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Abstract: In this paper, we develop a numerical method by using operational matrices based on
Hosoya polynomials of simple paths to find the approximate solution of diffusion equations of frac-
tional order with respect to time. This method is applied to certain diffusion equations like time
fractional advection-diffusion equations and time fractional Kolmogorov equations. Here we use the
Atangana-Baleanu fractional derivative. With the help of this approach we convert these equations to a
set of algebraic equations, which is easier to be solved. Also, the error bound is provided. The obtained
numerical solutions using the presented method are compared with the exact solutions. The numerical
results show that the suggested method is convenient and accurate.
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1. Introduction

Non-linear partial differential equations are extensively used in science and engineering to model
real-world phenomena [1-4]. Using fractional operators like the Riemann-Liouville (RL) and the
Caputo operators which have local and singular kernels, it is difficult to express many non-local
dynamics systems. Thus to describe complex physical problems, fractional operators with non-local
and non-singular kernels [5, 6] were defined. The Atangana-Baleanu (AB) fractional derivative
operator is one of these type of fractional operators which is introduced by Atangana and Baleanu [7].
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The time fractional Kolmogorov equations (TF-KEs) are defined as
AD]g(s,1) = D1()Dg(s, 1) + Do()Dysg(s, 1) + w (s,1), 0 <y <1, (1.1)
with the initial and boundary conditions

g(S, 0) = d()(S),
80,0 =di(r), g(1,1) = dx(1),

where (s,7) € [0,1] x [0, 1], ABD,Y denotes the Atangana-Baleanu (AB) derivative operator, Dg(s,t) =
2

%g(s, t) and Dg,g(s,t) = %g(s, 1). If 9,(s) and ¢,(s) are constants, then Eq (1.1) is presenting the
time fractional advection-diffusion equations (TF-ADEs).

Many researchers are developing methods to find the solution of partial differential equations of
fractional order. Analytical solutions or formal solutions of such type of equations are difficult; there-
fore, numerical simulations of these equations inspire a large amount of attentions. High accuracy
methods can illustrate the anomalous diffusion phenomenon more precisely. Some of the efficient
techniques are Adomian decomposition [8, 9], a two-grid temporal second-order scheme [10], the
Galerkin finite element method [11], finite difference [12], a differential transform [13], the orthog-
onal spline collocation method [14], the optimal homotopy asymptotic method [15], an operational
matrix (OM) [16-24], etc.

The OM is one of the numerical tools to find the solution of a variety of differential equations.
OMs of fractional derivatives and integration were derived using polynomials like the Chebyshev [16],
Legendre [17,18], Bernstein [19], clique [20], Genocchi [21], Bernoulli [22], etc. In this work, with the
help of the Hosoya polynomial (HS) of simple paths and OMs, we reduce problem (1.1) to the solution
of a system of nonlinear algebraic equations, which greatly simplifies the problem under study.

The sections are arranged as follows. In Section 2, we review some basic preliminaries in fractional
calculus and interesting properties of the HP. Section 3 presents a new technique to solve the TF-KEs.
The efficiency and simplicity of the proposed method using examples are discussed in Section 5. In
Section 6, the conclusion is given.

2. Preliminaries

In this section we discuss some basic preliminaries of fractional calculus and the main properties of
the HP. We also compute an error bound for the numerical solution.

2.1. Fractional calculus

Definition 2.1. (See [25]) Let 0 <y < 1. The RL integral of order y is defined as

R g(5) = fo (s — &7 1g(®) de.

1
I'(y)
One of the properties of the fractional order of RL integral is

:r(v—-i_l)sl’*'?’ v>0

RLyY v
1 )
s TF'v+1+vy)
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Definition 2.2. (See [7]) Let 0 <y < 1, g € H'(0,1) and ®(y) be a normalization function such that

PO)=d(1)=1and D(y)=1-y+ %}/) Then, the following holds

1) The AB derivative is defined as

O(y) (T

B o(s) = —2 | E (-~ —(s— &)@ dE, 0<y <1,
IL-vJo -y
ApTe(s) =g'(s), y=1,
here Ey(9) = 3 st f
where E.(s) = —— is the Mittag-Leffler function.
" ATei+ D gLt
2) The AB integral is given as
-y Y ’ _
AB g(s) = ——= <s>+—f(s— ) 'g(&) dé. (2.1)
T ToTRCON S

—— Y andw, = ——
D(y) T (yI(y)
AT g(s) = vy8(s) + wyI(y + DR g(s).

Letv, = ; then, we can rewrite (2.1) as

The AB integral satisfies the following property [26]:
(D)) = g(s) — (0).

2.2. The HP and their properties

In 1988, Haruo Hosoya introduced the concept of the HP [27,28]. This polynomial is used to

calculate distance between vertices of a graph [29]. In [30,31], the HP of path graphs is obtained. The
HP of the path graphs is described as

HG, s) = Z d(G,D)s',
>0

where d(G, [) denotes the distance between vertex pairs in the path graph [32,33]. Here we consider
path graph with vertices n where n € N. Based on n vertex values the Hosoya polynomials are cal-
culated [34]. Let us consider the path P, with n vertices; then the HP of the P;, i = 1,2,--- ,n are
computed as

APy, s) = Zd(Pl,l)s’ ~ 1,

>0

1
A(P,,s) = Zd(Pz,l)s’ — 542,
=0

2
H(Ps,s) = Zd(P3,l)sl = s> +25+3,
=0

H(P,,s) .:n+(n—1)s+(n—2)s2+---+(n—(n—2))s”‘2+(n—(n—1))s”‘1.
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Consider any function g(s) in L*(0, 1); we can approximate it using the HP as follows:

N+1
g(s) = g(s) = Z h; H(P;, 5) = h"H(s), (2.2)
i=1
where
h = [hl’ h29 T, hN+l]T’
and

H(S) = [FI(PI’ S), I:I(P27 S)9 T, H(PN+1a S)]T' (23)

From (2.2), we have

h=Q g(s), H(s)),

where Q = (H(s), H(s)) and (:, -) denotes the inner product of two arbitrary functions.
Now, consider the function g(s, 1) € L? ([0, 1] % [0, 1]); then, it can be expanded in terms of the HP
by using the infinite series,

(o8]

g(s.0) = > hyH(P:, )AP;, D). (2.4)

=1 j=1
If we consider the first (N + 1)? terms in (2.4), an approximation of the function g(s, ?) is obtained as

N+1 N+1

g(s,0) = > hyA(Py, $)H(P, 1) = H (s)AH(2), 2.5)

i=1 j=1

where

h=Q" (H(s), (g(s,0), H) Q"

Theorem 2.1. The integral of the vector H(s) given by (2.3) can be approximated as

j\HwﬂfﬁRH@L 2.6)

0

where R is called the OM of integration for the HP.

Proof. Firstly, we express the basis vector of the HP, H(s), in terms of the Taylor basis functions,

H(s) = AS(s), (2.7
where ,
S(s) =15, 5",
and
A= [aq,r], qg,r=12,--- ,N+1,
with

B LR R
" 0, g<r.
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Now, we can write

fo H()dé = A fo S(E)dé = ABS*(s),

where 8 =1[b,,], q,r=1,2,--- ,N+ 1lisan (N + 1) X (N + 1) matrix with the following elements
1
K} q =r,
byr =1 q
0, g#r,
T

S*(s) = [s, §2, . ,sN”] .

and

Now, by approximating s k=1,2,---,N + 1 in terms of the HP and by (2.7), we have

sk = ﬂ,:]H(s), k=1,2,---,N,
SN+1 — LTH(S),

where Al r =2,3,--+,N + 1 is the r-th row of the matrix A~ and £ = Q '(s"*!, H(s)). Then, we
get

S*(s) = EH(s),
where & = [?{5 l ﬂgl, cee ﬂl_\llﬂ’ LT]T. Therefore, by taking R = ABE, the proof is completed.
Theorem 2.2. The OM of the product based on the HP is given by (2.3) can be approximated as
CTH(s)H' (s) ~ H(s) C,
where C is called the OM of product for the HP.
Proof. Multiplying the vector C = [c,¢a, -+ ,cye1]” by H(s) and H (s) gives

CTH(s)H' (s) = CTH(s) (S" (5) A")
= |C"H(s), s (CTH(s)), -+ , s"(C"H(s))| A"

N+1 N+1 N+1
= [Z c; H(P;, 5), Z cisH(P;,s), - Z cis" H(Py, 5)| A" (2.8)
i=1 i=1 i=1
) T _ ~ , .
Taking e;; = [e}{’i,eii, e ,ekN’jl] and expanding s*~! H(P;, 5) ~ e,{’i H(s), i,k =1,2,--- ,N + 1 using

the HP, we can write

1
e = Q! f sVH(P;, $)H(s) ds
0
T

1 1 1
=qQ! [f sVHP;, s) H(Py, s) ds, f s“VH(P,, s) H(Py, s)ds, -, f sV H(P;, 5) H(Pys1, 5) ds
0 0 0
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Therefore,

N+1 N+1 N+1 _
Z C; Sk_1 I:I(Pi, S) = Z Ci [Z e]j(,,' I:I(Pj’ S))

i=1 i=1 j=1

N+1 N+1 '
= Z H(Pj, s) [Z C ei’i)
j=1

i=1

T 1 2 N+1
=H'(s) Z Ci € s Z Ci€in s Z C; ek;
i=1 i=1 i=1

T
=H'(s) [ek,l, €r2, " ,ek,N+1] C

= H'(5) E; C, (2.9)

N+1 N+1 N+1 ]

where £ is_an (N +1) X (N + 1) matrix and the vectors €kif0£k = 1,_2, ---,N + 1 are the columns
of E. Let Ey = EC, k=1,2,--- N+ 1 Setting C = |E,Es,+ ,Ey.i|asan (N + 1) x (N + 1)
matrix and using (2.8) and (2.9), we have

N+1 N+1 N+1

CTH(s)H(5) = | > c; H(Piy ), ) i s H(Pyys), -+, > cis™ H(Py, 5)| AT

i=1 i=1 i=1
~H'(s)C,
where by taking C =CAT, the proof is completed.

Theorem 2.3. Consider the given vector H(s) in (2.3); the fractional RL integral of this vector is

approximated as
®IH(s) ~ PYH(s),

where P is named the OM based on the HP which is given by

01,11 0121 e O1,N+1,1
2 2 2
E 02,1k E 022k °°° § 02 N+1,k
k=1 k=1 k=1
PV = ) ) _ . ,
N+1 N+1 N+1
E ON+1,1.k E ON+12k " § ON+1,N+1k
L k=1 k=1 k=1 .

with
(i — (k= 1)) ['(k)ey,

I'(k+7)

Oijk =

Proof. First, we rewrite H(P;, s) in the following form:

AP, s) = Z (i — (k= 1)) s,
k=1
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Let us apply, the RL integral operator, 17, on H(P;, s), i = 1,--- ,N + 1; this yields

R AP, s) = ™17 (Z (i—(k-1) sk_l] = Z (i = (k= 1) (*1,s*")

k=1 k=1
_ 2 (i — (k= 1) T'(k) Syl (2.10)
LT Tk+y) ' '
Now, using the HP, the function s**?~! is approximated as:
N+1
2 N e AP, 5). 2.11)
=1
By substituting (2.11) into (2.10), we have,
- S - G-TR (N -
R AP, s) = e H(P;, s)
;4 Tk +7) ; e
N+1 i .
—(k=1)I'ker ;| ~
_ Z(Z (i—( - NI( )ek,j)H(Pj’s)
=1 \k=1 Ttk +7)
N+1 i
= (Z O'i,j,k] H(P;, s)
=1 \k=1

Theorem 2.4. Suppose that 0 <y < 1 and H(P;, x) is the HP vector; then,
ABH(s) ~ T"H(s),

where 17 = v, I + w,I'(y + 1)P” is called the OM of the AB-integral based on the HP and I is an
(N + 1) X (N + 1) identity matrix.

Proof. Applying the AB integral operator, A7

, on H(s) yields
APYH(s) = vy H(s) + w,T(y + DXTH(s).
According to Theorem 2.3, we have that ®17H(s) ~ P*H(s). Therefore

APIH(s) = vy H(s) + w,I(y + DP'H(s)
= (v,d + w,[(y + DP?) H(s).

Setting 77 = v, I + w,I'(y + 1)P?, the proof is complete.
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3. The proposed technique

The main aim of this section is to introduce a technique based on the HP of simple paths to find the
solution of the TF-KEs. To do this, we first expand Dgg(s, f) as

N+1 N+1

Dy g(s,0) = > > hyH(Pi, HAP;, 1) = H' (s)RH(). 3.1)

i=1 j=1
Integrating (3.1) with respect to s gives
D,g(s, 1) ~ D,g(0,1) + H (s)RT hH(?). (3.2)
Again integrating the above equation with respect to s gives
T o) T ~
g(s.1) = d\(t) + sD,g(0,1) + H' (s) (R*) hH(0). (3.3)
By putting s = 1 into (3.3), we have
T 2 T ~
D,g(0,1) = dy(t) - d (1) - H' (1) (R*) RH(2). (3.4)
By substituting (3.4) into (3.3), we get
g(s, 1) ~ dy() + (dz(t) —dyn - H' (1) (R EH(r)) +H () (R) FHG). 3.5)
Now, we approximate that d(r) = S [H(t), d>(t) = STH(#) and s = H' (s)S and putting in (3.5), we get
g(s,0) =~ STH(r) + H (5)S (S TH(r) - STH(1) — HT (1) (R2)T EH(r)) +H(s) (Rz)T FH(?).
The above relation can be written as
g(s,1) ~ 1 x STH(?) + H'(5)S (S{H(t) —SIH®) - H' (1) (R)' izH(z)) +H () (R) RHO).
Approximating 1 = §TH(S) = HT(S)§, the above relation is rewritten as
g(s,1) ~ H' ()SSTH() + H' (5)S (S{H(t) — STH() - H' (1) (R2)' izH(x)) +H (0 (RY) ()
— H'(s) (Esg +SST-5ST-SH'()(R) T+ (R) 12) H(). (3.6)
. — T - T .
Setting p; = SST +SST - SST — SHT(1)(R?) o+ (R?) h, we have
g(s, 1) =~ H (s)p H(). (3.7)

According to (1.1), we need to obtain Dy g(s, t). Putting the approximations d, (), d»(¢) and the relation
(3.4) into (3.2) yields

D,g(s,t) =~ STH(r) - STH(r) - HT (1) (RZ)T RH(7) + H' (s)RTRH (). (3.8)

Electronic Research Archive Volume 31, Issue 8, 4530-4548.
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The above relation can be written as
Dyg(s,t) ~ 1 x STH() — 1 x STH(1) — 1 x H (1) (RZ)T RH(7) + HY (5)RT RH(2). (3.9)
Putting 1 = H T(s)§ into the above relation, we get
Dyg(s,1) =~ H'(5)SSTH(t) - H' (s)SSTH(t) - H' (s)SH" (1) (R2)T hH(t) + H (s)RThH(f)
= H'(s) (ES{ ~SsE-SH'()(RY) T+ RTE) H(p). (3.10)
Setting p, = §S{ - ESg —SHT(1) (RZ)T h + RTh, we have
Dyg(s, 1) = H' (s)p,H(r). (3.11)

Applying *57 to (1.1), putting g(s, 1) = H ()0 H(1), Dg(s, 1) = H (s)poH(1), Dy, g(s, 1) ~ H' (s)hH(7)
and approximating w (s, ) ~ H” (s)p3H(7) in (1.1) yields

H' ()o1H(1) = do(s) + 91 (H ()2 (IH®) + 92()H (90h (VT HD) + H (s)ps (VITHD) . (3.12)

Now approximating do(s) = H" (5)S,, 91(s) = STH(s), 9,(s) ~ S;H(s) and using Theorem 2.4, the
above relation can be rewritten as

H' (s)o1H(t) = H' (5)S, + STH(s)H (s)02I7H(?) + S H(s)H” ()R I"H(t) + H' (s)p3 I77H(?). (3.13)
By Theorem 2.2, the above relation can be written as

H (s)p1H(t) = H' (5)S, x 1 + STH(s)H" (5)po I"H(?) + STH(s)H” (s)hI"H(t) + H (s)p3 I7H(2). (3.14)
N—n e’ —

H7(5)S3 H7(5)S4
Now approximating 1 = §TH(I), we have
H” (s)p1H(t) = H (5)S 28 TH(t) + HY (5)S 30,7 H(7) + HT (5)S A IH(®E) + HY (s)psI7H(r).  (3.15)
We can write the above relation as
H (5) (01 = $257 = $3p207 = S4hI” = psI7) H(p) = 0. (3.16)

Therefore we have
01— 8287 = S3p2 0" = S4hIY — p3 17 = 0. (3.17)

By solving the obtained system, we find h;;, i, j = 1,2,--- ,N + 1. Consequently, g(s, t) can be calcu-
lated by using (3.7).

Electronic Research Archive Volume 31, Issue 8, 4530-4548.
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4. Convergence analysis

Set I = (a,b)", n =2,3 in R". The Sobolev norm is given as

1
||g||He<1>—(ZZHDU‘@HW)) exl,

k=0 [=0

where ng)u and H¢(I) are the k-th derivative of g and Sobolev space, respectively. The notation |g|gev
is given as [35]

€

1
|g|He;~u)—[ > ZHD(")guLz(,)].

k=min{e,N+1}

N+1 N+1
Theorem 4.1 (See [36]). Let (s, ) € H(I) with € > 1. Considering Pyg(s,1) = " a,,P(s)Pu(1)

r=1 n=1
as the best approximation of g(s, t), we have

g — Pngllizay < CN'€Igluen

and if 1 <1 < €, then
9(0)—
lig = Pngllaray < CNPO€Iglyen,

0, t =0,
v0={5 1 120

29

with

Lemma 4.1. The AB derivative can be written by using the fractional order RL integral as follows:
D(y) ly+1 Y
ABpyY _ I RUply+1 s _
Dtg(t)—l_wa 1", w= =
Proof. According to the definitions of the AB derivative and the RL integral, the proof is complete.

Theorem 4.2. Suppose that 0 < y < 1, |h(s)| < 11, [Va(s)| < 17, and g(s,t) € H(I) with e > 1. If
E(s, 1) is the residual error by approximating g(s,t), then E(s,t) can be evaluated as

”E(S, t)”Lz(I) < 01 <|g|;e;N(1) + |0Sg|}k_16;N(1)) s
where 1 <1 < € and o, is a constant number.

Proof. According to (1.1),

ABDY g(s,1) = 91(s)Dy g(s, 1) + 9o(5)Dy, g(5,0) + w (5,1), (4.1)
and
ABDY gn(s, 1) = 91(5)Dy gn(s, 1) + 92(5)Dys g (s, 1) + w (5, 1). 4.2)

Substituting Eqs (4.1) and (4.2) in E(s, t) yields
E(s, 1) = D] (g(s,1) — gn(s, 1)) + D1()Dy(gn(s, 1) — (5, 1)) + Po()Dy(gn (s, 1) — 85, 1)).

Electronic Research Archive Volume 31, Issue 8, 4530-4548.



4540

and then

”E(S’ t)”%Z([) S”ABDzl(g(S’ t) - gN(S, t))”iZ([)
+ 7T ”Ds(g(sa t) - gN(Sa t))”iZ(]) (43)
+ 73 D55 (g(s, 1) = gn (s, D)7, -

Now, we must find a bound for [[*2D] (g(s, 1) — gn(s, )ll.2)- In view of [26], and by using Lemma 4.1,
in a similar way, we write

IMED] (g(s,1) = gn(s, DI, = IT2 D" @' B (Dig(s, 1) = Dign(s, DI,

=0

oo / 2
() z : (2 2
S ( 1_);, o F(l)/ + 2)) ”Dtg(s’ t) - Dth(s, t)”LZ([)

2
< (T2E,2@)) llg(s. 1) — gn(s, D2y,

Therefore,
I1*D; (g(s. 1) — g (s, Dll2y < 61CN" gl 44
p , NS, 2 = 01 8lHEN (1) 4.4)
where %VY)E%Z(W) < 6;. Thus, from (4.4), we can write
I4D; (g(s, 1) = gn (s, D72y < 6118l7em s (4.5)
where [gl},.x ) = CN?O~€|g|yen(p). By Theorem 4.1,
ID,(g(s, 1) = gn(s, D)2y < CNPO~\glyenyyy = |8l ey (4.6)
and
IDs(g(s, 1) — gn(ss DIz = 1D (Ds(g(s, 1) — gn(s, D)) 2y
< |IDsg(s, 1) — Dsgn(s, Dl 4.7)
S |DSg|Ze;N(1)9
where [Dygly . ;) = CN?V=€|Dgl|penyy. Taking o; = max{d; + 71,72} and substituting (4.5)—(4.7) into

(4.3); then, the desired result is obtained.
5. Test problems

In this section, the proposed technique which is described in Section 3 is shown to be tested using
some numerical examples. The codes are written in Mathematica software.

Example 5.1. Consider (1.1) with ¢,(s) = —1,9,(s) = 0.1 and w (s,t) = 0. The initial and boundary
conditions can be extracted from the analytical solution g(s,t) = Toe™'"™* when y = 1. Setting Ty =

91(s) + \/ﬁ%(s) + 405(5)7y

29,(s)
numerical results of the TF-ADE are reported in Tables I and 2, and in Figures 1-3.

1,11 =021, = , considering N = 3 and using the proposed technique, the

Electronic Research Archive Volume 31, Issue 8, 4530-4548.
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2

Example 5.2. Consider (1.1) with $(s) = s, (s) = % and w (s,t) = 0. The initial and boundary

conditions can be extracted from the analytical solution g(s,t) = sE,(t*). By setting N = 5 and using
the proposed technique, the numerical results of the TF—KE are as reported in Figures 4—6.

Table 1. (Example 5.1) Numerical results of the absolute error when y = 0.99,N = 3,1 = 1.

s Method of [21] The presented method
0.1 1.05799¢ -2 3.86477¢ — 4
0.2 1.21467e -2 1.33870e — 4
0.3 4.94776e -3 4.08507¢ — 5
0.4 2.35280e — 4 1.48842¢ — 4
0.5 2.36604¢ — 3 2.01089¢ — 4
0.6 1.08676e —2 2.08410e — 4
0.7 2.18851e -2 1.81459¢ — 4
0.8 2.91950e — 2 1.30730e — 4
09 2.49148e -2 6.65580e — 5

TSN \\‘s"s‘«
e

3

Figure 1. (Example 5.1) The absolute error at some selected points when (a) y = 0.8, (b)
Y = 09, (C) Y = 099’ (d) Y = 1.
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— 0020
0015
0.010

0.005
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— 0.00200
— 000175
— 0.00150
— 000125
0.00100
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l 00200
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— 00150
— 00125
— 00100
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Figure 2. (Example 5.1) Error contour plots when (a) y = 0.99, (b) vy = 1,
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Figure 3. (Example 5.1) The absolute error at some selected points when (a) y = 0.8, (b)

y=09,(c)y=0.99,()y=1.
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Table 2. (Example 5.1) Numerical results of the absolute error when y = 0.99,N = 3,

s = 0.75.

t Method of [19] The presented method
0.1 1.13874e-3 2.15272¢ -3
0.2 1.41664e -3 2.32350e — 3
0.3 1.62234¢ -3 2.30934¢ - 3
0.4 1.76917e¢ -3 2.14768e — 3
0.5 1.87045¢ -3 1.87583e — 3
0.6 1.93953¢-3 1.53092¢ - 3
0.7 1.98971e -3 1.14997¢ - 3
0.8 2.03434¢ -3 7.69801e — 4
0.9 2.08671e -3 4.27112¢ — 4

Figure 4. (Example 5.2) The absolute error at some selected points when (a) y = 0.7, (b)
v = 0.8, (¢) Y= 0.9, (d) v = 1.
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6. Conclusions

Time fractional Kolmogorov equations and time fractional advection-diffusion equations have been
used to model many problems in mathematical physics and many scientific applications. Developing
efficient methods for solving such equations plays an important role. In this paper, a proposed tech-
nique is used to solve TF-ADEs and TF-KEs. This technique reduces the problems under study to
a set of algebraic equations. Then, solving the system of equations will give the numerical solution.
An error estimate is provided. This method was tested on a few examples of TF-ADEs and TF-KEs
to check the accuracy and applicability. This method might be applied for system of fractional order
integro-differential equations and partial differential equations as well.
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