Research article Special Issues

New challenges in fleet deployment considering EU oil sanctions

  • Received: 29 April 2023 Revised: 28 May 2023 Accepted: 30 May 2023 Published: 16 June 2023
  • Due to European Union (EU) oil sanctions, tanker shipping companies need to redeploy their tankers by moving tankers between ship routes with the consideration of flag states of tankers, but the literature lacks quantitative methods for this problem. To fill this research gap, this paper studies an integrated problem of fleet deployment, fleet repositioning, round trip completion, and speed optimization with the consideration of flag states of tankers. The problem is formulated as a nonlinear integer programming model to minimize the total cost, including the fleet repositioning cost, the mismatch cost, and the fuel cost, during the planning period while satisfying the total crude oil transportation demand of each voyage and the minimum shipping frequency. Some linearization methods are used to transform the nonlinear model to a linear one which can be directly solved by Gurobi. The average solving time required for 17 computational instances is 4.5 minutes, which validates the effectiveness of the proposed model. Sensitivity analyses, including the influences of the unit fuel price, the total crude oil transportation demand, the mismatch cost of completing a round trip by a deployed tanker, and the repositioning cost for each deployed tanker, on operations decisions, are conducted to obtain managerial insights.

    Citation: Yiwei Wu, Yao Lu, Shuaian Wang, Lu Zhen. New challenges in fleet deployment considering EU oil sanctions[J]. Electronic Research Archive, 2023, 31(8): 4507-4529. doi: 10.3934/era.2023230

    Related Papers:

  • Due to European Union (EU) oil sanctions, tanker shipping companies need to redeploy their tankers by moving tankers between ship routes with the consideration of flag states of tankers, but the literature lacks quantitative methods for this problem. To fill this research gap, this paper studies an integrated problem of fleet deployment, fleet repositioning, round trip completion, and speed optimization with the consideration of flag states of tankers. The problem is formulated as a nonlinear integer programming model to minimize the total cost, including the fleet repositioning cost, the mismatch cost, and the fuel cost, during the planning period while satisfying the total crude oil transportation demand of each voyage and the minimum shipping frequency. Some linearization methods are used to transform the nonlinear model to a linear one which can be directly solved by Gurobi. The average solving time required for 17 computational instances is 4.5 minutes, which validates the effectiveness of the proposed model. Sensitivity analyses, including the influences of the unit fuel price, the total crude oil transportation demand, the mismatch cost of completing a round trip by a deployed tanker, and the repositioning cost for each deployed tanker, on operations decisions, are conducted to obtain managerial insights.



    加载中


    [1] Statista, Transport volume of crude oil in seaborne trade worldwide from 2010 to 2021, 2023. Available from: https://www.statista.com/statistics/264013/transport-volume-of-crude-oil-in-seaborne-trade/.
    [2] Statista, Oil production worldwide from 1998 to 2021, 2023. Available from: https://www.statista.com/statistics/265229/global-oil-production-in-million-metric-tons/.
    [3] J. Qi, S. Wang, H. Psaraftis, Bi-level optimization model applications in managing air emissions from ships: a review, Commun. Transp. Res., 1 (2021), 100020. https://doi.org/10.1016/j.commtr.2021.100020 doi: 10.1016/j.commtr.2021.100020
    [4] R. Yan, S. Wang, L. Zhen, G. Laporte, Emerging approaches applied to maritime transport research: Past and future, Commun. Transp. Res., 1 (2021), 100011. https://doi.org/10.1016/j.commtr.2021.100011 doi: 10.1016/j.commtr.2021.100011
    [5] U.S. Energy Information Administration (USEIA), Oil and petroleum products explained, 2022. Available from: https://www.eia.gov/energyexplained/oil-and-petroleum-products/where-our-oil-comes-from.php.
    [6] Statista, Largest importers of Russian crude oil and petroleum motor fuels in the European Union and the United Kingdom in 2021, by country, 2023. Available from: https://www.statista.com/statistics/1295165/oil-import-value-from-russia-to-eu-countries/.
    [7] European Council (EC), EU sanctions against Russia explained, 2023. Available from: https://www.consilium.europa.eu/en/policies/sanctions/restrictive-measures-against-russia-over-ukraine/sanctions-against-russia-explained.
    [8] A. Almendral, Russia is amassing a shadow fleet of tankers to avoid EU oil sanctions, 2022. Available from: https://qz.com/russia-is-amassing-a-shadow-fleet-of-tankers-to-avoid-e-1849853809.
    [9] X. Bai, X. Zhang, K. X. Li, Y. Zhou, K. F. Yuen, Research topics and trends in the maritime transport: A structural topic model, Transp. Policy, 102 (2021), 11–24. https://doi.org/10.1016/j.tranpol.2020.12.013 doi: 10.1016/j.tranpol.2020.12.013
    [10] H. Zhao, Q. Meng, Y. Wang, Robust container slot allocation with uncertain demand for liner shipping services, Flexible Serv. Manuf. J., 34 (2022), 551–579. https://doi.org/10.1007/s10696-021-09420-z doi: 10.1007/s10696-021-09420-z
    [11] Q. Meng, S. Wang, H. Andersson, K. Thun, Containership routing and scheduling in liner shipping: overview and future research directions, Transp. Sci., 48 (2014), 265–280. https://doi.org/10.1287/trsc.2013.0461 doi: 10.1287/trsc.2013.0461
    [12] S. Wang, Q. Meng, Container liner fleet deployment: a systematic overview, Transp. Res. Part C Emerg. Technol., 77 (2017), 389–404. https://doi.org/10.1016/j.trc.2017.02.010 doi: 10.1016/j.trc.2017.02.010
    [13] A. Baykasoğlu, K. Subulan, A. S. Taşan, N. Dudaklı, A review of fleet planning problems in single and multimodal transportation systems, Transportmetrica A : Transport Sci., 15 (2019), 631–697. https://doi.org/10.1080/23249935.2018.1523249 doi: 10.1080/23249935.2018.1523249
    [14] M. Christiansen, E. Hellsten, D. Pisinger, D. Sacramento, C. Vilhelmsen, Liner shipping network design, Eur. J. Oper. Res., 286 (2020), 1–20. https://doi.org/10.1016/j.ejor.2019.09.057 doi: 10.1016/j.ejor.2019.09.057
    [15] M. A. Dulebenets, J. Pasha, O. F. Abioye, M. Kavoosi, Vessel scheduling in liner shipping: a critical literature review and future research needs, Flexible Serv. Manuf. J., 33 (2021), 43–106. https://doi.org/10.1007/s10696-019-09367-2 doi: 10.1007/s10696-019-09367-2
    [16] D. Kizilay, D. T. Eliiyi, A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals, Flexible Serv. Manuf. J., 33 (2021), 1–42. https://doi.org/10.1007/s10696-020-09385-5 doi: 10.1007/s10696-020-09385-5
    [17] Q. Meng, T. Wang, A chance constrained programming model for short-term liner ship fleet planning problems, Marit. Policy Manage., 37 (2010), 329–346. https://doi.org/10.1080/03088839.2010.486635 doi: 10.1080/03088839.2010.486635
    [18] M. Ng, D. Y. Lin, Fleet deployment in liner shipping with incomplete demand information, Transp. Res. Part E Logist. Transp. Rev., 116 (2018) 184–189. https://doi.org/10.1016/j.tre.2018.06.004 doi: 10.1016/j.tre.2018.06.004
    [19] S. Wang, Q. Meng, Liner ship fleet deployment with container transshipment operations, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), 470–484. https://doi.org/10.1016/j.tre.2011.10.011 doi: 10.1016/j.tre.2011.10.011
    [20] Q. Meng, T. Wang, S. Wang, Short-term liner ship fleet planning with container transshipment and uncertain container shipment demand, Eur. J. Oper. Res., 223 (2012), 96–105. https://doi.org/10.1016/j.ejor.2012.06.025 doi: 10.1016/j.ejor.2012.06.025
    [21] T. Wang, Q. Meng, S. Wang, Z. Tan, Risk management in liner ship fleet deployment: a joint chance constrained programming model, Transp. Res. Part E Logist. Transp. Rev., 60 (2013), 1–12. https://doi.org/10.1016/j.tre.2013.09.001 doi: 10.1016/j.tre.2013.09.001
    [22] M. Ng, Distribution-free vessel deployment for liner shipping, Eur. J. Oper. Res., 238 (2014), 858–862. https://doi.org/10.1016/j.ejor.2014.04.019 doi: 10.1016/j.ejor.2014.04.019
    [23] M. Ng, Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand, Transp. Res. Part B Methodol., 74 (2015), 79–87. https://doi.org/10.1016/j.trb.2015.01.004 doi: 10.1016/j.trb.2015.01.004
    [24] S. Wang, Z. Liu, X. Qu, Minimax regret model for liner shipping fleet deployment with uncertain demand, Transp. Res. Rec., 2549 (2016), 45–53. https://doi.org/10.3141/2549-06 doi: 10.3141/2549-06
    [25] Q. Meng, S. Wang, Optimal operating strategy for a long-haul liner service route, Eur. J. Oper. Res., 215 (2011), 105–114. https://doi.org/10.1016/j.ejor.2011.05.057 doi: 10.1016/j.ejor.2011.05.057
    [26] L. Zhen, Y. Hu, S. Wang, G. Laporte, Y. Wu, Fleet deployment and demand fulfillment for container shipping liners, Transp. Res. Part B Methodol., 120 (2019), 15–32. https://doi.org/10.1016/j.trb.2018.11.011 doi: 10.1016/j.trb.2018.11.011
    [27] L. Zhen, Y. Wu, S. Wang, G. Laporte, Green technology adoption for fleet deployment in a shipping network, Transp. Res. Part B Methodol., 139 (2020), 388–410. https://doi.org/10.1016/j.trb.2020.06.004 doi: 10.1016/j.trb.2020.06.004
    [28] C. F. Gao, Z. H. Hu, Speed optimization for container ship fleet deployment considering fuel consumption, Sustainability, 13 (2021), 5242. https://doi.org/10.3390/su13095242 doi: 10.3390/su13095242
    [29] J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard, G. Tian, Y. Y. Lau, P. Singh, et al., An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations, Adv. Eng. Inf., 48 (2021), 101299. https://doi.org/10.1016/j.aei.2021.101299 doi: 10.1016/j.aei.2021.101299
    [30] X. Lai, L. Wu, K. Wang, F. Wang, Robust ship fleet deployment with shipping revenue management, Transp. Res. Part B Methodol., 161 (2022), 169–196. https://doi.org/10.1016/j.trb.2022.05.005 doi: 10.1016/j.trb.2022.05.005
    [31] K. Tierney, B. Áskelsdóttir, R. M. Jensen, D. Pisinger, Solving the liner shipping fleet repositioning problem with cargo flows, Transp. Sci., 49 (2015), 652–674. https://doi.org/10.1287/trsc.2013.0515 doi: 10.1287/trsc.2013.0515
    [32] K. Tierney, A. Coles, A. Coles, C. Kroer, A. Britt, R. Jensen, Automated planning for liner shipping fleet repositioning, in Proceedings of the International Conference on Automated Planning and Scheduling, 22 (2012), 279–287. https://doi.org/10.1609/icaps.v22i1.13500 doi: 10.1609/icaps.v22i1.13500
    [33] Y. F. Huang, J. K. Hu, B. Yang, Liner services network design and fleet deployment with empty container repositioning, Comput. Ind. Eng., 89 (2015), 116–124. https://doi.org/10.1016/j.cie.2015.01.021 doi: 10.1016/j.cie.2015.01.021
    [34] D. Müller, K. Tierney, Decision support and data visualization for liner shipping fleet repositioning, Inf. Technol. Manage., 18 (2017), 203–221. https://doi.org/10.1007/s10799-016-0259-3 doi: 10.1007/s10799-016-0259-3
    [35] D. Wetzel, K. Tierney, Integrating fleet deployment into liner shipping vessel repositioning, Transp. Res. Part E Logist. Transp. Rev., 143 (2020), 102101. https://doi.org/10.1016/j.tre.2020.102101 doi: 10.1016/j.tre.2020.102101
    [36] S. Kuhlemann, J. Ksciuk, K. Tierney, A. Koberstein, The stochastic liner shipping fleet repositioning problem with uncertain container demands and travel times, EURO J. Transp. Logist., 10 (2021), 100052. https://doi.org/10.1016/j.ejtl.2021.100052 doi: 10.1016/j.ejtl.2021.100052
    [37] X. Bai, L. Cheng, Ç. Iris, Data-driven financial and operational risk management: empirical evidence from the global tramp shipping industry, Transp. Res. Part E Logist. Transp. Rev., 158 (2022), 102617. https://doi.org/10.1016/j.tre.2022.102617 doi: 10.1016/j.tre.2022.102617
    [38] P. Balcombe, J. Brierley, C. Lewis, L. Skatvedt, J. Speirs, A. Hawkes, et al., How to decarbonise international shipping: options for fuels, technologies and policies, Energy Convers. Manag., 182 (2019), 72–88. https://doi.org/10.1016/j.enconman.2018.12.080 doi: 10.1016/j.enconman.2018.12.080
    [39] L. Zhang, L. Guan, D. Z. Long, H. Shen, H. Tang, Who is better off by selling extended warranties in the supply chain: the manufacturer, the retailer, or both?, Ann. Oper. Res., (2020), 1–27. https://doi.org/10.1007/s10479-020-03728-z doi: 10.1007/s10479-020-03728-z
    [40] L. Zhen, S. Wang, G. Laporte, Y. Hu, Integrated planning of ship deployment, service schedule and container routing, Comput. Oper. Res., 104 (2019), 304–318. https://doi.org/10.1016/j.cor.2018.12.022 doi: 10.1016/j.cor.2018.12.022
    [41] X. Xin, X. Wang, X. Tian, Z. Chen, K. Chen, Green scheduling model of shuttle tanker fleet considering carbon tax and variable speed factor, J. Clean. Prod., 234 (2019), 1134–1143. https://doi.org/10.1016/j.jclepro.2019.06.275 doi: 10.1016/j.jclepro.2019.06.275
    [42] B. D. Brouer, J. F. Alvarez, C. E. M. Plum, D. Pisinger, M. M. Sigurd, A base integer programming model and benchmark suite for liner-shipping network design, Transp. Sci., 48 (2013), 281–312. https://doi.org/10.1287/trsc.2013.0471 doi: 10.1287/trsc.2013.0471
    [43] Ship & Bunker (S & B), World bunker prices, 2022. Available from: https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average.
    [44] Y. Wu, Y. Huang, H. Wang, L. Zhen, Joint planning of fleet deployment, ship refueling, and speed optimization for dual-fuel ships considering methane slip, J. Mar. Sci. Eng., 10 (2022), 1690. https://doi.org/10.3390/jmse10111690 doi: 10.3390/jmse10111690
    [45] R. Greiner, Ship operating costs: current and future trends, 2017. Available from: http://greece.moorestephens.com/MediaLibsAndFiles/media/greeceweb.moorestephens.com/Documents/1-Richard-Greiner.pdf.
    [46] Y. Wu, Y. Huang, H. Wang, L. Zhen, Nonlinear programming for fleet deployment, voyage planning and speed optimization in sustainable liner shipping, Electron. Res. Arch., 31 (2023), 147–168. https://doi.org/10.3934/era.2023008 doi: 10.3934/era.2023008
    [47] S. Wang, Q. Meng, Robust schedule design for liner shipping services, Transp. Res. Part E Logist. Transp. Rev., 48 (2012), 1093–1106. https://doi.org/10.1016/j.tre.2012.04.007 doi: 10.1016/j.tre.2012.04.007
    [48] N. Rasmussen, Recorded webinar: tanker shipping market overview & outlook Q1 2023: the stars align to create the strongest market in 15 years, 2023. Available from: https://www.bimco.org/news/market_analysis/2023/20230228-smoo-tanker.
    [49] Moore Greece, Moore maritime index 2022, 2022. Available from: https://www.moore-greece.gr/el-gr/insights.
    [50] D. Sheppard, C. Cook, Russia assembles 'shadow fleet' of tankers to help blunt oil sanctions, 2022. Available from: https://www.ft.com/content/cdef936b-852e-43d8-ae55-33bcbbb82eb6.
    [51] Ç. Iris, J. S. L. Lam, Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty, Omega, 103 (2021), 102445. https://doi.org/10.1016/j.omega.2021.102445 doi: 10.1016/j.omega.2021.102445
    [52] W. Wang, Y. Wu, Is uncertainty always bad for the performance of transportation systems?, Commun. Transp. Res, 1 (2021), 100021. https://doi.org/10.1016/j.commtr.2021.100021 doi: 10.1016/j.commtr.2021.100021
    [53] B. Liu, Z. C. Li, Y. Wang, A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times, Transp. Res. Part E Logist. Transp. Rev., 167 (2022), 102919. https://doi.org/10.1016/j.tre.2022.102919 doi: 10.1016/j.tre.2022.102919
    [54] M. Lashgari, A. A. Akbari, S. Nasersarraf, A new model for simultaneously optimizing ship route, sailing speed, and fuel consumption in a shipping problem under different price scenarios, Appl. Ocean Res., 113 (2021), 102725. https://doi.org/10.1016/j.apor.2021.102725 doi: 10.1016/j.apor.2021.102725
    [55] J. Zhang, D. Z. Long, R. Wang, C. Xie, Impact of penalty cost on customers' booking decisions, Prod. Oper. Manage., 30 (2021), 1603–1614. https://doi.org/10.1111/poms.13297 doi: 10.1111/poms.13297
    [56] Y. Wang, J. Sarkis, Emerging digitalisation technologies in freight transport and logistics: current trends and future directions, Transp. Res. Part E Logist. Transp. Rev., 148 (2021), 102291. https://doi.org/10.1016/j.tre.2021.102291 doi: 10.1016/j.tre.2021.102291
    [57] H. Yalcin, T. U. Daim, Logistics, supply chain management and technology research: an analysis on the axis of technology mining, Transp. Res. Part E Logist. Transp. Rev., 168 (2022), 102943. https://doi.org/10.1016/j.tre.2022.102943 doi: 10.1016/j.tre.2022.102943
    [58] Y. Li, S. E. Li, X. Jia, S. Zeng, Y. Wang, FPGA accelerated model predictive control for autonomous driving, J. Intell. Connected Veh., 5 (2022), 63–71. https://doi.org/10.1108/JICV-03-2021-0002 doi: 10.1108/JICV-03-2021-0002
    [59] N. Lyu, Y. Wang, C. Wu, L. Peng, A. F. Thomas, Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions, J. Intell. Connected Veh., 5 (2022), 17–35. https://doi.org/10.1108/JICV-07-2021-0008 doi: 10.1108/JICV-07-2021-0008
    [60] L. A. H. Hassan, M. Hewitt, H. S. Mahmassani, Daily load planning under different autonomous truck deployment scenarios, Transp. Res. Part E Logist. Transp. Rev., 166 (2022), 102885. https://doi.org/10.1016/j.tre.2022.102885 doi: 10.1016/j.tre.2022.102885
    [61] Y. Yang, B. Jia, X. Y. Yan, J. Li, Z. Yang, Z. Gao, Identifying intercity freight trip ends of heavy trucks from GPS data, Transp. Res. Part E Logist. Transp. Rev., 157 (2022), 102590. https://doi.org/10.1016/j.tre.2021.102590 doi: 10.1016/j.tre.2021.102590
    [62] M. G. Demissie, L. Kattan, Estimation of truck origin-destination flows using GPS data, Transp. Res. Part E Logist. Transp. Rev., 159 (2022), 102621. https://doi.org/10.1016/j.tre.2022.102621 doi: 10.1016/j.tre.2022.102621
    [63] R. Yan, S. Wang, Integrating prediction with optimization: models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [64] S. Wang, X. Tian, R. Yan, Y. Liu, A deficiency of prescriptive analytics—no perfect predicted value or predicted distribution exists, Electron. Res. Arch., 30 (2022), 3586–3594. https://doi.org/10.3934/era.2022183 doi: 10.3934/era.2022183
    [65] B. Niu, Z. Mu, B. Cao, J. Gao, Should multinational firms implement blockchain to provide quality verification?, Transp. Res. Part E Logist. Transp. Rev., 145 (2021), 102121. https://doi.org/10.1016/j.tre.2020.102121 doi: 10.1016/j.tre.2020.102121
    [66] S. Liu, G. Hua, Y. Kang, T. E. Cheng, Y. Xu, What value does blockchain bring to the imported fresh food supply chain?, Transp. Res. Part E Logist. Transp. Rev., 165 (2022), 102859. https://doi.org/10.1016/j.tre.2022.102859 doi: 10.1016/j.tre.2022.102859
    [67] T. M. Choi, T. Siqin, Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: an intra-inter-organizational framework, Transp. Res. Part E Logist. Transp. Rev., 160 (2022), 102653. https://doi.org/10.1016/j.tre.2022.102653 doi: 10.1016/j.tre.2022.102653
    [68] W. Yi, S. Wu, L. Zhen, G. Chawynski, Bi-level programming subsidy design for promoting sustainable prefabricated product logistics, Cleaner Logist. Supply Chain, 2021 (2021), 100005. https://doi.org/10.1016/j.clscn.2021.100005 doi: 10.1016/j.clscn.2021.100005
    [69] W. Yi, L. Zhen, Y. Jin, Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics, Cleaner Logist. Supply Chain, 2021 (2021), 100013. https://doi.org/10.1016/j.clscn.2021.100013 doi: 10.1016/j.clscn.2021.100013
    [70] S. Wang, R. Yan, A global method from predictive to prescriptive analytics considering prediction error for "predict, then optimize" with an example of low-carbon logistics, Cleaner Logist. Supply Chain, 4 (2022), 100062. https://doi.org/10.1016/j.clscn.2022.100062 doi: 10.1016/j.clscn.2022.100062
    [71] S. Wang, R. Yan, "Predict, then optimize" with quantile regression: a global method from predictive to prescriptive analytics and applications to multimodal transportation, Multimodal Transp., 1 (2022), 100035. https://doi.org/10.1016/j.multra.2022.100035 doi: 10.1016/j.multra.2022.100035
    [72] D. Huang, S. Wang, A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme, Multimodal Transp., 1 (2022), 100006. https://doi.org/10.1016/j.multra.2022.100006 doi: 10.1016/j.multra.2022.100006
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1745) PDF downloads(148) Cited by(1)

Article outline

Figures and Tables

Figures(9)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog