Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Research article Special Issues

Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation

  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the L2 and L error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.

    Citation: Akeel A. AL-saedi, Jalil Rashidinia. Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation[J]. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216

    Related Papers:

    [1] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [2] E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127
    [3] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076
    [4] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [5] Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang . Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243
    [6] Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [8] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [9] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
    [10] Ping Zhou, Hossein Jafari, Roghayeh M. Ganji, Sonali M. Narsale . Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial. Electronic Research Archive, 2023, 31(8): 4530-4548. doi: 10.3934/era.2023231
  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the L2 and L error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.



    Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are better suited to modeling natural physics processes and dynamic systems than integer differential equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural processes that have memory and hereditary properties. In other words, because fractional derivatives have memory effects, FDEs are more accurate in describing physical phenomena with memory or hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application until the last few years. Now, more and more researchers are investigating how it can be applied to economics, control system and finance. As a result, many fractional order differential operators were developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Grünwald-Letnikov, and variable order differential operators. The researchers have devoted considerable effort to solving FDEs numerically so that they can be applied to a variety of problems [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. Several numerical approaches have been proposed in the literature, including eigenvector expansion, the fractional differential transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform technique [23], the generalized block pulse operational matrix technique [24] and the predictor-corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate fractional order matrices has been suggested as a numerical method [26,27].

    In this paper, we study the numerical solution of the time-fractional Burger's equation (TFBE) [28] as follows:

    γU(x,t)tγ+U(x,t)U(x,t)xv2U(x,t)x2=f(x,t), (1)

    which is subject to the following boundary conditions (BCs):

    U(a,t)=l1(t),U(b,t)=l2(t),axb,t[0,tf], (2)

    and the following initial condition (IC):

    U(x,0)=g(x)andaxb, (3)

    in which 0<γ1 is a parameter representing the order of the fractional time, v denotes a viscosity parameter and g(x),l1(t)andl2(t) are given functions of their argument. The TFBE is a kind of sub-diffusion convection, which is widely adopted to describe many physical problems such as unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous media, compressible turbulence, electromagnetic waves and weak shock propagation [29,30,31]. In recent years, there has been some technique development in the study of Burger's equation: an implicit difference scheme and algorithm implementation [32], pointwise error analysis of the third-order backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability estimate techniques [40].

    Definition 1. Suppose that m is the smallest integer exceeding γ; the Caputo time fractional derivative operator of order γ>0 can be defined as follows [41]:

    CDγ0,tu(x,t)={mu(x,t)tmγ=mN1Γ(mγ)t0(tω)mγ1mu(x,ω)ωmdω,m1<γ<m,mN, (4)

    where u(x,t) is the unknown function that is (m1) times continuously differentiable and Γ(.) denotes the usual gamma function. The finite-element method has been an important method for solving both ordinary and partial differential equation, therefore, in recent research, it has been applied to solve the TFBE. In what follows, we describe the solution process by using the finite-element scheme for solving the TFBE.

    To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the interval [a,b], which represents the solution domain of (1) into M uniformly spaced points xm such that a=x0<x1<<xM1<xM=b and h=(xm+1xm). Then, the cubic B-spline Cm(x),(m=1(1)(M+1), at the knots xm which form basis on the solution interval [a,b], is defined as follows [42]:

    Cm(x)=1h3{(xxm2)3,ifx[xm2,xm1],h3+3h2(xxm1)+3h(xxm1)23(xm+1x)3,ifx[xm1,xm],h3+3h2(xm+1x)+3h(xm+1x)23(xm+1x)3,ifx[xm,xm+1],(5)(xm+2x)3,ifx[xm+1,xm+2],o,otherwise. (5)

    where the set of cubic B-splines (C1(x),C0(x),,CM(x),CM+1(x)) is a basis for the functions defined over interval [a,b]. Thus, the numerical solution UM(x,t) to the analytic solution U(x,t) can be illustrated as

    UM(x,t)=M+1m=1σm(t)Cm(x), (6)

    where σm(t) are unknown time-dependent parameters to be determined from the initial, boundary and weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each element [xm,xm+1] is also covered by four cubic B-splines. So, the nodal values Um and its first and second derivatives U'm, U"m can be respectively computed in terms of the element parameter σm(t), at the knot xm as follows:

    Um=σm1+4σm+σm+1,U'm=3h(σm1σm+1),U"m=6h2(σm12σm+σm+1), (7)

    and by means of the local coordinate transformation [43] as follows:

    hη=xxm,0η1. (8)

    A cubic B-spline shape function in terms of η over the element [xm,xm+1] is formulated as:

    Cm1=(1η)3,Cm1=1+3(1η)+3(1η)23(1η)3,Cm+1=1+3η+3η23η3,Cm+2=η3 (9)

    and the variation of UM(η,t) over the typical element [xm,xm+1] is represented as

    UM(x,t)=m+2j=m1σj(t)Cj(η), (10)

    in which B-splines Cm1(η),Cm(η),Cm+1(η), Cm+2(η) and σm1(t), σm(t),σm+1 and σm+2(t) are element shape functions and element parameters, respectively.

    Based on the Galerkin's method with weight function W(x)>0, we get the following weak formula of (1):

    baW(γUtγ+UUxv2Ux2)dx=baWf(x,t); (11)

    using transformation (8) and by apply partial integration we obtain:

    10(WγUtγ+λWUη+ΦWηUη)dη=ΦWUη10+baWƑ(η,t)dη, (12)

    where λ=1hÛ, Φ=vh2 and Û=U(η,t) which is considered to be a constant on an element to simplify the integral [43]; replace the weight function W by quadratic B-spline Bm(x),m=1(1)M, at the knots xm, which forms a basis on the solution interval [a,b], introduced as follows [44]:

    Bm(x)=1h2{(xm+2x)23(xm+1x)2+3(xmx)2,ifx[xm1,xm],(xm+2x)23(xm+1x)2,ifx[xm,xm+1],(xm+2x)2,ifx[xm+1,xm+2],0,otherwise. (13)

    where (B1(x),B0(x),,BM(x)) is the set of splines for the basis of functions introduced on [a,b]. The numerical solution UM(x,t) to the analytic solution U(x,t) is expanded by

    UM(x,t)=Mm=1ϑm(t)Bm(x), (14)

    where ϑm are unknown time-dependent parameters, and by using local coordinate transformation (8), the quadratic B-spline shape functions for the typical element [xm,xm+1] are given as

    Bm1=(1η)2Bm=1+2η2η2Bm+1=η2 (15)

    The variation of the function U(η,t) is approximated by

    UM(η,t)=m+1i=m1ϑi(t)Bi(η), (16)

    where ϑm1(t), ϑm(t) and ϑm+1(t) act as element parameters and B-splines Bm1(η),Bm(η) and Bm+1(η) as element shape functions based on the above; (12) will be in the following form:

    m+2j=m1[10BiCjdη]˙σ+m+2j=m1[10(λBiC'j+ΦB'iC'j)dηΦBiC'j|10]σ=10BiƑ(η,t)dη,i=m1,m,m+1, (17)

    in which "Dot" represents the σth fractional derivative with respect to time. We can write (17) in matrix notation as follows:

    Xeij˙σe+(λYeij+Φ(ZeijQeij))σe=Eei, (18)

    in which σe=(σm1,σm,σm+1,σm+2)T are the element parameters. The element matrices Xeij,Yeij,Zeij,Qeij and Eei are rectangular 3×4 matrices introduced through the following integrals:

    Xeij=10BiCjdη=160[107138119221221191387110],
    Yeij=10BiC'jdη=110[671211341411311276],
    Zeij=10B'iC'jdη=12[357122221753],
    Qeij=BiC'j10=3[101011110101]and
    Eei=10BiƑ(η,t)dη,

    where i and j take only the values (m1,m,m+1) and (m1,m,m+1,m+2) respectively, and a lumped value for λ is defined by λ=12h(σm1+5σm+5σm+1+σm+2).

    By assembling all contributions from all elements, we get the following matrix equation:

    X˙σ+(λY+Φ(ZQ))σ=E, (19)

    where σ=(σ1,σ0,σ1,,σM,σM+1)T denotes a global element parameter. The matrices X,Z and Y represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the following forms:

    X=160(1,57,302,302,57,1,0),
    Z=12(1,9,10,10,9,1,0),
    λY=110(λ1,12λ113λ2,7λ141λ26λ3,6λ1+41λ27λ3,13λ2+12λ3,λ3,0),

    in which,

    λ1=12h(σm2+5σm1+5σm+σm+1),
    λ2=12h(σm1+5σm+5σm+1+σm+2),
    λ3=12h(σm+5σm+1+5σm+2+σm+3).

    Following [45], we can approximate the temporal Caputo derivative with the help of the L1 formula:

    dγf(t)dtγtf=(Δt)γΓ(2γ)m1k=0bγk[f(tmkf(tm1k)]+O(Δt)2γ,

    where bγk=(k+1)1γk1γandΔt=tf0N, and tf=n(Δt),n=0,1,N,whereN represents a positive integer. Now, we recall the following lemma.

    Lemma 1: Suppose that 0<γ<1andbγk=(k+1)1γk1γ,k=0,1,;then,1=bγ0>bγ1>>bγk0,ask [46].

    Then, we can we write the parameter σm as follows:

    σm=dγσdtγ=(Δt)γΓ(2γ)m1k=0bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+O(Δt)2γ,bγk=(k+1)1γk1γ,

    while the parameter σ by the Crank-Nicolson scheme, is as follows:

    σm=12(σnm+σn+1m).

    Substitution both parameters above into (18), we obtain the (M+2)×(M+3) matrix system:

    [X+[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σn+1=[X[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σnXnk=1bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+(Δt)γΓ(2γ)E, (20)

    where σ=(σm2+σm1+σm+σm+1+σm+1+σm+2+σm+3)T; to make the matrix equation be square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain discard σ1 from system (20) as follows:

    σ1(t)=4σ0(t)σ1(t)+U(x0,t);

    the variables σn1 and σnM+1 can be ignored from system (20) and then the system can be converted to an (M+1)×(M+1) matrix system. The initial vector of parameter σ0=(σ00,σ01,,σ0M) should be obtained to iterate system (20); the approximation of (6) has been reformulated on the interval [a,b] when time t=0 as follows:

    UN(x,0)=Mm=0Cmσ0m,

    where U(x,0) fulfills the following equation at node xm:

    UM(xm,0)=U(xm,0),m=0,1,,M+1
    U'M(x0,0)=U'(xM,0)=0,
    U''M(x0,0)=U''(xM,0)=0.

    Therefore, we can obtain the following system:

    [σ00σ01σ0M1σ0M60001410144141006][σ00σ01σ0M1σ0M]=[U(x0,0)h26g"(a)U(x1,0)U(xM1,0)U(xM,0)h26g"(b)]

    and we solve this identity matrix by applying the Jain algorithm [47].

    This section adopts the von Neumann stability analysis to investigate the stability of approximation obtained by scheme (20). First, we introduce the recurrence relationship between successive time levels relating unknown element parameters σn+1m(t), as follows:

    q1σn+1m2+q2σn+1m1+q3σn+1m+q4σn+1m+1+q5σn+1m+2+q6σn+1m+3=q6σnm2+q5σnm1+q4σnm+q3σnm+1+q2σnm+2+q1σnm+320nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))+57((σnk+1m1σnkm1)+4(σnk+1m1σnkm1)++(σnk+1m1σnkm1))+302((σnk+1mσnkm)+4(σnk+1mσnkm)+(σnk+1mσnkm))+302((σnk+1m+1σnkm+1)+4(σnk+1m+1σnkm+1)+(σnk+1m+1σnkm+1))+57((σnk+1m+2σnkm+2)+4(σnk+1m+2σnkm+2)+(σnk+1m+2σnkm+2))+((σnk+1m+3σnkm+3)+4(σnk+1m+3σnkm+3)+(σnk+1m+3σnkm+3))] (21)

    where

    q1=20300Φα60λα,q2=11402700Φα1500λα,q3=6040+3000Φα2400λα
    q4=6040+3000Φα+2400λα,q5=11402700Φα+1500λα,q6=20300Φα+60λα

    and α=(Δt)γΓ(2γ).

    The growth factor of the typical Fourier mode is defined as

    σnm=ξneiβmh (22)

    where, i=1,β is a mode number and h is the element size. Substitution of (22) into (21) yields

    ξn+1(q1e2iβh+q2eiβh+q3+q4eiβh+q5e2iβh+q6e3iβh)=ξn(q6e2iβh+q5eiβh+q4+q3eiβh+q2e2iβh+q1e3iβh)20nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))(e2iβh302+302eiβh+57e2iβh+e2iβh)]; (23)

    let and assume that is independent of time, therefore, we can write as follows:

    where

    Obviously note that . Therefore, according to the Fourier condition, the scheme (20) is unconditionally stable.

    This section introduces two numerical examples, which highlight numerical results for the TFBE with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we use the and to calculate the accuracy of the CBSGM with a quadratic weight function, which has been employed in this study; we will also show how the analytical results and the numerical results are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying the following problems; then, we compare the results with the numerical solution obtained from the given method. To this aim, the and error norms are respectively defined as [48]

    where and represent the exact solution and numerical solution, respectively.

    Example 1: Let us consider the TFBE (1) with the BCs

    and IC

    such that the forcing term is achieved as [45]

    where the analytic solution is obtained as

    Numerical results are reported in Tables 13 and Figure 1. Table 1 lists the numerical solutions and the and error norms with for various numbers of partitions As seen in Table 1, we notice that when the number of partitions M are increased, the and error norms will decrease considerably. Table 2 displays the numerical solutions with for various values of In view of Table 2, we can see that when decreases, the and error norms decrease, as was expected. Table 3 shows the numerical solutions with for various values of . As observed in Table 3, the and error norms decrease when γ increases. A comparison between the results of our proposed strategy and two other methods is demonstrated in detail, the researchers of which relied on their work on a weight function corresponding to the spline function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Table 1.  Numerical solutions with for various numbers of partitions .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.104360 1.105211 1.105166 1.105122 1.105101
    0.2 1.222151 1.222040 1.221593 1.221555 1.221511
    0.3 1.351010 1.350426 1.350012 1.349831 1.349789
    0.4 1.493377 1.492288 1.491990 1.491910 1.491844
    0.5 1.650589 1.650001 1.649822 1.648889 1.648731
    0.6 1.824211 1.823336 1.822449 1.822214 1.822110
    0.7 2.015587 2.014111 2.013822 2.013776 2.013692
    0.8 2.227577 2.226110 2.225699 2.225611 2.225562
    0.9 2.461410 2.461101 2.460893 2.459550 2.459491
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    1.631895 0.440555 0.160761 0.062504
    [44] 1.764966 0.465690 0.167743 0.095754
    [45] 1.632995 0.447720 0.161833 0.082624
    2.291578 0.64933 0.206677 0.032882
    [49] 3.101238 0.812842 0.209495 0.069208
    [50] 2.296683 0.625018 0.207352 0.033125

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical solutions with for various values of .
    x = 0.005 = 0.001 = 0.0005 = 0.00025 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105216 1.105211 1.105199 1.105186 1.105150
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    0.659999 0.374901 0.232591 0.092489
    [44] 0.176195 0.068869
    [45] 0.375012 0.232768 0.092624
    0.936512 0.529997 0.326112 0.132945
    [44] 0.665419 0.411883
    [45] 0.530231 0.328303 0.133125

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical solutions with for various values of γ.
    x Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105068 1.104981 1.104890 1.104899 1.104882
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    0.659999 0.374901 0.232591 0.092489
    [44] 0.096733 0.090053 0.035448 0.044398
    [45] 0.167077 0.165443 0.159924 0.166085
    0.936512 0.529997 0.328112 0.132945
    [44] 0.272943 0.258623 0.124569 0.066682
    [45] 0.235837 0.232645 0.224532 0.232565

     | Show Table
    DownLoad: CSV
    Figure 1.  The surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Example 2: Finally, we consider the TFBE (1) with the BCs

    and IC

    where the source term can be obtained as [44]

    The exact solution is

    Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the numerical solutions for various numbers of partitions and values of . As seen in Tables 4 and 5, when the number of partitions M increased, the error norms and will decrease considerably, while, in Table 5, we can see that when ∆t decrease, the error norms and decrease. Figure 2 demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2).

    Table 4.  Numerical solutions with for various numbers of partitions .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    0.435298 0.183971 0.041943 0.001960
    [44] 1.224329 0.177703
    [45] 2.899412 0.577143
    0.731071 0.273289 0.063201 0.004168
    [44] 1.730469 0.253053
    [45] 4.063808 0.813220

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical solutions with for various values of .
    x = 0.005 = 0.001 = 0.0005 = 0.00025 Exact
    0.0 1000000 1000000 1000000 1000000 1000000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    0.124034 0.054081 0.014255 0.001960
    [44] 0.532436 0.188710
    [45] 0.359489 0.017828
    0.175611 0.077465 0.028523 0.004168
    [44] 0.753171 0.267546
    [45] 0.512105 0.0321162

     | Show Table
    DownLoad: CSV
    Figure 2.  The surfaces of the exact and numerical solutions of the TFBE in Example (2).

    This paper presented a numerical approach based on the CBSGM with a quadratic weight function for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed method is an appropriate and efficient scheme for solving such problems.

    The authors declare no conflict of interest.



    [1] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [2] O. Nikan, Z. Avazzadeh, J. A. Tenreiro Machado, A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer, J. Adv. Res. 32 (2021), 45–60. https://doi.org/10.1016/j.jare.2021.03.002 doi: 10.1016/j.jare.2021.03.002
    [3] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transfer, 111 (2020), 104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443 doi: 10.1016/j.icheatmasstransfer.2019.104443
    [4] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad., Numerical investigation of the nonlinear modified anomalous diffusion process, Nonlinear Dyn., 97 (2019), 2757–2775. https://doi.org/10.1007/s11071-019-05160-w doi: 10.1007/s11071-019-05160-w
    [5] H. Mesgarani, J. Rashidinia, Y. Esmaeelzade Aghdam, O. Nikan, Numerical treatment of the space fractional advection–dispersion model arising in groundwater hydrology, Comput. Appl., Math., 40 (2021). https://doi.org/10.1007/s40314-020-01410-5 doi: 10.1007/s40314-020-01410-5
    [6] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments, Appl. Math. Modell., 89 (2021), 819–836. https://doi.org/10.1016/j.apm.2020.07.021 doi: 10.1016/j.apm.2020.07.021
    [7] O. Nikan, A. Golbabai, J. T. Machado, T. Nikazad, Numerical approximation of the time fractional cable model arising in neuronal dynamics, Eng. Comput., 38 (2022), 155–173. https://doi.org/10.1007/s00366-020-01033-8 doi: 10.1007/s00366-020-01033-8
    [8] Z. Avazzadeh, O. Nikan, A. T. Nguyen, A localized hybrid kernel meshless technique for solving the fractional Rayleigh–Stokes problem for an edge in a viscoelastic fluid, Eng. Anal. Boundary Elem., 146 (2023), 695–705. https://doi.org/10.1016/j.enganabound.2022.11.003 doi: 10.1016/j.enganabound.2022.11.003
    [9] R. AlAhmad, Q. AlAhmad, A. Abdelhadi, Solution of fractional autonomous ordinary differential equations, J. Math. Comput. Sci., 27(2022), 59–64. http://dx.doi.org/10.22436/jmcs.027.01.05 doi: 10.22436/jmcs.027.01.05
    [10] O. Nikan, S. M. Molavi-Arabshai, H. Jafari, Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discrete Contin. Dyn. Syst. -S, 14 (2021), 3685–3701. https://doi.org/10.3934/dcdss.2020466 doi: 10.3934/dcdss.2020466
    [11] Y. Cao, O. Nikan, Z. Avazzadeh, A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels, Appl. Numer. Math., 183 (2023), 140–156. https://doi.org/10.1016/j.apnum.2022.07.018 doi: 10.1016/j.apnum.2022.07.018
    [12] A. Golbabai, O. Nikan, T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Math., 5 (2019), 1–22. https://doi.org/10.1007/s40819-019-0635-x doi: 10.1007/s40819-019-0635-x
    [13] N. H. Can, O. Nikan, M. N. Rasoulizadeh, H. Jafari, Y. S. Gasimov, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel, Therm. Sci., 24 (2020), 49–58.
    [14] T. Guo, O. Nikan, Z. Avazzadeh, W. Qiu, Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems, Comput. Appl. Math., 41 (2022), 236. https://doi.org/10.1007/s40314-022-01934-y doi: 10.1007/s40314-022-01934-y
    [15] H. K. Jassim, M. A. Shareef, On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator, J. Math. Comput. Sci., 23 (2021), 58–66. http://dx.doi.org/10.22436/jmcs.023.01.06 doi: 10.22436/jmcs.023.01.06
    [16] B. Kalimbetov, E. Abylkasymova, G. Beissenova, On the asymptotic solutions of singulary perturbed differential systems of fractional order, J. Math. Comput. Sci., 24, (2022), 165–172. http://dx.doi.org/10.22436/jmcs.024.02.07 doi: 10.22436/jmcs.024.02.07
    [17] S. Al-Ahmad, I. M. Sulaiman, M. M. A. Nawi, M. Mamat, M. Z. Ahmad, Analytical solution of systems of Volterra integro-differential equations using modified differential transform method, J. Math. Comput. Sci., 26 (2022), 1–9. http://dx.doi.org/10.22436/jmcs.026.01.01 doi: 10.22436/jmcs.026.01.01
    [18] A. Alia, M. Abbasb, T. Akramc, New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation, J. Math. Comput. Sci., 22 (2021), 119–127. http://dx.doi.org/10.22436/jmcs.022.02.03 doi: 10.22436/jmcs.022.02.03
    [19] T. Akram, M. Abbas, A. Ali, A numerical study on time-fractional Fisher equation using an extended cubic B-spline approximation, J. Math. Comput. Sci., 22 (2021), 85–96. http://dx.doi.org/10.22436/jmcs.022.01.08 doi: 10.22436/jmcs.022.01.08
    [20] M. Luo, W. Qiu, O. Nikan, Z. Avazzadeh, Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 440 (2023), 127655. https://doi.org/10.1016/j.amc.2022.127655 doi: 10.1016/j.amc.2022.127655
    [21] P. Darania, A. Ebadian, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188 (2007), 657–668. https://doi.org/10.1016/j.amc.2006.10.046 doi: 10.1016/j.amc.2006.10.046
    [22] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [23] J. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. Escobar-Jiménez, V. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017). https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7
    [24] Y. Li, N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Comput. Math. Appl., 62 (2011), 1046–1054, https://doi.org/10.1016/j.camwa.2011.03.032 doi: 10.1016/j.camwa.2011.03.032
    [25] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [26] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, C. M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62 (2011), 1038–1045. https://doi.org/10.1016/j.camwa.2011.04.024 doi: 10.1016/j.camwa.2011.04.024
    [27] Z. Odibat, On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 2956–2968. https://doi.org/10.1016/j.cam.2010.12.013 doi: 10.1016/j.cam.2010.12.013
    [28] A. Yokus, D. Kaya, Numerical and exact solutions for time fractional Burgers' equation, Nonlinear Sci. Appl., 10 (2017), 3419–3428. http://dx.doi.org/10.22436/jnsa.010.07.06 doi: 10.22436/jnsa.010.07.06
    [29] A. Esen, F. Bulut, Ö. Oruç, A unified approach for the numerical solution of time fractional Burgers' type equations, Eur. Phys. J. Plus, 131 (2016). https://doi.org/10.1140/epjp/i2016-16116-5 doi: 10.1140/epjp/i2016-16116-5
    [30] C. S. Liu, J. R. Chang, Recovering a source term in the time-fractional Burgers equation by an energy boundary functional equation, Appl. Math. Lett., 79 (2018), 138–145. https://doi.org/10.1016/j.aml.2017.12.010 doi: 10.1016/j.aml.2017.12.010
    [31] M. Li, O. Nikan, W. Qiu, D. Xu, An efficient localized meshless collocation method for the two-dimensional Burgers-type equation arising in fluid turbulent flows, Eng. Anal. Boundary Elem., 144 (2022), 44–54. https://doi.org/10.1016/j.enganabound.2022.08.007 doi: 10.1016/j.enganabound.2022.08.007
    [32] W. Qiu, H. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017
    [33] T. Guo, M. A. Zaky, A. S. Hendy, W. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2022), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023
    [34] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burger's equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [35] T. Guo, D. Xu, W. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570
    [36] F. Safari, W. Chen, Numerical approximations for space-time fractional Burgers' equations via a new semi-analytical method, Comput. Math. Appl., 96 (2021), 55–66. https://doi.org/10.1016/j.camwa.2021.03.026 doi: 10.1016/j.camwa.2021.03.026
    [37] T. Wang, G. Chai, Composite spectral method for the Neumann problem of the Burgers equation on the half line, Comput. Math. Appl., 134 (2023), 194–206. https://doi.org/10.1016/j.camwa.2023.01.018 doi: 10.1016/j.camwa.2023.01.018
    [38] Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alexandria Eng. J., 64 (2022), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033
    [39] X. Hu, S. Zhu, Isogeometric analysis for time-fractional partial differential equations, Numer. Algor., 85 (2020), 909–930. https://doi.org/10.1007/s11075-019-00844-1 doi: 10.1007/s11075-019-00844-1
    [40] F. Soleymani, S. Zhu, Error and stability estimate of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 425 (2023), 115075. https://doi.org/10.1016/j.cam.2023.115075 doi: 10.1016/j.cam.2023.115075
    [41] D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [42] P. M. Prenter, Spline and Variational Methods, John Wiley & Sons, New York, 1975.
    [43] Z. Chen, The Finite Element Method: Its Fundamentals and Applications in Engineering, World Scientific: Hackensack, NJ, USA, 2011.
    [44] S. Kutluay, A. Esen, I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167 (2004), 21–33. https://doi.org/10.1016/j.cam.2003.09.043 doi: 10.1016/j.cam.2003.09.043
    [45] A. Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal., 182 (2013), 260–273. https://doi.org/10.3846/13926292.2013.783884 doi: 10.3846/13926292.2013.783884
    [46] M. Li, X. Ding, Q. Xu, Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation, Adv. Differ. Equations, 2018 (2018), 1–15. https://doi.org/10.1186/s13662-018-1743-3 doi: 10.1186/s13662-018-1743-3
    [47] M. K. Jain, Numerical Solution of Differential Equations, John Wiley & Sons, New York, 1985.
    [48] Siraj-ul-Islam, A. J. Khattak, I. A. Tirmizi, A meshfree method for numerical solution of KdV equation, Eng. Anal. Bound. Elem., 32 (2008), 849–855. https://doi.org/10.1016/j.enganabound.2008.01.003 doi: 10.1016/j.enganabound.2008.01.003
    [49] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation by cubic B-spline finite elements, Medidterr. J. Math., 13 (2016), 1325–1337. https://doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x
    [50] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation, Acta Univ. Sapientiae Math., 7 (2016), 167–185. https://doi.org/10.1515/ausm-2015-0011 doi: 10.1515/ausm-2015-0011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1618) PDF downloads(76) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog