6%v(y) log —wz «(logt, —log tk)—
k=1 Tk

d
% f 1) log Lo, (logt, ~log 1)
k=1 Tk Th—1 y y

(7.1)

For the sake of simplicity, we denote @,(y) = w,_,(log?, —logy). Note that the linear logarithmic

interpolation function of @, (y) with respect to the nodes #,_; and #; is given by

1
log lwn(y) — lOg _wn(tk) + — log wn(tk 1)
li-1 Tk y

Let
Llog lwn(y) = w,(y) — Llog 1wn(y)’

then (7.1) can be rewritten as follows:

n n

1 1
R); =), — f &v(y) log —wn(y)— P f %u(y) log —wn(y)—

k=1 ke k=1 fi-1

d
- Z f 52V(y) log _wn(y)_ - Z f 62v(y)Llog lw"(y)%

- Zf 62v(y)Llog1 )7)) = Z(ﬁt)z, n>1.
k=1

Similar to the proof of Theorem 3.1 in [29], Z{‘Ogvlwn(y) can be rewritten as

It @,0) = f £0. 98T (9,

where &(y, s) = max{logy — log s, 0} — (logy — log #;_;)(log #, — log 5)/7 such that

logy —log #;—;
Tk

(logy —log s) < &(y,s) <0, Vy,s € (ti_1, tr)-

For k = n, since the function @,(y) is decreasing with respect to y and 6>w@,(y) < 0, one has

0 < L{log lwn(y) < wn(tn—l) - log 1wn(y)

(7.2)

(7.3)

(7.4)
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1 t,
= wy-o(logt, —logt, 1) — p log ;wz_a(log ty —logt,-1)

= (logy — log t,-AY".
Thus,
In
- d
mxsfk%@mmmmf
In

-1

I dy
<Ay f (logy —log tn_1)|62V(y)I7
In—1

For 1 <k <n—1,using (7.3) and (7.4), one has

1

10g @) < (log ity —logy) 6wy, (logt, — logy)—

Tk-1

< (logy - log t,_1)(A™, _ = A™)).

Then we obtain for 1 < k <n —1 that

N T d
m%sfkﬂwmwmwf

k-1

Ik d
< f SVOIA® _ — AP )(logy — log ti_1) .
Th—1 y
Combining (7.2), (7.5), and (7.7), the proof is complete.

7.2. The proof of Lemma 3.3

Proof. After multiplying the inequality (3.20) by P,

possible to switch the order of summation and apply the definition (2.5) of Pﬁl"_) to obtain

Z P(n)kH(Rt) ” < Z P(ﬂ) A(k)Gk + Z P(n) Z(A](ck)j | _A(k) )Gj
k=1

_ (n) 4 (k) ~k (n) (k) (k)
= an_kAO G + ZG’ Z PPAY . —AY)
k=1

j=1 k=j+1

n
_ (n) 4 (k) ~k (n) 4 (k) ~j
= Z P® AVGF + Z P AYG
k=1 =

(n) A &)~k . _ (n) ~k
<2 PUAYG = ; P G*.

k=1

Applying Lemma 2.5 by taking v; = G* in (2.11) to (7.8), one has

n k a-1
(n) k (k) ok & :
; PRI < Z PG <T@-o ZTJ max ((“’g 2 ¢ )
= J= J=

(7.5)

(7.6)

(7.7)

and summing the index k from 1 to n, it is

(7.8)
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=I'2-a) Z T; §1<1ka<)l(1 ((log )Of—1 .gk)

t a-1
+I'(2 — @) max {Tl max ((log —k) . Q") , T‘fgl}
<k<n a

T2 -a) [Z 7 521}1); ((IOg %‘)"‘1 ) gk)]

=2

+I'2 - a) (pTz §r<1]§1<x ((log %k)a_l -G ) + 711G )

C AN ool
<(1+p)TQ2-a) ZT] max ((log =) - G*|+26"|. (7.9)
=) j<k<n a
On one hand, it follows from (3.2) that
A® ! ftk (logt — 1 ) ! k=1 (7.10)
= — wi-q(lo — log s e =1,..n. .
0 T Ji, 1-a 108 I & Ry F(2 a/)Tk

On the other hand, the assumption of regularity (1.5) leads to the conclusions that

1 ds 77
6! < [ dogs—1togn)-C 1+(10g ) @ och (7.11)
1 S o
and
Tk d t o-2 tr o-2
G* < f (logs—logtk_l)—s~C(1 +(log E) ) <Cr; (log Q) (7.12)
foot s a a
for 2 < k < n. By combining (7.9), (7.10), and (7.11) with (7.12), we obtain the desired result. O
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