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Abstract: This paper is aimed at determining the derivation superalgebra of modular Lie superalgebra
K(n,m). To that end, we first describe the Z-homogeneous derivations of K(n,m). Then we obtain the
derivation superalgebra Der(K). Finally, we partly determine the derivation superalgebra Der(K) by
virtue of the invariance of K(n,m) under Der(K).
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1. Introduction

Lie superalgebras, which originated from the research of quantum physics (see [1]), can be
considered as the natural generalization of Lie algebras. Lie superalgebras are closely connected with
mathematical physics as well as numerous branches of mathematics (see [2,3]). Based on the study of
Lie algebras, the theory of Lie superalgebras developed rapidly, including the completed classification
of finite dimensional simple Lie superalgebras in 1977 (see [4]). However, the classification of finite
dimensional simple modular Lie superalgebras has not been accomplished up to now. Since the main
difference between modular Lie superalgebras and Lie superalgebras in characteristic zero is the
algebras of cartan type, we pay more attention to the related researches on modular Lie superalgebras
of Cartan type. In [5, 6], authors investigated the associative forms of modular Lie superalgebras of
Cartan type. The natural filtrations (see [7–10]) and automorphisms (see [10,11]) of some Cartan type
modular Lie superalgebras are studied. In addition, the cohomologies (see [6, 12, 13]) of some
modular Lie superalgebras have also been determined.

It is known to all that the determination of derivation superalgebras is crucial to Lie superalgebras.
The related research results in Cartan type modular Lie superalgebras are also quite rich. The
derivation superalgebras of some finite dimensional simple modular Lie superalgebras of Cartan type
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such as K(m, n, t), W(m, n, t), S (m, n, t), HO(n, n; t), KO(n, n + 1, t), S HO(m,m, t)(2) (see [14–18]) are
determined, respectively. Moreover, the derivation superalgebras of some nonsimple ones are also
described, where we are most interested in the correlative results of W(n,m), H(n,m) and S (n,m)
(see [19–21]). They all possess the derivation of Θ-type. In [22], we have constructed a class of finite
dimensional modular Lie superalgebra of Contact type which is denoted by K(n,m). This paper is
aimed at determining the derivation superalgebras of K(n,m).

The present paper is arranged as follows. In Section 2, certain essential notations and concepts are
recalled. In Section 3, the Z-homogeneous components of Der(K), the derivation superalgebras of
K(n,m), are described, respectively. Therefore, we determine Der(K). In order to give a description of
Der(K), we prove that K(n,m) is invariant under Der(K).

2. Preliminaries

Hereafter F denotes a field of characteristic p ≥ 3; Z2 = {0, 1} is the ring of integers modulo 2.
Apart from the standard notation Z, let N and N0 denote the sets of positive integers and nonnegative
integers, respectively. A simple description of construction of the modular Lie superalgebra K(n,m)
in [22] will be given.

Let Λ(n) be the Grassmann algebra over F in n variables x1, x2, . . . , xn. Suppose that
Bk = {⟨i1, i2, . . . , ik⟩ | 1 ≤ i1 < i2 < · · · < ik ≤ n} and B(n) =

⋃n
k=0 Bk, where B0 = ∅. For

u = ⟨i1, i2, . . . , ik⟩ ∈ Bk, set |u| = k, {u} = {i1, i2, . . . , ik} and xu = xi1 xi2 · · · xik (|∅| = 0, x∅ = 1). Then
{xu|u ∈ B(n)} is an F-basis of Λ(n).

Let U = Λ(n) ⊗ T(m) be the tensor product, where T(m) is the truncated polynomial algebra
satisfying yp

i = 1 for all i = 1, 2, . . . ,m (see [20]). Then U is an associative superalgebra with
Z2-gradation, which is induced by the trivial Z2-gradation of T(m) and the natural Z2-gradation of
Λ(n). Namely, U = U0 ⊕ U1, where U0 = Λ(n)0 ⊗ T(m) and U1 = Λ(n)1 ⊗ T(m).

For f ∈ Λ(n) and α ∈ T(m), we abbreviate f ⊗ α as fα. Then the elements xuyλ with u ∈ B(n)
and λ ∈ G form an F-basis of U. Obviously, U =

⊕n
i=0 Ui is a Z-graded superalgebra, where Ui =

spanF{x
uyλ | u ∈ B(n), |u| = i, λ ∈ G}. In particular, U0 = T(m) and Un = spanF{x

πyλ | λ ∈ G}, where
π := ⟨1, 2, . . . , n⟩ ∈ B(n).

In this paper, let hg(A) = A0̄ ∪ A1̄, where A = A0̄ ⊕ A1̄ is a superalgebra. If x is a Z2-homogeneous
element of A , then degx denotes the Z2-degree of x.

Set Y = {1, 2, . . . , n}. Given i ∈ Y, let ∂/∂xi be the partial derivative on Λ(n) with respect to xi. For
i ∈ Y , let Di be the linear transformation on U such that Di(xuyλ) = (∂xu/∂xi)yλ for all u ∈ B(n) and
λ ∈ G. Let DerU denote the derivation superalgebra of U(see [12]). Then Di ∈ Der1̄U for all i ∈ Y
since ∂/∂xi ∈ Der1̄(Λ(n)) (see [23]).

Suppose that u ∈ Bk ⊆ B(n) and i ∈ Y. When i ∈ {u}, u − ⟨i⟩ denotes the uniquely determined
element of Bk−1 satisfying {u − ⟨i⟩} = {u} \ {i} .Then the number of integers less than i in {u} is denoted
by τ(u, i). When i < {u}, we set τ(u, i) = 0 and xu−⟨i⟩ = 0. Therefore, Di(xu) = (−1)τ(u,i)xu−⟨i⟩ for all
i ∈ Y and u ∈ B(n).

We define ( f D)(g) = f D(g) for f , g ∈ hg(U) and D ∈ hg(DerU). Since the multiplication of U is
supercommutative, f D is a derivation of U. Let

W(n,m) = spanF{x
uyλDi | u ∈ B(n), λ ∈ G, i ∈ Y}.
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Then W(n,m) is a finite dimensional Lie superalgebra contained in DerU. A direct computation shows
that

[ f Di, gD j] = f Di(g)D j − (−1)deg( f Di)deg(gD j)gD j( f )Di.

where f , g ∈ hg(U) and i, j ∈ Y.
Set J = {1, ..., n − 1}. Let D̃k : U −→ W(n,m) be the linear map such that

D̃k( f ) =
∑
i∈J

fiDi + fnxnDn,

where f ∈ hg(U), fi = (−1)deg f (xixnDn ( f ) + Di ( f )) , i ∈ J and fn = 2 f −
∑

i∈J xiDi ( f ).
Let K (n,m) =spanF

{
D̃k( f )| f ∈ U

}
. Then K (n,m) is a subspace of W(n,m).

Let
Gi = Di + xixnDn,∀i ∈ J,Gn = 2xnDn.

By direct calculation, we have [
Gi,G j

]
= δi jGn,

[
Gn,G j

]
= 0,

where i, j ∈ J and δi j is Kronecker delta.
It is easy to prove that D̃k( f ) =

∑
i∈J (−1)deg f Gi ( f ) Gi + fGn

For f ∈ Uθ and g ∈ Uµ, where θ, µ ∈ Z2, set ⟨ f , g⟩ = D̃k( f )(g) −Gn( f )(g). In [22], we have proved
that
[
D̃k( f ), D̃k(g)

]
= D̃k(⟨ f , g⟩). Namely, K (n,m) is a subalgebra of W (n,m).

If we define an operator [, ] in U such that
[
f , g
]
= D̃k ( f ) (g) − Gn ( f ) (g) for any f , g ∈ U. Then

K(n,m) � (U, [, ]). Moreover, for any f , g ∈ K(n,m), we have

[
f , g
]
=

2 f −
∑
i∈J

xiDi ( f )

 xnDn (g)

− (−1)deg( f )deg(g)

2g −
∑
i∈J

xiDi (g)

 xnDn ( f )

+
∑
i∈J

(−1)deg f Di ( f ) Di (g) .

Let K(n,m) be the derived algebra of K(n,m), then K (n,m) = spanF{x
uyλ|xuyλ ∈ U, xuyλ , xûyλ},

where û = ⟨1, ..., n − 1⟩. By [22], we know that modular Lie superalgebra K(n,m) is not simple.

3. Determination of derivation superalgebras

In this section, we will abbreviate K(n,m), K(n,m) as K and K, respectively.
In [22], we proved that K(n,m) does not possess a Z-graded structure as W(n,m) (see [19]). In fact,

K(n,m) does not possess Z-gradation in the ordinary sense as well. If K = ⊕s
i=−rKi, then it does not

satisfy that [
Ki,K j

]
⊆ Ki+ j,∀i, j ∈ {−r,−r + 1, ..., s} .

Now we give a “formal” Z-gradation of K(n,m):

K (n,m) = ⊕n−2
i=−2K (n,m)i ,
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where K(n,m)i = spanF{x
uyλ|u ∈ B(n), |u| = i + 2, λ ∈ G}. Let

Dert(K) =
{
φ ∈ Der(K)|φ(Ki) ⊆ Kt+i,∀i ∈ Z

}
.

It is easy to prove that Der(K) = ⊕t∈ZDert(K) is a Z-graded Lie superalgebra (see [24]).

Lemma 3.1. Let φ ∈ Der(K), f ∈ K and [ f , xi] = bi, ∀i ∈ J. If φ(xi) = φ(bi) = 0, ∀i ∈ J, then
φ( f ) ∈ K−2.

Proof. By applying φ to [ f , xi] = bi, we obtain [φ( f ), xi] + (−1)degφdeg f [ f , φ(xi)] = φ(bi). Since φ(xi) =
φ(bi) = 0, we have [φ( f ), xi] = 0, ∀i ∈ J. Note that

[φ( f ), 1] = [φ( f ),−[x1, x1]]
= −[φ( f ), [x1, x1]]
= −([[φ( f ), x1], x1] + [x1, [φ( f ), x1]])
= 0.

Therefore, −2xnDn(φ( f )) = [φ( f ), 1] = 0. Then Dn(φ( f )) = 0. For all i ∈ J,

[
φ ( f ) , xi

]
=

2φ ( f ) −
∑
t∈J

xtDt (φ ( f ))

 xnDn (xi)

− (−1)deg(φ( f ))deg(xi) (2xi −
∑

t∈J xtDt (xi)
)

xnDn (φ ( f ))

+
∑

t∈J (−1)degφ( f ) Dt (φ ( f )) Dt (xi)

= (−1)degφ( f ) Di (φ ( f )) .

Since [φ( f ), xi] = 0, we obtain Di (φ ( f )) = 0,∀i ∈ J. Therefore, φ( f ) ∈ K−2. □

Lemma 3.2. Let φ ∈ Der−t(K), t ≥ 2. If φ
(
Kt−2

)
= 0, then φ = 0.

Proof. If s < t − 2, then φ(K s) ⊆ K s−t = {0}.
When s ⩾ t − 2, we will use induction on s to prove that φ(K s) = 0. For s = t − 2, we have

φ(K s) = 0 with the hypothesis of the lemma. Suppose s > t − 2. For any y ∈ K s, i ∈ J, set
[
y,Di
]
= yi.

Then yi ∈ K s′ , where s′ < s. According to the hypothesis of induction, we have φ(yi) = 0. Noting
that φ(Di) = 0, we obtain φ(y) ∈ K−2. Therefore, φ(y) ∈ K−2 ∩ K s−t = {0}. Namely, φ(y) = 0. Then
φ(K s) = 0. It follows that φ = 0. □

Proposition 3.3. Der−t(K) = 0, t ≥ 2.

Proof. Let φ ∈ Der−t(K), t ≥ 2. We will prove φ
(
Kt−2

)
= 0, where

Kt−2 = spanF{xu1 xnyλ, xu2yη|u1, u2 ∈ B(n), |u1| = t − 1, |u2| = t, λ, η ∈ G}.

Note that φ(Kt−2) ⊆ K−2. Without loss of generality, we put φ(xu1 xnyλ) = ayµ, φ(xu2yη) = byµ, where
a, b ∈ F, µ ∈ G. Applying φ to [xn, xu1 xnyλ] = 0, we obtain[

φ (xn) , xu1 xnyλ
]
+ (−1)degφdegxn

[
xn, φ
(
xu1 xnyλ

)]
= 0. (3.1)
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Since φ (xn) ∈ K−t−1 = {0}, which combined with (3.1) yields
[
xn, φ
(
xu1 xnyλ

)]
= 0. Namely,

[
xn, ayµ

]
=

0. In fact,
[
xn, ayµ

]
= −2ayµxn. Therefore, −2ayµxn = 0. Then

φ(xu1 xnyλ) = ayµ = 0. (3.2)

For i ∈ {u2}, we have [
xixn, xu2yη

]
= (−1)τ(u2,i) xu2−⟨i⟩xnyη. (3.3)

Without loss of generality, let xu2−⟨i⟩xnyη = xuxnyη, where |u| = t − 1. Then we may write the Eq (3.3)
as [

xixn, xu2yη
]
= (−1)τ(u2,i) xuxnyη. (3.4)

By virtue of the Eq (3.2), we have φ(xuxnyη) = 0. Applying φ to the Eq (3.4), we obtain[
φ (xixn) , xu2yη

]
+ (−1)degφdeg(xi xn) [xixn, φ (xu2yη)

]
= 0. (3.5)

If t = 2, it follows from the Eq (3.2) that φ (xixn) = 0. If t > 2, then φ (xixn) ∈ K−t = {0}. Consequently,
φ (xixn) = 0. Therefore, by virtue of the Eq (3.5) , we have

[
xixn, φ (xu2yη)

]
= 0.Namely,

[
xixn, byµ

]
= 0.

In fact,
[
xixn, byµ

]
= −2byµxixn. Therefore, −2byµxixn = 0. Then

φ(xu2yη) = byµ = 0. (3.6)

It follows from the Eqs (3.2) and (3.6) that φ
(
Kt−2

)
= 0. By virtue of Lemma 3.2, we have φ = 0.

Therefore, Der−t(K) = 0, t ≥ 2. □

Lemma 3.4. Let φ ∈ Dert(K), t ∈ Z. Suppose that φ(K j) = 0, j = −2,−1, ..., l. If t + l ≥ −2, then
φ = 0.

Proof. By virtue of Lemma 3.1, the proof is completely analogous to [24, Lemma 2.8]. □

Proposition 3.5. Der−1(K) = 0.

Proof. Let φ ∈ Der−1(K). Then φ(K−2) = 0. In order to prove φ = 0, we need to obtain φ(K−1) = 0.
Without loss of generality, we put φ(xnyλ) = ayµ, where a ∈ F, µ ∈ G. Applying φ to [1, xnyλ] = 2xnyλ

yields (−1)degφdeg1[1, ayµ] = 2ayµ. Therefore, 2ayµ = 0. Then φ(xnyλ) = ayµ = 0. Similarly, we can
prove that φ(xiyλ) = 0, i ∈ J. Therefore, φ(K−1) = 0. Then φ = 0. □

Let Θ = T(m) × ... × T(m). For every θ = (h1(y), ..., hm(y)) ∈ Θ, we define θ̃ : G → T(m). (see [20])
For every θ ∈ Θ,we define Dθ : K → K such that Dθ(D̃k(xuyλ)) = θ̃(λ)D̃k(xuyλ), for xuyλ ∈ U. A direct
computation shows that Dθ ∈ Der0(K), for all θ ∈ Θ. Put Ω = {Dθ|θ ∈ Θ}.

Proposition 3.6. Der0(K) = adK−2 + Ω.
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Proof. Assume that yλ ∈ K−2. For f ∈ K j, j ∈ {−2,−1, ..., n − 2}, we have(
adyλ
)

( f ) =
[
yλ, f
]

=

2yλ −
∑
i∈J

xiDi

(
yλ
) xnDn ( f )

− (−1)deg(yλ)deg( f )

2 f −
∑
i∈J

xiDi ( f )

 xnDn

(
yλ
)

+
∑
i∈J

(−1)degyλ Di

(
yλ
)

Di ( f )

=2yλxnDn ( f ) ∈ K j.

Therefore, adK−2 ⊆ Der0(K). Obviously, Ω ⊆ Der0(K). It follows that adK−2 + Ω ⊆ Der0(K).
Conversely, let φ ∈ Der0(K). It is obvious that there exist yµ ∈ K−2 and Dθ ∈ Ω such that

(φ − adyµ − Dθ)
(
K−2

)
= 0. Consequently, by lemma 3.4, we have φ − adyµ − Dθ = 0. Then

φ = adyµ + Dθ ∈ adK−2 + Ω. Thus, Der0(K) ⊆ adK−2 + Ω.
□

Lemma 3.7. Let h1, ..., hn be the nonzero elements of U. If Gi(h j) = −G j(hi) for all distinct i, j ∈ Y,
then there exists nonzero element h ∈ U such that Gi(h) = hi, for i ∈ J and Gn(h) = −hn.

Proof. We use induction to prove there exist nonzero element h′ ∈ U such that Gi(h′) = hi for all i ∈ J.
When n − 1 = 1, let h′ = x1h1 , 0. Then

G1(h′) = (D1 + x1xnDn)(x1h1) = h1.

Suppose that there exists 0 , g ∈ U such that Gi(g) = hi for all i ∈ {1, ..., n − 2}. For i ∈ {1, ..., n − 2},

Gi(hn−1) = −Gn−1(hi) = −Gn−1(Gi(g)) = Gi(Gn−1(g)).

Therefore, Gi(hn−1 −Gn−1(g)) = 0. Let h′ = g + xn−1(hn−1 −Gn−1(g)). For i ∈ {1, ..., n − 2},

Gi(h′) = Gi(g) +Gi(xn−1(hn−1 −Gn−1(g)) = Gi(g) = hi.

On the other hand,

Gn−1(h′) = Gn−1(g)+Gn−1(xn−1(hn−1 −Gn−1(g)) = hn−1.

Consequently, we have Gi(h′) = hi, for all i ∈ {1, ..., n − 1}. For i ∈ {1, ..., n − 1},

Gi(hn) = −Gn(hi) = −Gn(Gi(h′)) = −Gi(Gn(h′)).

Then Gi(hn + Gn(h′)) = 0. Therefore, hn + Gn(h′) = 0. Namely, Gn(h′) = −hn. Consequently, the
assertion follows from h = h′. □

Lemma 3.8. Let φ ∈ h(Dert(K)), t ∈ N. If φ(G j) = 0, ∀ j ∈ Y, then there exists θ ∈ Θ such that
φ(D̃k(yλ)) = Dθ(D̃k(yλ)), for λ ∈ G.
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Proof. Assume that for every i ∈ Y , φ(yλGi) =
∑n

k=1 gkiλGk, where gkiλ ∈ U. Applying φ to [Gi, yλGn] =
0, i ∈ Y yields gknλ ∈ T(m). Let g(y)knλ = gknλ. Then φ(yλGn) =

∑n
k=1 g(y)knλGk. Note that [G j, yλGi] = 0

and [Gi, yλGi] = yλGn for all i ∈ J, i , j ∈ Y . Applying φ to these equations, we know that gkiλ contains
at most xi in Λ(n). Let gkiλ = g(xi, y)kiλ, i ∈ J. For j ∈ J, let D̃k(x j) =

∑n
k=1 akGk. Since [G j,G j] = Gn

and [G j, D̃k(x j)] = 0, we obtain
[G j,G j + D̃k(x j)] = Gn. (3.7)

Applying φ to (3.7) yields (−1)degφ[G j, φ(G j + D̃k(x j))] = 0. Then [G j, φ(D̃k(x j))] = 0. Namely,
[G j,
∑n

k=1 akGk] = 0. Therefore, G j(ak) = 0, k ∈ Y . Applying φ to [yλG j,G j + D̃k(x j)] = yλGn yields

[φ(yλG j),G j + D̃k(x j)] + (−1)degφ[yλG j, φ(D̃k(x j))] = φ(yλGn).

Therefore, [φ(yλG j),G j + D̃k(x j)] = φ(yλGn). Namely,

[
n∑

k=1

g(x j, y)k jλGk,G j + D̃k(x j)] =
n∑

k=1

g(y)knλGk.

A direct computation shows that g(y)knλ = 0, k ∈ J and g(x j, y) j jλ = g(y)nnλ. Then φ(yλGn) = g(y)nnλGn.
We abbreviate g(y)nnλ as g(y)nλ. Let hnλ(y) = g(y)nλy−λ. Then φ(yλGn) = hnλ(y)yλGn. Let φ(D̃k(x jyη)) =∑n

k=1 bkGk, where bk ∈ U. Note that

[G j, yηG j + D̃k(x jyη)] = yηGn (3.8)

Applying φ to (3.8) yields

(−1)degφ[G j, φ(yηG j) +
n∑

k=1

bkGk] = φ(yηGn). (3.9)

Since g(x j, y) j jλ = g(y)nnλ, we know g(x j, y) j jη ∈ T(m). We may abbreviate g(x j, y) j jη as g(y) jη. Let
h jη(y) = g(y) jηy−η. It follows from (3.9) that

(−1)degφh jη(y)yηGn + (−1)degφ
n∑

k=1

G j(bk)Gk = hnη(y)yηGn.

Then G j(bn) = (−h jη(y) + (−1)degφhnη(y))yη and G j(bi) = 0,i ∈ J. Therefore, bn = (−h jη(y) +
(−1)degφhnη(y))yηx j + qn with G j(qn) = 0. Then

φ(D̃k(x jyη)) =
n∑

k=1

bkGk = (−h jη(y) + (−1)degφhnη(y))yηx jGn + qnGn +
∑
i∈J

biGi.

Applying φ to [yλG, yηG j + D̃k(x jyη)] = yλ+ηGn yields

[φ(yλG), yηG j + D̃k(x jyη)] + (−1)degφ[yλG, φ(yηG j) + φ(D̃k(x jyη))] = φ(yλ+ηGn).
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A calculation shows that
h jλ(y) + hnη(y) = hn(λ+η)(y). (3.10)

Particularly, h jλ(y) + hnλ(y) = hn(2λ)(y) = hnλ(y) + hnλ(y). Therefore, h jλ(y) = hnλ(y) for j ∈ J.
Consequently, we may abbreviate hiλ(y) as hλ(y) for i ∈ Y . Then the Eq (3.10) can be equivalent to

hλ(y) + hη(y) = hλ+η(y), (3.11)

for λ, η ∈ G. Therefore, for k ∈ Y, c ∈ Π, we have

hczk(y) = chzk(y). (3.12)

Let λ =
∑m

j=1 λ jz j ∈ G. It follows from (3.11) and (3.12) that

hλ(y) = hλ1z1+...+λmzm(y) =
m∑

j=1

λ jhz j(y). (3.13)

We abbreviate hz j(y) as h j(y) for j = 1, ...,m. Let θ = (h1(y), ..., hm(y)) ∈ Θ. It follows from (3.13)
that hλ(y) =

∑m
j=1 λ jhz j(y) = θ̃(λ). Therefore,

φ(D̃k(yλ)) = φ(yλGn) = hλ(y)yλGn = θ̃(λ)yλGn = Dθ(D̃k(yλ)).

□

Lemma 3.9. Let φ ∈ h(Dert(K)), t ∈ N. Then there exist B ∈ NorW(K) = {x ∈ W |[x,K] ⊆ K} and
θ ∈ Θ such that φ = adB + Dθ.

Proof. Assume that for every k ∈ J, φ(Gk) =
∑n

i=1 fikGi, where fik ∈ U and
φ(Gn) = −(−1)degφ∑n

i=1 finGi, where fin ∈ U. For k , l ∈ Y , applying φ to [Gk,Gl] = 0 yields

Gl( fik) = −Gk( fil)

for all i ∈ Y . It follows from lemma 3.7 that there exist gi(i = 1, ..., n) such that

Gk(gi) = fik, k ∈ J,Gn(gi) = − fin.

Let B = −(−1)degφ∑n
i=1 giGi. Then for any k ∈ J,

adB(Gk) = [B,Gk] =
n∑

i=1

fikGi = φ(Gk),

adB(Gn) =[B,Gn] = −(−1)degφ
n∑

i=1

finGi = φ(Gn).

Therefore, φ(G j) = adB(G j) for all j ∈ Y . Namely, (φ − adB)(G j) = 0 for all j ∈ Y . According to
lemma 3.8, there exists θ ∈ Θ such that

(φ − adB)(D̃k(yλ)) = Dθ(D̃k(yλ))
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for all λ ∈ G. Let ϕ = φ− adB−Dθ. We use induction on j to prove ϕ(K j) = 0, j = −2,−1, 0, ..., n− 2.
A direct computation shows that ϕ(K−2) = 0. Assume that j ≥ −1. For any ξ ∈ K j, let [ξ,Gn] = ξ1.
Applying ϕ to this equation, we obtain

[ϕ(ξ),Gn] + (−1)degϕdegξ[ξ, ϕ(Gn)] = ϕ(ξ1).

It follows from the induction hypothesis that ϕ(ξ1) = 0. Since ϕ(Gn) = 0, we have [ϕ(ξ),Gn] = 0. Then
ϕ(ξ) ∈ K−1

⋂
K j+t = {0}. Therefore, ϕ(ξ) = 0. Since the choice of ξ was arbitrary, we have ϕ(K j) = 0.

Consequently, φ = adB + Dθ. □

Lemma 3.10. Let K̂(n,m) = {
∑

j∈Y f jG j ∈ W |Gi( f j) = −G j( fi) + (−1)deg fδi jGn( f ), i, j ∈ J}. Then
K(n,m) = K̂(n,m).

Proof. Assume that
∑

j∈Y f jG j ∈ K̂(n,m). According to lemma 3.7, there exists 0 , f ∈ U such that
Gi( f ) = fi for all i ∈ J. Therefore,

∑
j∈Y f jG j =

∑
j∈J G j( f )G j+ fnGn ∈ K(n,m). Then K̂(n,m) ⊆ K(n,m).

Conversely, let D̃k( f ) =
∑n

i=1 fiGi ∈ K(n,m). For i, j ∈ J,

Gi( f j) = Gi((−1)deg f G j( f ))
= (−1)deg f (−G jGi( f ) + δi jGn( f ))
= −G j((−1)deg f Gi( f )) + (−1)deg fδi jGn( f )
= −G j( fi) + (−1)deg fδi jGn( f ).

Therefore, D̃k( f ) ∈ K̂(n,m). Then K(n,m) ⊆ K̂(n,m).
Consequently, K(n,m) = K̂(n,m). □

Proposition 3.11. Let t ∈ N. Then Dert(K) = ad(Kt) + Ω.

Proof. It suffices to prove that Dert(K) ⊆ ad(Kt) +Ω. Let φ ∈ Dert(K). By virtue of Lemma 3.9, there
exists B ∈ NorW(K) such that φ(Gk) = adB(Gk), for k ∈ Y . Assume that B =

∑n
j=1 g jG j and plug it into

the following equation, i.e.,

(−1)degBdegG j[G j, [Gi, B]] + (−1)degG jdegGi[Gi, [B,G j]],
+(−1)degGidegB[B, [G j,Gi]] = 0

for i, j ∈ J. Accordingly, we have Gi( f j) + G j( fi) − (−1)deg fδi jGn( f ) = 0, i, j ∈ J. Therefore, B ∈
K(n,m). By virtue of Lemma 3.9, φ = adB+Dθ ∈ adK+Ω. Then Dert(K) ⊆ ad(Kt)+Ω. Consequently,
Dert(K) = ad(Kt) + Ω. □

Lemma 3.12. The following statements hold:
(1) Ω is a subspace of Der(K).
(2) ad(K)

⋂
Ω = {0}.
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Proof. The proof is completely analogous to [20, Lemma 3.11]. □

Theorem 3.13. Der(K) = ad(K
′
) ⊕Ω, where K

′
= K−2 ⊕ ⊕

n−2
i=1 Ki.

Proof. By virtue of Propositions 3.3, 3.5, 3.6, 3.11 and Lemma 3.12, this theorem can be easily proved.
□

Proposition 3.14. K(n,m) is invariant under Der(K).

Proof. Let ϕ ∈ Ω. Obviously, ϕ(K) ⊆ K.
Let ϕ ∈ ad(K

′
). Without loss of generality, we may suppose that ϕ = ad f , where f ∈ K

′
⊆ K. Since

K is a derived algebra of K, K is an ideal of K. Therefore, ϕ(K) = ad f (K) = [ f ,K] ⊆ K.
Since Der(K) = ad(K

′
) ⊕ Ω, we have ϕ(K) ⊆ K for any ϕ ∈ Der(K). Namely, K(n,m) is invariant

under Der(K). □

An immediate corollary of this proposition is the following.

Corollary 3.15. Der(K)|K ⊆ Der(K).

Remark. If m = 0, then derivation superalgebras of modular Lie superalgebras K(n), which were
mentioned in [22], will be obtained.
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