ERA, 31(7): 4248-4265.

E% Electronic DOI: 10.3934/era.2023216
AIMS . Received: 23 March 2023
==l Research Archive Revised: 02 May 2023

Accepted: 06 May 2023
Published: 01 June 2023
http://www.aimspress.com/journal/era

Research article

Application of the B-spline Galerkin approach for approximating the

time-fractional Burger’s equation

Akeel A. AL-saedi and Jalil Rashidinia*

School of Mathematics and Computer Science, Iran University of Science & Technology, Tehran
16846-13114, Iran

* Correspondence: Email: rashidinia@iust.ac.ir.

Abstract: This paper presents a numerical scheme based on the Galerkin finite element method and
cubic B-spline base function with quadratic weight function to approximate the numerical solution of
the time-fractional Burger’s equation, where the fractional derivative is considered in the Caputo sense.
The proposed method is applied to two examples by using the L, and L, error norms. The obtained
results are compared with a previous existing method to test the accuracy of the proposed method.
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1. Introduction

Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of
their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real
or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are
better suited to modeling natural physics processes and dynamic systems than integer differential
equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural
processes that have memory and hereditary properties. In other words, because fractional derivatives
have memory effects, FDEs are more accurate in describing physical phenomena with memory or
hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application
until the last few years. Now, more and more researchers are investigating how it can be applied to
economics, control system and finance. As a result, many fractional order differential operators were
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developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Griinwald-Letnikov, and variable
order differential operators. The researchers have devoted considerable effort to solving FDEs
numerically so that they can be applied to a variety of problems [2—20]. Several numerical approaches
have been proposed in the literature, including eigenvector expansion, the fractional differential
transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform
technique [23], the generalized block pulse operational matrix technique [24] and the predictor-
corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate
fractional order matrices has been suggested as a numerical method [26,27].

In this paper, we study the numerical solution of the time-fractional Burger’s equation (TFBE) [28]
as follows:

an;g, t) L UGD OU;J;, t) Ozgix ,t) P )
which is subject to the following boundary conditions (BCs):
U(a,t) = L,(t),U(b,t) = 1,(t), a<x<b, te€E[0tf], (2)
and the following initial condition (IC):
U, 0)=g(x)anda < x <b, 3)

in which 0 < y < 1 is a parameter representing the order of the fractional time, v denotes a viscosity
parameter and g(x), [;(t) and [, (t) are given functions of their argument. The TFBE is a kind of sub-
diffusion convection, which is widely adopted to describe many physical problems such as
unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous
media, compressible turbulence, electromagnetic waves and weak shock propagation [29-31]. In
recent years, there has been some technique development in the study of Burger’s equation: an implicit
difference scheme and algorithm implementation [32], pointwise error analysis of the third-order
backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference
scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite
spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability
estimate techniques [40].

Definition 1. Suppose that m is the smallest integer exceeding y; the Caputo time fractional derivative
operator of order y > 0 can be defined as follows [41]:

0™u(x,t)
oo y=men
CD(})',tu(x, t) = o™ u(x, w) (4)
—@)mrt —1 EN
Fm = y)f (t—w) ™ dw, m <y<mm ,

where u(x,t) is the unknown function that is (m — 1) times continuously differentiable and I'(.)
denotes the usual gamma function. The finite-element method has been an important method for
solving both ordinary and partial differential equation, therefore, in recent research, it has been applied
to solve the TFBE. In what follows, we describe the solution process by using the finite-element
scheme for solving the TFBE.
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2. Cubic B-Spline Galerkin method (CBSGM) with a quadratic weight function:

To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the
interval [a, b], which represents the solution domain of (1) into M uniformly spaced points x,,, such
that a =xy) <x; < <xy_1 <xy=>b and h = (X471 —Xm) - Then, the cubic B-spline
Crn(x),(m=—-1(1)(M + 1), at the knots x,,, which form basis on the solution interval [a, b], is
defined as follows [42]:

( (X - xm—2)3l ifx € [xm—lem—l]'
. h3 + 3h2(x — X;p—1) + 3h(x — Xp_1)? — 31 — X)3, if x € [Xp_1, X,
Cm (x) = n3 R + 3h% (Xmeq — %) + 3h(ne1 — %)% = 3(per — %)3, if X € [Xpm, Xmaa], ©)

L (xm+2 - x)3: ifx € [xm+11xm+2]'
o, otherwise.

where the set of cubic B-splines (C_;(x), Co(x), ..., Cpr(x), Cpr41(x)) is a basis for the functions
defined over interval [a,b]. Thus, the numerical solution Uy (x,t) to the analytic solution

U(x, t) can be illustrated as

M+1

Ut = ) on(®Cn(), (6)

m=-1

where g, (t) are unknown time-dependent parameters to be determined from the initial, boundary and
weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each
element [x,,, X,,+1] is also covered by four cubic B-splines. So, the nodal values U,,, and its first and
second derivatives U',,,, U",, can be respectively computed in terms of the element parameter
o (t) ,at the knot x,,, as follows:

Un = Om-1+40m + 041,
r _ 3
Um= E(Um—l - 0m+1)r

n 6
Uy = p(o-m—l —20m + O-m+1); ()

and by means of the local coordinate transformation [43] as follows:
hp=x—-—x, 0<np<1. (8)

A cubic B-spline shape function in terms of 1 over the element [X,,, X;,,+1] is formulated as:
Cm—l = (1 - 77)3,
Cm1=1+30-m)+301—-nm?-3010-n)°
Cm+1 =1+ 30+ 3n% —3n3,

Cntz = 773 )

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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and the variation of Uy (7, t) over the typical element [x,,,, X,,+1] 1s represented as

m+2

U@ ) = > ()6, (10)

j=m-1

in which B-splines Cp—1 (1), G (1), Cn41(1), G2 () and 031 (), 01 (£), 041 and 0y 42 (t) are
element shape functions and element parameters, respectively.

Based on the Galerkin’s method with weight function W(x) > 0, we get the following weak
formula of (1):

b
oru ou 02U
W(W+Ua—vﬁ)dx— fo(x,t), (11)
a

a

using transformation (8) and by apply partial integration we obtain:

1

b

fwayU+AWaU+<paW6Ud —¢W6U|1+jw (n,t)d 12

W= an an 677) n=ewg -l F(n, t)dn, (12)
a

0

where A = %U, @ = % and U = U(n, t) which is considered to be a constant on an element to simplify

the integral [43]; replace the weight function W by quadratic B-spline B,,,(x), m = —1(1)M, at the
knots x,,,, which forms a basis on the solution interval [a, b], introduced as follows [44]:

((xm+2 —x)? = 3(Xppe1 — 0)% + 3(xp — %)%, ifx € [Xm_1,xm],
)2 22 .
Bm(X) — iz (xm+2 x)z 3(xm+1 x) ) lfx € [xm' xm+1]' (13)
Rl (o — %)%, if x € [Xm41, Xma2l,
0, otherwise.

where (B_;(x), By(x), ..., By (x)) is the set of splines for the basis of functions introduced on [a, b].
The numerical solution Uy, (x, t) to the analytic solution U(x, t) is expanded by

Un@) = ) On(OBn () (14)

m=-1

where 19,,, are unknown time-dependent parameters, and by using local coordinate transformation (8),
the quadratic B-spline shape functions for the typical element [x,,, X,,+1] are given as

By =(1- 77)2
B, =1+2n—2n?
Bpi1 = 772 (15)
The variation of the function U(7, t) is approximated by

m+1

U@ )= > OB, (16)

i=m-1
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where 9,,_1(t), 9 (t) and 9,1 (t) act as element parameters and B-splines B,,_; (1), B, (1) and
B.+1(m) as element shape functions based on the above; (12) will be in the following form:

m+2 m+2

1 1
Z [f B,C;dnlo + Z [f (AB,C] + ®B[C))dn — ®B,C} |3l
j=m-1 0 j=m-1 0
1
= f B; F(n,t)dn, i=m—-1mm+1, 17)
0

in which “Dot” represents the oth fractional derivative with respect to time. We can write (17) in
matrix notation as follows:

X56¢ + (WY + @(Zf; = Qfj)o® = Ef, (18)

in which 6€ = (0p—1, O, Oms1, Omsz2)! are the element parameters. The element matrices

X{ Y5, Zi, Qf; and Ef are rectangular 3 X 4 matrices introduced through the following integrals:

: 110 71 38 1
X{fj:fBicjdn=5 19 221 221 19|
o 1 38 71 10

: 1[-6 -7 12 1
Ylg:fBicj'dn:— —-13 —41 41 13|,
5 -1 -12 7 6

' 113 5 -7 -1
ij=fBi'Cj'd77=§ -2 2 2 =2
0 -1 =7 5 3

1 0 -1 0
Qi =B/ 1; =31 -1 -1 1|and
0 -1 0 1

1
Ef =f B; F(n, t)dn,
0

where i and j take only the values (m —1,m,m+ 1) and (m — 1,m,m + 1, m + 2) respectively,
and a lumped value for A is defined by A = i (Om—1 + 50, + 5041 + Omyz).
By assembling all contributions from all elements, we get the following matrix equation:
X6 +(AY +&(Z - Q))o =E, (19)

where 0 = (0_1, 09,04, ..., Oy, 0m+1) " denotes a global element parameter. The matrices X, Z and Y
represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the
following forms:

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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X =—(1,57,302,302,57,1,0),
Z =-(-1,-9,10,10,-9, —1,0),

/1Y = %(_Al' _1211 - 1312, 7&1 - 4’112 - 6/13, 6/11 + 4’1&2 - 7/13, 132.2 +

1225, 15,0),
in which,

1

M= E(Um—z + 50,4-1 + 50, + Opmy1)s
1

Ay = E(O-m—l + 50, + 50,41 + O-m+2),

1
A3 = Z(O-m + 50m+1 + 5042 + Omia).

Following [45], we can approximate the temporal Caputo derivative with the help of the L1 formula:

dY At)Y
d];(’t) Itf ['((Zt) ) Z by [f (tm—k = f (tm—11)] + O(AL)*7Y,

where b} = (k + 1)1™7 — k177 and At = Y20 and tr = n(At),n = 0,1,...N, where N represents a
positive integer. Now, we recall the followmg lemma.

Lemma 1: Suppose that 0 <y < 1and b) = (k+ 1)*Y — k¥, k =0,1,...;then,1 = b/ > b} >
k 0 = by

> bl > 0,as k - o [46].

Then, we can we write the parameter g,,, as follows:

m—1
o _ 007 N
— — - 4(o n k+1 _ ~n-k

+ (oRii™ = opiD] + 0(At)* 7, by,
= (k + D) — k177,

while the parameter o by the Crank-Nicolson scheme, is as follows:

1
— n n+1
Om = E(O'm +oar").

Substitution both parameters above into (18), we obtain the (M + 2) X (M + 3) matrix system:

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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[X N [(A)™YT (2 — y)z(lY +P(Z-0Q)]

l O.n+1

_ [X [(AD)7T (2 —y)(AY + (Z — Q)]l .
= — 5 o

n
-X Z bel(om=i* = onh) + 4o — oi ™) + (o735 — o]

k=1
+ (A)'T (2 —y)E, (20)

where 0 = (0y—3 + Ot + O + Oma1 + Oms1 + Omaz + Oms3)T; to make the matrix equation be
square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain
discard o_; from system (20) as follows:

0_1(t) = —40o(t) — 01 () +U (xo, 1);

the variables ¢, and oy, can be ignored from system (20) and then the system can be converted to
an (M + 1) x (M + 1) matrix system. The initial vector of parameter a® = (62, 67, ..., o5}) should be
obtained to iterate system (20); the approximation of (6) has been reformulated on the interval [a, b]
when time t = 0 as follows:

M
Uy(x,0) = Z Cmo_r?v
m=0

where U(x, 0) fulfills the following equation at node x,,:
Uy (X, 0) = U(xyy, 0), m=01,... M+1
Up(x0,0) = U'(xy,0) =0,
Up(x0,0) = U"(xy,0) = 0.

Therefore, we can obtain the following system:
2 -

g0 6 0 0 07r 69 U(x0,0) =9 (a)
1 4 1 0

0-1810—1 ’ 1 4 1 01810—1 U(XM_l};ZO)

| O M 0 0 6 Om U(xM, 0) _ Eg"(b)

and we solve this identity matrix by applying the Jain algorithm [47].

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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3. Stability analysis

This section adopts the von Neumann stability analysis to investigate the stability of
approximation obtained by scheme (20). First, we introduce the recurrence relationship between
successive time levels relating unknown element parameters a;1+1(t), as follows:

n+1 n+1 n+1 n+1 n+1 n+1
q10m—3 + Q20m°1 + q30," " + Q40551 + 4sOmiz + Q6Omys

= qeOm—-2 T qs0pm—1 + qu0m + 43041 + Q20012 + Q1043

— 20 z b! [((0,%:’5“ — oK)+ 4(oh — oK) + (oKt — o2 TK)
=1

+57((a %t — o 7K) + 4(ofKH — oK) + + (oK — o TK))

+302((oh™ = o) + 4o — o) + (o — o)

+ 302 ((a,?,;+’§+1 k) + A(on Tkt — oK) + (opktt — ok )

+57 ((on3s™t — onik) + 4(onaktt — op3k) + (opys™ — opak))

+ ((om35" — om3’) + 4(on35™ — on3h

+ (o3t — onk))| (21)
where

g, = 20 — 300®a — 60Aa, q, = 1140 — 2700da — 15001a, gq; = 6040 + 3000Pa — 24007a
s = 6040 + 3000®a + 24001a, gs = 1140 — 2700da + 15001a, q, = 20 — 300Pa + 60

and a = (At)7YT'(2 —y).
The growth factor of the typical Fourier mode is defined as

opy = Enethmh (22)
where, i =+/—1, [ is a mode number and h is the element size. Substitution of (22) into (21) yields

€n+1(qle—2iﬁh + qze—lﬁh + q3 + q4elﬁh + qSeZLBh + q6e3lﬁh) —

fn(q6e_2iﬁh + QSe_iﬁh +qq4 + Q3eiﬁh + quZiBh + CI193iﬁh)

n
—20 Z b) [((a,’,‘l:’ﬁﬂ — oK)+ 4(on Tkt — on k) + (oKt — ok ) (e~2iP302

+ 302eBM 4 57¢2iBh 4 o2iBh )] ; (23)
let EM*1 = YE&™ and assume that Y = Y(8) is independent of time, therefore, we can write Y as follows:

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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A—iB
A+iB’

where

6 36
A = (6040 + 30009a) cos (5) h+ (1140 — 27009®a) cos (7> h

50
+ (20 — 3009a) cos (7) h,

0 30 0
B = (2400Aa) sin (E) h + +(1500Aa) sin (7> h + (60Aa) sin (E) h,

Obviously note that |[Y| < 1. Therefore, according to the Fourier condition, the scheme (20) is
unconditionally stable.

4. Numerical results

This section introduces two numerical examples, which highlight numerical results for the TFBE
with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we
use the L, and L, to calculate the accuracy of the CBSGM with a quadratic weight function, which
has been employed in this study; we will also show how the analytical results and the numerical results
are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying
the following problems; then, we compare the results with the numerical solution obtained from the
given method. To this aim, the L., and L, error norms are respectively defined as [48]

Lm="U—mmmzn?ﬂ%—amhL

M
L=lu-uul,= [n) |- @,
j=0

where U and U, represent the exact solution and numerical solution, respectively.
Example 1: Let us consider the TFBE (1) with the BCs

U(O, t) = ll(t) = t25 U(l, t) = ZZ(t) = _tzl t= O’
and IC
U(x,0) =g(x) =0, 0<x<1,

such that the forcing term f(x, t) is achieved as [45]
2=y X

ra-y)

+ t*e?X — pt2e”,

flx,t) =

where the analytic solution is obtained as

U(x,t) = t?e*.

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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Numerical results are reported in Tables 1-3 and Figure 1. Table 1 lists the numerical solutions
and the L, and L., error norms with y = 0.5, At = 0.0025, tr = 0.05andv =1 for various
numbers of partitions M. As seen in Table 1, we notice that when the number of partitions M are
increased, the L, and L, error norms will decrease considerably. Table 2 displays the numerical
solutions withy = 0.5, M =40, t =1, tr = 0.05 and v = 1 for various values of At. In view of
Table 2, we can see that when At decreases, the L., and L, error norms decrease, as was expected.
Table 3 shows the numerical solutions with At = 0.00025, M =40, t =1, tr = 0.05, v =1 for
various values of y. As observed in Table 3, the L, and L, error norms decrease when 7y increases. A
comparison between the results of our proposed strategy and two other methods is demonstrated in
detail, the researchers of which relied on their work on a weight function corresponding to the spline
function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical
solutions of the TFBE in Example (1).

Table 1. Numerical solutions with y = 0.5, At = 0.0025, tr = 0.05, v = 1 for various
numbers of partitions M.

¥ M=10 M =20 M =40 M =80 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 1.104360 1.105211 1.105166 1.105122 1.105101
0.2 1.222151 1.222040 1.221593 1.221555 1.221511
0.3 1.351010 1.350426 1.350012 1.349831 1.349789
0.4 1.493377 1.492288 1.491990 1.491910 1.491844
0.5 1.650589 1.650001 1.649822 1.648889 1.648731
0.6 1.824211 1.823336 1.822449 1.822214 1.822110
0.7 2.015587 2.014111 2.013822 2.013776 2.013692
0.8 2.227577 2.226110 2.225699 2.225611 2.225562
0.9 2.461410 2.461101 2.460893 2.459550 2.459491
1.0 2.718202 2.718202 2.718202 2.718202 2.718202
L, X 103 1.631895 0.440555 0.160761 0.062504

L, x 10% [44] 1764966 0465690  0.167743  0.095754
L, x 10% [45] 1632995 0447720  0.161833  0.082624
L. x 10° 2291578 0.64933 0206677  0.032882
L. x10%[49] 3101238 0812842 0209495  0.069208
L. x10%[50] 2296683  0.625018 0207352 0.033125

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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Table 2. Numerical solutions with y =05 M =40, t =1, tr = 0.05, v=1 for
various values of At.

< At =0.005 At=0.001  At=0.0005 At=0.00025 Exact
0.0 0.000000 0.000000  0.000000  0.000000  0.000000
01 1.105216 1.105211 1105199 1.105186  1.105150
0.2 1221701 1221601 1.221511 1221445 1.221389
0.3 1350321 1350188 1.350141 1350110 1.349998
0.4 1492461 1492211 1.492101 1491879 1.491804
0.5 1.649485 1.649112  1.648961 1.648822  1.648690
0.6 1.822941 1.822675  1.822431 1.822310  1.822144
0.7 2.014601 2014201 2.014055  2.013979  2.013788
0.8 2.226288 2226001 2225812 2225699 2225528
0.9 2.260100 2459980 2459862 2459785 2459655
10 2.718202 2718202 2718202 2.718202  2.718202
L, x 103 0.659999 0.374901  0.232591 0.092489

L, x 103 [44] 0.176195  0.068869

L, x 103 [45] 0.375012  0.232768  0.092624

L. x 103 0.936512 0.529997 0326112 0.132945

L., x 103 [44] 0.665419  0.411883

L., x 103 [45] 0.530231 0328303  0.133125

Z

Figure 1. The surfaces of the exact and numerical solutions of the TFBE in Example (1).

Electronic Research Archive Volume 31, Issue 7, 4248-4265.
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Table 3. Numerical solutions with At = 0.00025, M =40, t =1, tr = 0.05, v=1

for various values of y.

X y = 0.10 y = 0.25 y =0.75 y = 0.90 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 1.105068 1.104981 1.104890 1.104899 1.104882
0.2 1.221701 1.221601 1.221511 1.221445 1.221389
0.3 1.350321 1.350188 1.350141 1.350110 1.349998
04 1.492461 1.492211 1.492101 1.491879 1.491804
0.5 1.649485 1.649112 1.648961 1.648822 1.648690
0.6 1.822941 1.822675 1.822431 1.822310 1.822144
0.7 2.014601 2.014201 2.014055 2.013979 2.013788
0.8 2.226288 2.226001 2.225812 2.225699 2.225528
0.9 2.260100 2.459980 2.459862 2459785 2.459655
1.0 2.718202 2.718202 2.718202 2.718202 2.718202
L, x 103 0.659999 0.374901 0.232591 0.092489

L, X 103 [44] 0.096733 0.090053 0.035448 0.044398

L, X 103 [45] 0.167077 0.165443 0.159924 0.166085

L, x 103 0.936512 0.529997 0.328112 0.132945

L, x 103 [44] 0272943 0.258623 0.124569 0.066682

L, x 103 [45]  0.235837 0.232645 0.224532 0.232565

Example 2: Finally, we consider the TFBE (1) with the BCs
u,t)=0, U(,t)=0, t=>0,
and IC
U(x,0) =0, 0<x<1,

where the source term f(x, t) can be obtained as [44]

The exact solution is

Electronic Research Archive

2_ .
flx,t) = 277 SIn@mx) | o pps sin(2mx) cos(2mx) + 4vt?m? sin(2mx).

r@a-vy)

U(x,t) = t?sin(2mx).
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Table 4. Numerical solutions with y = 0.5, At = 0.0025, tr = 0.05, v = 1 for various
numbers of partitions M.

X M=10 M =20 M=40 M =280 Exact
0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
0.1 0.951196 0.950876 0.951005 0.951077 0.951070
0.2 0.808211 0.808681 0.808911 0.808988 0.808978
0.3 0.587211 0.587513 0.587699 0.587761 0.587754
0.4 0.308662 0.308901 0.308987 0.309011 0.309006
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
L, x 103 0.435298 0.183971 0.041943 0.001960
L, x 103 [44] 1.224329 0.177703
L, x 103 [45] 2.899412 0.577143
L., x 103 0.731071 0.273289 0.063201 0.004168
Lo, x 103 [44] 1.730469 0.253053
Lo, x 103 [45] 4.063808 0.813220
g 5

g

Z

Figure 2. The surfaces of the exact and numerical solutions of the TFBE in Example (2).
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Table 5: Numerical solutions withy = 0.5, M =80, t =1, tr = 0.05, v =1 for
various values of At.

X At =0.005 At =0.001 At =0.0005 At =0.00025 Exact

0.0 1000000 1000000 1000000 1000000 1000000

0.1 0.951196 0.950876 0.951005 0.951077 0.951070
0.2 0.808211 0.808681 0.808911 0.808988 0.808978
0.3 0.587211 0.587513 0.587699 0.587761 0.587754
0.4 0.308662 0.308901 0.308987 0.309011 0.309006
0.5 0.000000 0.000000 0.000000 0.000000 0.000000
0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
L, x 103 0.124034 0.054081 0.014255 0.001960

L, X 103 [44] 0.532436 0.188710

L, X 103 [45] 0.359489 0.017828

L, x 103 0.175611 0.077465 0.028523 0.004168

Lo, x 103 [44] 0.753171 0.267546

Lo, x 103 [45] 0.512105 0.0321162

Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the
numerical solutions for various numbers of partitions M and values of At. As seen in Tables 4 and 5,
when the number of partitions M increased, the error norms L., and L, will decrease considerably,
while, in Table 5, we can see that when At decrease, the error norms L, and L, decrease. Figure 2
demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2).

5. Conclusions

This paper presented a numerical approach based on the CBSGM with a quadratic weight function
for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed
method is an appropriate and efficient scheme for solving such problems.
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