ERA, 31(7): 4266-4277.

EE DOI: 10.3934/era.2023217

Gieig Electronic Received: 28 February 2023

@ Research Archive Revised: 08 May 2023

Accepted: 22 May 2023
http://www.aimspress.com/journal/era Published: 01 June 2023

Theory article

Derivations of finite-dimensional modular Lie superalgebras K (1, m)

Dan Mao'? and Keli Zheng'-*

1 Department of Mathematics, School of Science, Northeast Forestry University, Harbin 150040,
China

2 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

* Correspondence: Email: zhengkl @nefu.edu.cn; Tel: +8615645011029.

Abstract: This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra
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1. Introduction

Lie superalgebras, which originated from the research of quantum physics (see [1]), can be
considered as the natural generalization of Lie algebras. Lie superalgebras are closely connected with
mathematical physics as well as numerous branches of mathematics (see [2,3]). Based on the study of
Lie algebras, the theory of Lie superalgebras developed rapidly, including the completed classification
of finite dimensional simple Lie superalgebras in 1977 (see [4]). However, the classification of finite
dimensional simple modular Lie superalgebras has not been accomplished up to now. Since the main
difference between modular Lie superalgebras and Lie superalgebras in characteristic zero is the
algebras of cartan type, we pay more attention to the related researches on modular Lie superalgebras
of Cartan type. In [5, 6], authors investigated the associative forms of modular Lie superalgebras of
Cartan type. The natural filtrations (see [7—10]) and automorphisms (see [10,11]) of some Cartan type
modular Lie superalgebras are studied. In addition, the cohomologies (see [6, 12, 13]) of some
modular Lie superalgebras have also been determined.

It is known to all that the determination of derivation superalgebras is crucial to Lie superalgebras.
The related research results in Cartan type modular Lie superalgebras are also quite rich. The
derivation superalgebras of some finite dimensional simple modular Lie superalgebras of Cartan type
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such as K(m, n, t), W(m,n, 1), S (m,n,t), HO(n,n;1), KO(n,n + 1,1), S HO(m, m,)® (see [14-18]) are
determined, respectively. Moreover, the derivation superalgebras of some nonsimple ones are also
described, where we are most interested in the correlative results of W(n, m), H(n,m) and S (n, m)
(see [19-21]). They all possess the derivation of ®-type. In [22], we have constructed a class of finite
dimensional modular Lie superalgebra of Contact type which is denoted by K(n,m). This paper is
aimed at determining the derivation superalgebras of K(n, m).

The present paper is arranged as follows. In Section 2, certain essential notations and concepts are
recalled. In Section 3, the Z-homogeneous components of Der(K), the derivation superalgebras of
K(n, m), are described, respectively. Therefore, we determine Der(K). In order to give a description of
Der(K), we prove that K(n, m) is invariant under Der(K).

2. Preliminaries

Hereafter F denotes a field of characteristic p > 3; Z, = {0, 1} is the ring of integers modulo 2.
Apart from the standard notation Z, let N and N, denote the sets of positive integers and nonnegative
integers, respectively. A simple description of construction of the modular Lie superalgebra K(n, n)
in [22] will be given.

Let A(n) be the Grassmann algebra over F in n variables xj,xp,...,x,. Suppose that
By = {(i1,00,...,0) | 1 <) < ip < -+ < i < n}and B(n) = UjoBk, where By = 0. For
u =i,z ...,0k) € By, set |u| =k, {u} = {i1,ir,..., 0} and x* = x;,x;, - - x;, (|0] = 0,x° = 1). Then

{x*|u € B(n)} is an F-basis of A(n).

Let X = A(n) ® T(m) be the tensor product, where T(m) is the truncated polynomial algebra
satisfying yf = 1foralli = 1,2,...,m (see [20]). Then U is an associative superalgebra with
Z,-gradation, which is induced by the trivial Z,-gradation of T(m) and the natural Z,-gradation of
A(n). Namely, U = Uz @ Uy, where U = A(n); ® T(m) and Uy = A(n); ® T(m).

For f € A(n) and a € T(m), we abbreviate f ® a as fa. Then the elements x“y' with u € B(n)
and A € G form an F-basis of 2. Obviously, U = @?:0 U; is a Z-graded superalgebra, where l; =
spang{x“y* | u € B(n),|u| = i,A € G}. In particular, Uy = T(m) and U, = spang{x"y' | 1 € G}, where
m:=(1,2,...,n) € B(n).

In this paper, let hg(A) = Aj U A1, where A = Aj @ Aj is a superalgebra. If x is a Z,-homogeneous
element of A , then degx denotes the Z,-degree of x.

SetY ={1,2,...,n}. Giveni € Y, let 9/0x; be the partial derivative on A(n) with respect to x;. For
i € Y, let D; be the linear transformation on U such that D;(x*y') = (dx*/0x;)y* for all u € B(n) and
A € G. Let Derll denote the derivation superalgebra of (see [12]). Then D; € DerjU forall i € Y
since 0/0x; € Derj(A(n)) (see [23]).

Suppose that u € By € B(n) andi € Y. When i € {u}, u — (i) denotes the uniquely determined
element of B;_; satisfying {u — (i)} = {u} \ {i} .Then the number of integers less than i in {u} is denoted
by 7(u,i). When i ¢ {u}, we set 7(u,i) = 0 and x*~? = 0. Therefore, D;(x*) = (=1)"®)x*= for all
i €Y and u € B(n).

We define (fD)(g) = fD(g) for f,g € hg(ll) and D € hg(Derl). Since the multiplication of U is
supercommutative, fD is a derivation of l. Let

W(n, m) = spang{x"y'D; | u € B(n),1 € G,i € Y}.
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Then W(n,m) is a finite dimensional Lie superalgebra contained in Derll. A direct computation shows
that
[fDi.gDj] = fDig)D; = (~1)* /XLl D (D,
where f,g € hgll) andi,je Y.
Set J ={1,...,n—1}. Let 5k : U — W(n, m) be the linear map such that

Di(f) = ) f:Di + fXaDh,

ieJ

where f € hgQ), f; = (D™ (xpx,D, (f) + D; (f)),i € J and f, = 2f = Sy x:Di (f).

Let K (n, m) =spang {Ek(f)lf € II}. Then K (n,m) is a subspace of W(n, m).

Let

G; = D; + xix,D,,Vi e J,G, = 2x,D,.
By direct calculation, we have
G G)| = 6,,G.. |G, G| = 0,

where i, j € J and ¢;; is Kronecker delta.

It is easy to prove that 5k(f) =iy (=1)%s/ G, (HG; + fG,

For f € Uy and g € U, where 0,u € Z,, set(f,g) = 5k(f)(g) - G,(f)(g). In [22], we have proved
that [Bk( £, Ek(g)] = Du({f, g)). Namely, K (n, m) is a subalgebra of W (1, m).

__ If we define an operator [, ] in U such that [f.g] = Dy (f) (@) — G, (f)(g) for any f,g € U. Then
K(n,m) = (U, [, ]). Moreover, for any f, g € K(n,m), we have

[f’ g] = (zf - Z xiDi (f)] ann (g)

ieJ
— (=)ot (2g - > xD; (g)) %D, (f)
ieJ
+ (D" D) Dig).

ieJ

Let K(n,m) be the derived algebra of K(n,m), then K (n,m) = spang{x‘y!|xy* € U, xy* # xiyl},
where it = (1,...,n — 1). By [22], we know that modular Lie superalgebra K(n, m) is not simple.

3. Determination of derivation superalgebras

In this section, we will abbreviate E(n, m), K(n,m) as K and K, respectively.

In [22], we proved that K(n, m) does not possess a Z-graded structure as W(n, m) (see [19]). In fact,
K(n,m) does not possess Z-gradation in the ordinary sense as well. If K = GBf:_rf,-, then it does not
satisfy that

K. K;| S KinjuVisj € {=r,=r +1,....5}.

Now we give a “formal” Z-gradation of K(n, m):
E (n9 m) = @7:__22? (n’ m)i ’
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where K(n, m); = spang{x"y|lu € B(n), |u| = i + 2,1 € G}. Let
Der,(K) = {¢ € Der(K)l¢(K)) € K., ¥i € Z}.

It is easy to prove that Der(K) = &,zDer(K) is a Z-graded Lie superalgebra (see [24]).

Lemma 3.1. Let ¢ € Der(K), f € K and [f,x;] = b, Vi € J. If p(x)) = ¢(b;) = 0, Vi € J, then
o(f) € K_».

Proof. By applying ¢ to [f, x;] = b;, we obtain [¢(f), x;] + (=1)*$#* 8/ [ £, o(x;)] = @(b;). Since p(x;) =
@(b;) = 0, we have [¢(f), x;] =0, Vi € J. Note that

(), 11 = [e(f), —[x1, x11]
= —[e(), [x1, x11]

=([[e(f), x11, x1] + [x1, [@(f), x111)
=0.

Therefore, —2x,D,(¢(f)) = [¢(f), 1] = 0. Then D,(¢(f)) = 0. Foralli € J,

[e (), x1] = 20() = > xDi (@ () | xuDy (x)

teJ

— (=)D (23, — By XDy (1)) %Dy (@ (f))
+ Yies (=D Dy (0 () Dy (x)
= (=D D; (¢ (f)).
Since [¢(f), x;] = 0, we obtain D; (¢ (f)) = 0, Vi € J. Therefore, ¢(f) € K. O
Lemma 3.2. Let ¢ € Der_(K),t > 2. If ¢ (K_g) =0, then ¢ = 0.

Proof. If s < t — 2, then ¢(K,) € K,_, = {0}.

When s > ¢ — 2, we will use induction on s to prove that go(fv) = 0. For s = r — 2, we have
@©(K,) = 0 with the hypothesis of the lemma. Suppose s >t — 2. Forany y € K,, i € J, set [y, D;] = y..
Then y; € Ky, where s’ < s. According to the hypothesis of induction, we have ¢(y;) = 0. Noting
that ¢(D;) = 0, we obtain ¢(y) € K_,. Therefore, ¢(y) € K_, N K,_, = {0}. Namely, ¢(y) = 0. Then
o(Ky) = 0. It follows that ¢ = 0. O

Proposition 3.3. Der_(K) =0, 1 > 2.
Proof. Lety € Der_(K),t > 2. We will prove ¢ (Et_z) = 0, where
K, = spanzs{x* x,y*, x*y"\uy, u, € B(n), luy| = 1 — 1, |up| = 1, A,n € G}

Note that ga(f,_z) C K_,. Without loss of generality, we put o(x“'x,y!) = ay*, p(x*2y") = by*, where
a,b € F, u € G. Applying ¢ to [x,, x" x,y'] = 0, we obtain

[0 Con) s x| + (= 1esetess [, o (x x,3%) | = 0. (3.1)
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Since ¢ (x,) € K_,_; = {0}, which combined with (3.1) yields [xn, ) (x”‘xny”)] = 0. Namely, [x,, ay"] =
0. In fact, [x,, ay*] = —2ay"x,. Therefore, —2ay*x,, = 0. Then
e(x" x,y") = ay* = 0. (3.2)
For i € {u;}, we have
[X:X, X2y = (=1)702D xi2=Dy, 1, (3.3)

Without loss of generality, let x2~®x,y" = x“x,y", where |u| = t — 1. Then we may write the Eq (3.3)
as
[X:X,, X2y7] = (=1)7@2D xx, ¥, (3.4)

By virtue of the Eq (3.2), we have ¢(x"x,y") = 0. Applying ¢ to the Eq (3.4), we obtain
[ (xixa) , x2y7] + (= 1)%esedestin) [xox, o (x2yM)] = 0. (3.5)

If t = 2, it follows from the Eq (3.2) that ¢ (x;x,,) = 0. If # > 2, then ¢ (x;x,) € K_, = {0} Consequently,
¢ (x;x,) = 0. Therefore, by virtue of the Eq (3.5) , we have [x;x,,, ¢ (x*2y")] = 0. Namely, [x;x,, by*] = 0.
In fact, [x;x,, by"] = —2by"x;x,. Therefore, —2by*x;x,, = 0. Then

@(x"y") = by" = 0. (3.6)
It follows from the Eqgs (3.2) and (3.6) that ¢ (K—z) = 0. By virtue of Lemma 3.2, we have ¢ = 0.
Therefore, Der_(K) = 0, t > 2. O
Lemma 3.4. Let ¢ € Deri(K), t € Z. Suppose that o(K;) = 0, j = =2,-1,..,L Ift+1> =2, then
¢ =0.
Proof. By virtue of Lemma 3.1, the proof is completely analogous to [24, Lemma 2.8]. O

Proposition 3.5. Der_i(K) = 0.

Proof. Let ¢ € Der_(K). Then go(E_z) = 0. In order to prove ¢ = 0, we need to obtain (,o(f_l) = 0.
Without loss of generality, we put ¢(x,y') = ay*, where a € F,u € G. Applying ¢ to [1, x,y'] = 2x,"
yields (—1)48#4s![1, ay*] = 2ay*. Therefore, 2ay* = 0. Then ¢(x,y') = ay* = 0. Similarly, we can
prove that ¢(x;y!) = 0, i € J. Therefore, ¢(K_;) = 0. Then ¢ = 0. |

Let ® = T(m) X ... Xx T(m). Fgr every 0 = (hi(y), :.hm(y)) € @,~W€ d~eﬁne5: G — T(m). (see [20])
For every 6 € ®,we define Dy : K — K such that Dy(Di(x"yY) = () Di(x"y"), for x“y* € U. A direct
computation shows that D, € Dery(K), for all 8 € ®. Put Q = {Dy|f € ©}.

Proposition 3.6. Dery(K) = adK_» + Q.
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Proof. Assume that y* € K _,. For fe Ej,j e {-2,-1,...,n— 2}, we have
(ady") () =[y". £]

= (Zy/l — Z x;D; (yﬂ)] X, Dy (f)

ieJ

_ (=1 yles(dest) (2 f- Z x,D; ( f)] x,D, (y/l)

ieJ

+;ewwawpﬂ)

=2y'x,D, (f) € K.

Therefore, adK_, € Dero(K). Obviously, Q C Dery(K). It follows that adK _, + Q C Dero(K).
Conversely, lei ¢ € Dery(K). It is obvious that there exist ¥ € K_, and Dy, € Q such that
(¢ — ady" — Dy) (K_z) = 0. Consequently, by lemma 3.4, we have ¢ — ady* — Dy, = 0. Then

¢ = ady* + Dy € adK _, + Q. Thus, Dero(K) C adK_, + Q.
O

Lemma 3.7. Let hy, ..., h, be the nonzero elements of W. If Gi(h;) = —G(h;) for all distinct i, j € Y,
then there exists nonzero element h € U such that G;(h) = h;, fori € J and G,(h) = —h,,.

Proof. We use induction to prove there exist nonzero element 4" € U such that G;(h") = h; forall i € J.
Whenn—-1=1,leth = x;h; # 0. Then

Gi(W') = (Dy + x1x,D,)(x1 1) = hy.

Suppose that there exists 0 # g € U such that G;(g) = h; foralli € {1,...,n —2}. Fori € {1,...,n -2},

Gi(hy-1) = =Guo1(h) = =G1(Gi(8)) = Gi(Gr-1(8))-
Therefore, G;(h,-1 — G,-1(g)) = 0. Let h’ = g + x,_1(h,-1 — G,_1(g)). Fori e {1,...,n — 2},

Gi(h') = Gi(g) + Gi(xy-1(hy-1 — Gu-1(8)) = Gi(g) = hi.
On the other hand,

Gpi(h') = Gt (Q+G 1 (X1 (et = Go1(8)) = .
Consequently, we have G;(h’") = h;, foralli e {1,..,n—1}. Fori e {l,...,n -1},

Gi(hy) = =Gu(h) = =G,(G(I')) = =G{(G,(I)).

Then G;(h, + G,(h')) = 0. Therefore, h, + G,(h’) = 0. Namely, G,(h’) = —h,. Consequently, the
assertion follows from & = /’. O
Lemma 3.8. Let ¢ € h(Der(K)), t € N. If o(Gj) = 0, Vj € Y, then there exists 0 € O such that
©(Dy(yY) = Dy(Dy(y")), for A € G.
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Proof. Assume that for every i € Y, o(y'G;) = Y;_, &xiaGr» Where giia € . Applying ¢ to [G;, y'G,] =
0,i € Y yields gxua € T(m). Let g(0)ina = gkna- Then o('G,) = Yi_; 8(0)knaGi. Note that [G, y'G;] = 0
and [G;, y'G;] = y'G, foralli € J,i # j € Y. Applying ¢ to these equations, we know that g;;; contains
at most x; in A(n). Let gix = g(xi, Vria, L € J. For j € J, let 5k(xj) = Y- aGy. Since [G;,G|] = G,
and [G}, Bk(x )] =0, we obtain _

(G}, G+ Di(x))] = G,. (3.7

Applying ¢ o (3.7) yields (~1)*[G;, (G, + Di(x;)] = 0. Then [G;, ¢(Dx(x;)] = 0. Namely,
[G, Yizy axGi] = 0. Therefore, G j(ax) = 0,k € Y. Applying ¢ to [y'G, G, + Di(x;)] = y'G, yields

[¢('G ), G} + Di(x)] + (= D™ [y'G;, o(Di(x)] = (' G).

Therefore, [¢(y'G),G; + 5k(xj)] = ¢(y'G,). Namely,
[Z 8(x;, YkjaGr, G + 5k(xj)] = Z 8(V)inaGi.
k=1 k=1

A direct computation shows that g()i.u = 0, k € J and g(x;, ¥)jja = §()una- Then ¢(3'G,) = g()unaGo-

We abbreviate g(y)nn/l as g(y)n/l Let hml(_Y) = g(y)n,ly_/l. Then Qo(y/lGn) = hnﬂ(y)y/lGn. Let (p(Dk(xijl)) —
Yie1 biGy, where by € U. Note that

[G},y'G; + Di(xpy")] = y'G, (3.8)
Applying ¢ to (3.8) yields
(1[G, ("G)) + D hiGil = ("G, (3.9)
k=1

Since g(x;,¥)jja = &)1, we know g(x;,y);i, € T(m). We may abbreviate g(x;,y);;, as g(y);,. Let
hjn(y) = g(y)jny~". It follows from (3.9) that

(=™ Ry, ()Y + (=15 3" G (b)Gy = huy(1)Y"Gy.
k=1

Then G(b,) = (=hjy(y) + (=1)%%h,,(y))y" and G;(b;) = 0,i € J. Therefore, b, = (—h,(y) +
(_l)degwhnn(y))ynxj + qn with Gj(‘]n) = 0. Then

()D(Bk(xjyn)) = Z biGy = (_hjn(y) + (_1)deg‘phnn(y))ynijn + 6]nGn + Z b,G,.

=1 il
Applying ¢ to [y'G,y"G; + Dy(x Dl = y*1G, yields

[9('G),Y"Gj + Di(xjyN] + (=D *[y'G, o(y"G;) + p(Di(x,y")] = ¢(3*"G,).
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A calculation shows that
hia(y) + huy(y) = B (). (3.10)

Particularly, hj,(y) + h(y) = haoo(y) = hu(y) + hya(y). Therefore, hjp(y) = hu(y) for j € J.
Consequently, we may abbreviate h;,(y) as h,(y) for i € Y. Then the Eq (3.10) can be equivalent to

ha(y) + hy(y) = hawy (), (3.11)
for A,n € G. Therefore, for k € Y, ¢ € I1, we have

hey, () = chy, (). (3.12)
LetA = ZTzl Ajz; € G. It follows from (3.11) and (3.12) that

) = hagzyesanen3) = D Ajhe, (). (3.13)
j=1

We abbreviate h; (y) as h;(y) for j = 1,...,m. Let 0 = (hy(y), ..., h(y)) € ©. It follows from (3.13)
that hy(y) = 3", A;h,,(y) = 6(A). Therefore,

(DY) = 9('G,) = (Y'G, = ()Y G, = Do(Di(y")).
O

Lemma 3.9. Let ¢ € h(Der,(E)), t € N. Then there exist B € NorW(E) = {x € W|[x,K] C K} and
0 € O such that ¢ = adB + D,.

Proof. Assume that for every k € J, o(Gy) = X, fuGi;, where fi € U and
0(G,) = —(=1)des¢ > fGi, where f;, € 0. For k # [ € Y, applying ¢ to [Gy, G;] = 0 yields

G/(fi) = —Gi(fi)

for all i € Y. It follows from lemma 3.7 that there exist g;(i = 1, ..., n) such that

Gi(8i) = fi- k € J,G,(8i) = — fin-

Let B = —(—1)%¢ ¥ | ¢;G;. Then for any k € J,

adB(Gy) = [B,Gi] = ) faGi = ¢(Gy),
i=1

adB(G,) =[B,G,] = ~(=1)' 3" £uGi = @(G,).
i=1

Therefore, ¢(G;) = adB(G)) for all j € Y. Namely, (¢ — adB)(G;) = 0 for all j € Y. According to
lemma 3.8, there exists 8 € ® such that

(¢ — adB)(Dy(y") = Do(Di(y"))
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forall 1 € G. Let ¢ = ¢ —adB — Dy. We use induction on j to prove ¢(Ej) =0,j=-2,-1,0,...,n-2.
A direct computation shows that ¢(K_,) = 0. Assume that j > —1. For any § € K, let [£,G,] = &.
Applying ¢ to this equation, we obtain

[#(&), Gl + (—1) 8% £ (G, = ¢(£)).

It follows from the induction hypothesis that ¢(£1) = 0. Since ¢(G,) = 0, we have [¢(£), G,] = 0. Then
#(€) € K_i () K+ = {0}. Therefore, ¢(£) = 0. Since the choice of ¢ was arbitrary, we have ¢(K ;) = 0.
Consequently, ¢ = adB + Dy. O

Lemma 3.10. Let K(n,m) = {Djer [iG; € WIG(f)) = —-G;(fi) + (=1)%8/65;,G,(f),i,j € J}. Then
K(n,m) = E(n, m).
Proof. Assume that ..y /;G; € K(n,m). According to lemma 3.7, there exists 0 # f € U such that

Gi(f) = fiforalli € J. Therefore, 3’ ey f;G; = X je; Gi(/)G+1,G, € K(n,m). Then E(n,m) C K(n, m).
Conversely, let 5k(f) =Y, fiGi e K(n,m).Fori,jeJ,

Gi(f) = G((-1)**/G,(f))
= (=)™ (=G;G(f) + 6;;Gu(f))
= =G (D" Gi(f)) + (=1)*¢6,,G.(f)
= =G(f) + (=1)*5,;G,(f).

Therefore, 5k( ]i) € E(n, ml Then K(n, m) C E(n, m).
Consequently, K(n,m) = K(n, m). O

Proposition 3.11. Let t € N. Then Der(K) = ad(K,) + Q.

Proof. Tt suffices to prove that Der,(K) C ad(K,) + Q. Let NS Der,(f). By virtue of Lemma 3.9, there
exists B € Nory(K) such that ¢(Gy) = adB(Gy), for k € Y. Assume that B = 2?21 g;G; and plug it into
the following equation, i.e.,

(—1)s%s9i[G}, [Gy, B]] + (—=1)*$95%8%[G,, [B, G,
H )OI [G), Gl = 0
for i, j € J. Accordingly, we have G,(f;) + G;(f}) :(—1)degf5,-jGn(f)_: 0,i,j € J. Therefore, B €

K(n,m). By virtue of Lemma 3.9, ¢ = adB+ Dy € adK +Q. Then Der/(K) C ad(K,)+ €. Consequently,
Der/(K) = ad(K;) + Q. O

Lemma 3.12. The following statements hold:
(HQ is_a subspace of Der(K).
(2) ad(K) (" Q = {0}.
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Proof. The proof is completely analogous to [20, Lemma 3.11]. O
Theorem 3.13. Der(K) = ad(K ) ® Q, where K = K_, ® @' 7K..

Proof. By virtue of Propositions 3.3, 3.5, 3.6, 3.11 and Lemma 3.12, this theorem can be easily proved.
O

Proposition 3.14. K(n, m) is invariant under Der(K).

Proof. Let ¢ € Q. Obviously, ¢(K) C K.

Let¢ € ad(El). Without loss of generality, we may suppose that ¢ = adf, where f € K c K. Since
K is a derived algebra of K, K is an ideal of K. Therefore, ¢(K) = adf(K) = [f, K] C K.

Since Der(K) = ad(E,) ® Q, we have ¢(K) C K for any ¢ € Der(K). Namely, K(n,m) is invariant
under Der(E). a

An immediate corollary of this proposition is the following.
Corollary 3.15. Der(K)|x C Der(K).
Remark. If m = 0, then derivation superalgebras of modular Lie superalgebras K(n), which were
mentioned in [22], will be obtained.
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