Research article Special Issues

Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial

  • Received: 04 April 2023 Revised: 18 May 2023 Accepted: 29 May 2023 Published: 19 June 2023
  • In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.

    Citation: Ping Zhou, Hossein Jafari, Roghayeh M. Ganji, Sonali M. Narsale. Numerical study for a class of time fractional diffusion equations using operational matrices based on Hosoya polynomial[J]. Electronic Research Archive, 2023, 31(8): 4530-4548. doi: 10.3934/era.2023231

    Related Papers:

  • In this paper, we develop a numerical method by using operational matrices based on Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of fractional order with respect to time. This method is applied to certain diffusion equations like time fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained numerical solutions using the presented method are compared with the exact solutions. The numerical results show that the suggested method is convenient and accurate.



    加载中


    [1] M. Hosseininia, M. H. Heydari, Z. Avazzadeh, Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher-Kolmogorov equation, Chaos, Solitons Fractals, 155 (2022), 111729. https://doi.org/10.1016/j.chaos.2021.111729 doi: 10.1016/j.chaos.2021.111729
    [2] X. Peng, D. Xu, W. Qiu, Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers' equation, Math. Comput. Simul, 208 (2023), 702–726. https://doi.org/10.1016/j.matcom.2023.02.004 doi: 10.1016/j.matcom.2023.02.004
    [3] N. H. Tuan, T. Caraballo, T. N. Thach, New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion, Stochastic Processes Appl., 161 (2023), 24–67. https://doi.org/10.1016/j.spa.2023.03.012 doi: 10.1016/j.spa.2023.03.012
    [4] T. Caraballo, N. H. Tuan, New results for convergence problem of fractional diffusion equations when order approach to $1^-$, Differ. Integr. Equations, 36 (2023), 491–516. https://doi.org/10.57262/die036-0506-491 doi: 10.57262/die036-0506-491
    [5] J. D. Djida, A. Atangana, I. Area, Numerical computation of a fractional derivative with non-local and non-singular kernel, Math. Modell. Nat. Phenom., 12 (2017), 4–13. https://doi.org/10.1051/mmnp/201712302 doi: 10.1051/mmnp/201712302
    [6] O. J. J. Algahtani, Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model, Chaos, Solitons Fractals, 89 (2016), 552–559. https://doi.org/10.1016/j.chaos.2016.03.026 doi: 10.1016/j.chaos.2016.03.026
    [7] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
    [8] S. S. Ray, R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167 (2005), 561–571. https://doi.org/10.1016/j.amc.2004.07.020 doi: 10.1016/j.amc.2004.07.020
    [9] J. S. Duan, An efficient algorithm for the multivariable Adomian polynomials, Appl. Math. Comput., 217 (2010), 2456–2467. https://doi.org/10.1016/j.amc.2010.07.046 doi: 10.1016/j.amc.2010.07.046
    [10] H. Chen, W. Qiu, M. A. Zaky, A. S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60 (2023). https://doi.org/10.1007/s10092-023-00508-6 doi: 10.1007/s10092-023-00508-6
    [11] W. Qiu, D. Xu, X. Yang, H. Zhang, The efficient ADI Galerkin finite element methods for the three-dimensional nonlocal evolution problem arising in viscoelastic mechanics, Discrete Contin. Dyn. Syst. - Ser. S, 28 (2023), 3079–3106. https://doi.org/10.3934/dcdsb.2022204 doi: 10.3934/dcdsb.2022204
    [12] R. Wang, Y. Xu, H. Yue, Stochastic averaging for the non-autonomous mixed stochastic differential equations with locally Lipschitz coefficients, Stat. Probab. Lett., 182 (2022), 109294. https://doi.org/10.1016/j.spl.2021.109294 doi: 10.1016/j.spl.2021.109294
    [13] A. Aytac, O. Ibrahim, Solution of fractional differential equations by using differential transform method, Chaos Solitons Fractals, 34 (2007), 1473–1481. https://doi.org/10.1016/j.chaos.2006.09.004 doi: 10.1016/j.chaos.2006.09.004
    [14] L. Qiao, D. Xu, A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation, Adv. Comput. Math., 47 (2021). https://doi.org/10.1007/s10444-021-09884-5 doi: 10.1007/s10444-021-09884-5
    [15] H. Jafari, M. Ghorbani, M. Ebadattalab, R. M Ganji, D. Baleanu, Optimal Homotopy asymptotic method–-a tool for solving fuzzy differential equations, J. Comput. Complexity Appl., 2 (2016), 112–123.
    [16] R. M. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos, Solitons Fractals, 130 (2020), 109405. https://doi.org/10.1016/j.chaos.2019.109405 doi: 10.1016/j.chaos.2019.109405
    [17] A. Zhang, R. M. Ganji, H. Jafari, M. N. Ncube, L. Agamalieva, Numerical solution of distributed-order integro-differential equations, Fractals, 30 (2022), 1–11. https://doi.org/10.1142/S0218348X22401235 doi: 10.1142/S0218348X22401235
    [18] H. Jafari, R. M. Ganji, K. Sayevand, D. Baleanu, A numerical approach for solving fractional optimal control problems with mittag-leffler kernel, J. Vib. Control, 28 (2022), 2596–2606. https://doi.org/10.1177/10775463211016967 doi: 10.1177/10775463211016967
    [19] H. Tajadodi, A Numerical approach of fractional advection-diffusion equation with Atangana-Baleanu derivative, Chaos, Solitons Fractals, 130 (2020), 109527. https://doi.org/10.1016/j.chaos.2019.109527 doi: 10.1016/j.chaos.2019.109527
    [20] R. M. Ganji, H. Jafari, M. Kgarose, A. Mohammadi, Numerical solutions of time-fractional Klein-Gordon equations by clique polynomials, Alexandria Eng. J., 60 (2021), 4563–4571. https://doi.org/10.1016/j.aej.2021.03.026 doi: 10.1016/j.aej.2021.03.026
    [21] S. Sadeghi, H. Jafari, S. Nemati, Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative, Discrete Contin. Dyn. Syst. - Ser. S, 14 (2021), 3747–3761. https://doi.org/10.3934/dcdss.2020435 doi: 10.3934/dcdss.2020435
    [22] R. M. Ganji, H. Jafari, S. P. Moshokoa, N. S. Nkomo, A mathematical model and numerical solution for brain tumor derived using fractional operator, Results Phys., 28 (2021), 104671. https://doi.org/10.1016/j.rinp.2021.104671 doi: 10.1016/j.rinp.2021.104671
    [23] H. Jafari, R. M. Ganji, D. D. Ganji, Z. Hammouch, Y. S. Gasimov, A novel numerical method for solving fuzzy variable-order differential equations with Mittag-Leffler kernels, Fractals, 31 (2023), 2340063. https://doi.org/10.1142/S0218348X23400637 doi: 10.1142/S0218348X23400637
    [24] H. Jafari, R. M. Ganji, S. M. Narsale, M. Nguyen, V. T. Nguyen, Application of Hosoya polynomial to solve a class of time fractional diffusion equations, Fractals, 31 (2023), 2340059. https://doi.org/10.1142/S0218348X23400595 doi: 10.1142/S0218348X23400595
    [25] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [26] H. Jafari, N. A. Tuan, R. M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations, J. King Saud Univ. Sci., 33 (2021), 101185. https://doi.org/10.1016/j.jksus.2020.08.029 doi: 10.1016/j.jksus.2020.08.029
    [27] G. Cash, S. Klavzar, M. Petkovsek, Three methods for calculation of the hyper-wiener index of molecular graphs, J. Chem. Inf. Model., 43 (2002), 571–576. https://doi.org/10.1021/ci0100999 doi: 10.1021/ci0100999
    [28] N. Tratnika, P. Z. Pletersek, Relationship between the Hosoya polynomial and the edge-Hosoya polynomial of trees, Match-Commun. Math. Comput. Chem., 78 (2017), 181–187.
    [29] A. R. Nizami, T. Farmam, Hosoya polynomial and topological indices of the Jahangir graphs J7, m, J. Appl. Comput. Math., 7 (2018), 1–5.
    [30] D. Stevanovic, Hosoya polynomial of composite graphs, Department of Mathematics, Discrete Math., 235 (2001), 237–244. https://doi.org/10.1016/S0012-365X(00)00277-6 doi: 10.1016/S0012-365X(00)00277-6
    [31] E. V. Konstantinova, M. V. Diudea, The Wiener polynomial derivatives and other topological indices in chemical research, Croat. Chem. Acta, 73 (2000), 383–403.
    [32] I. Gutman, Hosoya polynomial and the distance of the total graph of a tree, Publ. Elektroteh. Fak. Ser. Mat., 10 (1999), 53–58.
    [33] H. S. Ramane, K. P. Narayankar, S. S. Shirkol, A. B. Ganagi, Terminal Wiener index of line graphs, Match-Commun. Math. Comput. Chem., 69 (2013), 775–782.
    [34] M. Z. Gecmen, E. Celik, Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials, Math. Methods Appl. Sci., 44 (2021), 11166–11173. https://doi.org/10.1002/mma.7479 doi: 10.1002/mma.7479
    [35] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods, Springer-Verlag, Berlin, 2006. https://doi.org/10.1093/imamci/dnx041
    [36] P. Rahimkhani, Y. Ordokhani, Generalized fractional-order Bernoulli-Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems, IMA J. Math. Control Inf., 36 (2019), 185–212. https://doi.org/10.1093/imamci/dnx041 doi: 10.1093/imamci/dnx041
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(690) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog