This paper investigated the propagation and interaction behavior of the fractional-in-space multidimensional FitzHugh-Nagumo model using second-order time integrators in combination with the Fourier spectral method. The study focused on analyzing the accuracy, efficiency and stability of these time integrators by comparing numerical results. The experimental findings highlight the ease of implementation and suitability of the methods for long-time simulations. Furthermore, the method's capability to capture the influence of the fractional operator on the equation's dynamics was examined.
Citation: Harish Bhatt. Second-order time integrators with the Fourier spectral method in application to multidimensional space-fractional FitzHugh-Nagumo model[J]. Electronic Research Archive, 2023, 31(12): 7284-7306. doi: 10.3934/era.2023369
This paper investigated the propagation and interaction behavior of the fractional-in-space multidimensional FitzHugh-Nagumo model using second-order time integrators in combination with the Fourier spectral method. The study focused on analyzing the accuracy, efficiency and stability of these time integrators by comparing numerical results. The experimental findings highlight the ease of implementation and suitability of the methods for long-time simulations. Furthermore, the method's capability to capture the influence of the fractional operator on the equation's dynamics was examined.
[1] | R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. |
[2] | J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/jrproc.1962.288235 doi: 10.1109/jrproc.1962.288235 |
[3] | J. Keener, J. Sneyd, Mathematical Physiology I: Cellular Physiology, 2nd edition, Springer, 2009. |
[4] | F. Liu, I. Turner, V. Anh, Q. Yang, K. Burrage, A numerical method for the fractional Fitzhugh-Nagumo monodomain model, Anziam J., 54 (2013), C608–C629. https://doi.org/10.21914/anziamj.v54i0.6372 doi: 10.21914/anziamj.v54i0.6372 |
[5] | A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional in-space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937–954. https://doi.org/10.1007/s10543-014-0484-2 doi: 10.1007/s10543-014-0484-2 |
[6] | W. Bu, Y. Tang, Y. Wu, J. Yang, Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model, Appl. Math. Comput., 257 (2015), 355–364. https://doi.org/10.1016/j.amc.2014.09.034 doi: 10.1016/j.amc.2014.09.034 |
[7] | Q. Li, F. Song, Splitting spectral element method for fractional reaction-diffusion equations, J. Algorithms Comput. Technol., 14 (2020), 1–10. https://doi.org/10.1177/1748302620966705 doi: 10.1177/1748302620966705 |
[8] | F. W. Liu, P. H. Zhuang, I. Turner, V. Anh, K. Burrage, A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain, J. Comput. Phys., 293 (2015), 252–263. https://doi.org/10.1016/j.jcp.2014.06.001 doi: 10.1016/j.jcp.2014.06.001 |
[9] | X. Li, C. Han, Y. Wang, Novel patterns in fractional-in-space nonlinear coupled FitzHugh–Nagumo models with Riesz fractional derivative, Fractal Fract., 6 (2022), 1–13. https://doi.org/10.3390/fractalfract6030136 doi: 10.3390/fractalfract6030136 |
[10] | J. Zhang, S. Lin, Z. Liu, F. Lin, An efficient numerical approach to solve the space fractional FitzHugh–Nagumo model, Adv. Differ. Equ., 350 (2019). https://doi.org/10.1186/s13662-019-2270-6 doi: 10.1186/s13662-019-2270-6 |
[11] | H. G. Lee, A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations, J. Comput. Apppl. Math., 333 (2018), 395–403. https://doi.org/10.1016/j.cam.2017.09.007 doi: 10.1016/j.cam.2017.09.007 |
[12] | H. Zhang, X. Jiang, F. Zeng, G. E. Karniadakis, A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations, J. Comput. Phys., 405 (2020), 1–17. https://doi.org/10.1016/j.jcp.2019.109141 doi: 10.1016/j.jcp.2019.109141 |
[13] | Y. Wang, L. Cai, X. Feng, X. Luo, H. Gao, A ghost structure finite difference method for a fractional FitzHugh-Nagumo monodomain model on moving irregular domain, J. Comput. Phys., 428 (2021), 110081. https://doi.org/10.1016/j.jcp.2020.110081 doi: 10.1016/j.jcp.2020.110081 |
[14] | H. Che, W. Y. Lan, L. Z. Yuan, Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative, Math. Comput. Simul., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037 |
[15] | M. Almushaira, H. Bhatt, A. M. Al-rassas, Fast high-order method for multi-dimensional space-fractional reaction–diffusion equations with general boundary conditions, Math. Comput. Simul., 182 (2021), 235–258. https://doi.org/10.1016/j.matcom.2020.11.001 doi: 10.1016/j.matcom.2020.11.001 |
[16] | S. Duo, H. Wang, Y. Zhang, A comparative study on nonlocal diffusion operators related to the fractional Laplacian, Discrete Contin. Dyn. Syst.-Ser. B, 24 (2019), 231–256. https://doi.org/10.3934/dcdsb.2018110 doi: 10.3934/dcdsb.2018110 |
[17] | C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, 2016. |
[18] | C. V. Loan, Computational Frameworks for the Fast Fourier Transform, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1992. |
[19] | J. D. Lawson, J. L. Morris, The extrapolation of first order methods for parabolic partial differential equations, SIAM J. Numer. Anal., 15 (1978), 1212–1224. https://doi.org/10.1137/0715082 doi: 10.1137/0715082 |
[20] | H. P. Bhatt, A. Q. M. Khaliq, The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems, J. Comput. Appl. Math., 285 (2015), 256–278. https://doi.org/10.1016/j.cam.2015.02.017 doi: 10.1016/j.cam.2015.02.017 |
[21] | B. Kleefeld, A. Q. M. Khaliq, B. A. Wade, An ETD Crank-Nicolson method for reaction-diffusion systems, Numer. Methods Partial Differ. Equations, 28 (2012), 1309–1335. https://doi.org/10.1002/num.20682 doi: 10.1002/num.20682 |
[22] | Q. Nie, Y. T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, J. Comput. Phys., 214 (2006), 521–537. https://doi.org/10.1016/j.jcp.2005.09.030 doi: 10.1016/j.jcp.2005.09.030 |
[23] | S. M. Cox, P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys., 176 (2002), 430–455. https://doi.org/10.1006/jcph.2002.6995 doi: 10.1006/jcph.2002.6995 |
[24] | B. Fornberg, T. A. Driscoll, A fast spectral for nonlinear wave equations with linear dispresion, J. Comput. Phys., 155 (1999), 456–467. https://doi.org/10.1006/jcph.1999.6351 doi: 10.1006/jcph.1999.6351 |
[25] | G. Beylkin, J. M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147 (1998), 362–387. https://doi.org/10.1006/jcph.1998.6093 doi: 10.1006/jcph.1998.6093 |
[26] | A. Bueno-Orovio, D. Kay, K. Burrage, Complex-order fractional diffusion in reaction-diffusion systems, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107–120. https://doi.org/10.1016/j.cnsns.2023.107120 doi: 10.1016/j.cnsns.2023.107120 |