Research article Special Issues

Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation

  • Received: 23 March 2023 Revised: 02 May 2023 Accepted: 06 May 2023 Published: 01 June 2023
  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the $L_2$ and $ {L_\infty } $ error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.

    Citation: Akeel A. AL-saedi, Jalil Rashidinia. Application of the B-spline Galerkin approach for approximating the time-fractional Burger's equation[J]. Electronic Research Archive, 2023, 31(7): 4248-4265. doi: 10.3934/era.2023216

    Related Papers:

  • This paper presents a numerical scheme based on the Galerkin finite element method and cubic B-spline base function with quadratic weight function to approximate the numerical solution of the time-fractional Burger's equation, where the fractional derivative is considered in the Caputo sense. The proposed method is applied to two examples by using the $L_2$ and $ {L_\infty } $ error norms. The obtained results are compared with a previous existing method to test the accuracy of the proposed method.



    加载中


    [1] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [2] O. Nikan, Z. Avazzadeh, J. A. Tenreiro Machado, A local stabilized approach for approximating the modified time-fractional diffusion problem arising in heat and mass transfer, J. Adv. Res. 32 (2021), 45–60. https://doi.org/10.1016/j.jare.2021.03.002 doi: 10.1016/j.jare.2021.03.002
    [3] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transfer, 111 (2020), 104443. https://doi.org/10.1016/j.icheatmasstransfer.2019.104443 doi: 10.1016/j.icheatmasstransfer.2019.104443
    [4] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, T. Nikazad., Numerical investigation of the nonlinear modified anomalous diffusion process, Nonlinear Dyn., 97 (2019), 2757–2775. https://doi.org/10.1007/s11071-019-05160-w doi: 10.1007/s11071-019-05160-w
    [5] H. Mesgarani, J. Rashidinia, Y. Esmaeelzade Aghdam, O. Nikan, Numerical treatment of the space fractional advection–dispersion model arising in groundwater hydrology, Comput. Appl., Math., 40 (2021). https://doi.org/10.1007/s40314-020-01410-5 doi: 10.1007/s40314-020-01410-5
    [6] O. Nikan, J. A. Tenreiro Machado, A. Golbabai, Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments, Appl. Math. Modell., 89 (2021), 819–836. https://doi.org/10.1016/j.apm.2020.07.021 doi: 10.1016/j.apm.2020.07.021
    [7] O. Nikan, A. Golbabai, J. T. Machado, T. Nikazad, Numerical approximation of the time fractional cable model arising in neuronal dynamics, Eng. Comput., 38 (2022), 155–173. https://doi.org/10.1007/s00366-020-01033-8 doi: 10.1007/s00366-020-01033-8
    [8] Z. Avazzadeh, O. Nikan, A. T. Nguyen, A localized hybrid kernel meshless technique for solving the fractional Rayleigh–Stokes problem for an edge in a viscoelastic fluid, Eng. Anal. Boundary Elem., 146 (2023), 695–705. https://doi.org/10.1016/j.enganabound.2022.11.003 doi: 10.1016/j.enganabound.2022.11.003
    [9] R. AlAhmad, Q. AlAhmad, A. Abdelhadi, Solution of fractional autonomous ordinary differential equations, J. Math. Comput. Sci., 27(2022), 59–64. http://dx.doi.org/10.22436/jmcs.027.01.05 doi: 10.22436/jmcs.027.01.05
    [10] O. Nikan, S. M. Molavi-Arabshai, H. Jafari, Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves, Discrete Contin. Dyn. Syst. -S, 14 (2021), 3685–3701. https://doi.org/10.3934/dcdss.2020466 doi: 10.3934/dcdss.2020466
    [11] Y. Cao, O. Nikan, Z. Avazzadeh, A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels, Appl. Numer. Math., 183 (2023), 140–156. https://doi.org/10.1016/j.apnum.2022.07.018 doi: 10.1016/j.apnum.2022.07.018
    [12] A. Golbabai, O. Nikan, T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Math., 5 (2019), 1–22. https://doi.org/10.1007/s40819-019-0635-x doi: 10.1007/s40819-019-0635-x
    [13] N. H. Can, O. Nikan, M. N. Rasoulizadeh, H. Jafari, Y. S. Gasimov, Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel, Therm. Sci., 24 (2020), 49–58.
    [14] T. Guo, O. Nikan, Z. Avazzadeh, W. Qiu, Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems, Comput. Appl. Math., 41 (2022), 236. https://doi.org/10.1007/s40314-022-01934-y doi: 10.1007/s40314-022-01934-y
    [15] H. K. Jassim, M. A. Shareef, On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator, J. Math. Comput. Sci., 23 (2021), 58–66. http://dx.doi.org/10.22436/jmcs.023.01.06 doi: 10.22436/jmcs.023.01.06
    [16] B. Kalimbetov, E. Abylkasymova, G. Beissenova, On the asymptotic solutions of singulary perturbed differential systems of fractional order, J. Math. Comput. Sci., 24, (2022), 165–172. http://dx.doi.org/10.22436/jmcs.024.02.07 doi: 10.22436/jmcs.024.02.07
    [17] S. Al-Ahmad, I. M. Sulaiman, M. M. A. Nawi, M. Mamat, M. Z. Ahmad, Analytical solution of systems of Volterra integro-differential equations using modified differential transform method, J. Math. Comput. Sci., 26 (2022), 1–9. http://dx.doi.org/10.22436/jmcs.026.01.01 doi: 10.22436/jmcs.026.01.01
    [18] A. Alia, M. Abbasb, T. Akramc, New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation, J. Math. Comput. Sci., 22 (2021), 119–127. http://dx.doi.org/10.22436/jmcs.022.02.03 doi: 10.22436/jmcs.022.02.03
    [19] T. Akram, M. Abbas, A. Ali, A numerical study on time-fractional Fisher equation using an extended cubic B-spline approximation, J. Math. Comput. Sci., 22 (2021), 85–96. http://dx.doi.org/10.22436/jmcs.022.01.08 doi: 10.22436/jmcs.022.01.08
    [20] M. Luo, W. Qiu, O. Nikan, Z. Avazzadeh, Second-order accurate, robust and efficient ADI Galerkin technique for the three-dimensional nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 440 (2023), 127655. https://doi.org/10.1016/j.amc.2022.127655 doi: 10.1016/j.amc.2022.127655
    [21] P. Darania, A. Ebadian, A method for the numerical solution of the integro-differential equations, Appl. Math. Comput., 188 (2007), 657–668. https://doi.org/10.1016/j.amc.2006.10.046 doi: 10.1016/j.amc.2006.10.046
    [22] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [23] J. Gómez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R. Escobar-Jiménez, V. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Adv. Differ. Equations, 2017 (2017). https://doi.org/10.1186/s13662-017-1120-7 doi: 10.1186/s13662-017-1120-7
    [24] Y. Li, N. Sun, Numerical solution of fractional differential equations using the generalized block pulse operational matrix, Comput. Math. Appl., 62 (2011), 1046–1054, https://doi.org/10.1016/j.camwa.2011.03.032 doi: 10.1016/j.camwa.2011.03.032
    [25] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [26] H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, C. M. Khalique, Application of Legendre wavelets for solving fractional differential equations, Comput. Math. Appl., 62 (2011), 1038–1045. https://doi.org/10.1016/j.camwa.2011.04.024 doi: 10.1016/j.camwa.2011.04.024
    [27] Z. Odibat, On Legendre polynomial approximation with the VIM or HAM for numerical treatment of nonlinear fractional differential equations, J. Comput. Appl. Math., 235 (2011), 2956–2968. https://doi.org/10.1016/j.cam.2010.12.013 doi: 10.1016/j.cam.2010.12.013
    [28] A. Yokus, D. Kaya, Numerical and exact solutions for time fractional Burgers' equation, Nonlinear Sci. Appl., 10 (2017), 3419–3428. http://dx.doi.org/10.22436/jnsa.010.07.06 doi: 10.22436/jnsa.010.07.06
    [29] A. Esen, F. Bulut, Ö. Oruç, A unified approach for the numerical solution of time fractional Burgers' type equations, Eur. Phys. J. Plus, 131 (2016). https://doi.org/10.1140/epjp/i2016-16116-5 doi: 10.1140/epjp/i2016-16116-5
    [30] C. S. Liu, J. R. Chang, Recovering a source term in the time-fractional Burgers equation by an energy boundary functional equation, Appl. Math. Lett., 79 (2018), 138–145. https://doi.org/10.1016/j.aml.2017.12.010 doi: 10.1016/j.aml.2017.12.010
    [31] M. Li, O. Nikan, W. Qiu, D. Xu, An efficient localized meshless collocation method for the two-dimensional Burgers-type equation arising in fluid turbulent flows, Eng. Anal. Boundary Elem., 144 (2022), 44–54. https://doi.org/10.1016/j.enganabound.2022.08.007 doi: 10.1016/j.enganabound.2022.08.007
    [32] W. Qiu, H. Chen, X. Zheng, An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations, Math. Comput. Simul., 166 (2019), 298–314. https://doi.org/10.1016/j.matcom.2019.05.017 doi: 10.1016/j.matcom.2019.05.017
    [33] T. Guo, M. A. Zaky, A. S. Hendy, W. Qiu, Pointwise error analysis of the BDF3 compact finite difference scheme for viscous Burgers' equations, Appl. Numer. Math., 185 (2022), 260–277. https://doi.org/10.1016/j.apnum.2022.11.023 doi: 10.1016/j.apnum.2022.11.023
    [34] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burger's equation, Math. Comput. Simul., 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [35] T. Guo, D. Xu, W. Qiu, Efficient third-order BDF finite difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 140 (2023), 108570. https://doi.org/10.1016/j.aml.2023.108570 doi: 10.1016/j.aml.2023.108570
    [36] F. Safari, W. Chen, Numerical approximations for space-time fractional Burgers' equations via a new semi-analytical method, Comput. Math. Appl., 96 (2021), 55–66. https://doi.org/10.1016/j.camwa.2021.03.026 doi: 10.1016/j.camwa.2021.03.026
    [37] T. Wang, G. Chai, Composite spectral method for the Neumann problem of the Burgers equation on the half line, Comput. Math. Appl., 134 (2023), 194–206. https://doi.org/10.1016/j.camwa.2023.01.018 doi: 10.1016/j.camwa.2023.01.018
    [38] Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alexandria Eng. J., 64 (2022), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033
    [39] X. Hu, S. Zhu, Isogeometric analysis for time-fractional partial differential equations, Numer. Algor., 85 (2020), 909–930. https://doi.org/10.1007/s11075-019-00844-1 doi: 10.1007/s11075-019-00844-1
    [40] F. Soleymani, S. Zhu, Error and stability estimate of a time-fractional option pricing model under fully spatial-temporal graded meshes, J. Comput. Appl. Math., 425 (2023), 115075. https://doi.org/10.1016/j.cam.2023.115075 doi: 10.1016/j.cam.2023.115075
    [41] D. Tavares, R. Almeida, D. F. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci. Numer. Simul., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [42] P. M. Prenter, Spline and Variational Methods, John Wiley & Sons, New York, 1975.
    [43] Z. Chen, The Finite Element Method: Its Fundamentals and Applications in Engineering, World Scientific: Hackensack, NJ, USA, 2011.
    [44] S. Kutluay, A. Esen, I. Dag, Numerical solutions of the Burgers' equation by the least-squares quadratic B-spline finite element method, J. Comput. Appl. Math., 167 (2004), 21–33. https://doi.org/10.1016/j.cam.2003.09.043 doi: 10.1016/j.cam.2003.09.043
    [45] A. Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations, Math. Model. Anal., 182 (2013), 260–273. https://doi.org/10.3846/13926292.2013.783884 doi: 10.3846/13926292.2013.783884
    [46] M. Li, X. Ding, Q. Xu, Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation, Adv. Differ. Equations, 2018 (2018), 1–15. https://doi.org/10.1186/s13662-018-1743-3 doi: 10.1186/s13662-018-1743-3
    [47] M. K. Jain, Numerical Solution of Differential Equations, John Wiley & Sons, New York, 1985.
    [48] Siraj-ul-Islam, A. J. Khattak, I. A. Tirmizi, A meshfree method for numerical solution of KdV equation, Eng. Anal. Bound. Elem., 32 (2008), 849–855. https://doi.org/10.1016/j.enganabound.2008.01.003 doi: 10.1016/j.enganabound.2008.01.003
    [49] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation by cubic B-spline finite elements, Medidterr. J. Math., 13 (2016), 1325–1337. https://doi.org/10.1007/s00009-015-0555-x doi: 10.1007/s00009-015-0555-x
    [50] A. Esen, O. Tasbozan, Numerical solution of time fractional burgers equation, Acta Univ. Sapientiae Math., 7 (2016), 167–185. https://doi.org/10.1515/ausm-2015-0011 doi: 10.1515/ausm-2015-0011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1371) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog