Research article Special Issues

Jacobi forms over number fields from linear codes

  • Received: 23 November 2021 Revised: 06 February 2022 Accepted: 13 February 2022 Published: 25 February 2022
  • MSC : 11F50, 94B05, 05E99

  • We suggest a Jacobi form over a number field $ \Bbb Q(\sqrt 5, i) $; for obtaining this, we use a linear code $ C $ over $ R: = \Bbb F_4+u\Bbb F_4 $, where $ u^2 = 0 $. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus $ g\ge 1 $ of a linear code over $ R $. Finally, we give invariants via a self-dual code of even length over $ R $.

    Citation: Boran Kim, Chang Heon Kim, Soonhak Kwon, Yeong-Wook Kwon. Jacobi forms over number fields from linear codes[J]. AIMS Mathematics, 2022, 7(5): 8235-8249. doi: 10.3934/math.2022459

    Related Papers:

  • We suggest a Jacobi form over a number field $ \Bbb Q(\sqrt 5, i) $; for obtaining this, we use a linear code $ C $ over $ R: = \Bbb F_4+u\Bbb F_4 $, where $ u^2 = 0 $. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus $ g\ge 1 $ of a linear code over $ R $. Finally, we give invariants via a self-dual code of even length over $ R $.



    加载中


    [1] E. Bannai, S. T. Dougherty, M. Harada, M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE T. Inform. Theory, 45 (1999), 1194–1205. https://doi.org/10.1109/18.761269 doi: 10.1109/18.761269
    [2] E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa, M. Oura, Type Ⅱ codes over $\Bbb F_2+u\Bbb F_2$ and applications to Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg, 73 (2003), 13–42. https://doi.org/10.1007/BF02941267 doi: 10.1007/BF02941267
    [3] K. Betsumiya, Y. Choie, Jacobi forms over totally real fields and type II codes over Galois rings $GR(2^m, f)$, European J. Combin., 25 (2004), 475–486. https://doi.org/10.1016/j.ejc.2003.01.001 doi: 10.1016/j.ejc.2003.01.001
    [4] K. Betsumiya, Y. Choie, Codes over $\Bbb F_4$, Jacobi forms and Hilbert-Siegel modular forms over $\Bbb Q(\sqrt 5)$, European J. Combin., 26 (2005), 629–650. https://doi.org/10.1016/j.ejc.2004.04.010 doi: 10.1016/j.ejc.2004.04.010
    [5] K. Betsumiya, S. Ling, F. R. Nemenzo, Type Ⅱ codes over $\Bbb F_{2^m}+u\Bbb F_{2^m}$, Discrete Math., 275 (2004), 43–65. https://doi.org/10.1016/S0012-365X(03)00097-9 doi: 10.1016/S0012-365X(03)00097-9
    [6] M. Broué, M. Enguehard, Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Sci. École Norm. Sup., 5 (1972), 157–181. https://doi.org/10.24033/asens.1223 doi: 10.24033/asens.1223
    [7] Y. Choie, S. T. Dougherty, Codes over $\Sigma_2m$ and Jacobi forms over the quaternions, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 129–147. https://doi.org/10.1007/s00200-004-0153-9 doi: 10.1007/s00200-004-0153-9
    [8] Y. Choie, S. T. Dougherty, Codes over rings, complex lattices and Hermitian modular forms, European J. Combin., 26 (2005), 145–165. https://doi.org/10.1016/j.ejc.2004.04.002 doi: 10.1016/j.ejc.2004.04.002
    [9] Y. Choie, H. Kim, Codes over $\Bbb Z_2m$ and Jacobi forms of genus $n$, J. Combin. Theory Ser. A, 95 (2001), 335–348. https://doi.org/10.1006/jcta.2000.3168 doi: 10.1006/jcta.2000.3168
    [10] Y. Choie, N. Kim, The complete weight enumerator of Type Ⅱ codes over $\Bbb Z_2m$ and Jacobi forms, IEEE T. Inform. Theory, 47 (2001), 396–399. https://doi.org/10.1109/18.904543 doi: 10.1109/18.904543
    [11] Y. Choie, E. Jeong, Jacobi forms over totally real fields and codes over $\Bbb F_p$, Illinois J. Math., 46 (2002), 627–643. https://doi.org/10.1215/ijm/1258136214 doi: 10.1215/ijm/1258136214
    [12] Y. Choie, P. Solé, Ternary codes and Jacobi forms, Discrete Math., 282 (2004), 81–87. https://doi.org/10.1016/j.disc.2003.12.002 doi: 10.1016/j.disc.2003.12.002
    [13] S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-59806-2
    [14] S. T. Dougherty, T. A. Gulliver, M. Harada, Type Ⅱ self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combin., 9 (1999), 233–250. https://doi.org/10.1023/A:1018696102510 doi: 10.1023/A:1018696102510
    [15] I. Duursma, Extremal weight enumerators and ultraspherical polynomials, Discrete Math., 268 (2003), 103–127. https://doi.org/10.1016/S0012-365X(02)00683-0 doi: 10.1016/S0012-365X(02)00683-0
    [16] M. Eighler, D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
    [17] A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, In: Actes du Congrès International des Mathématiciens, Gauthier-Villars, 1971.
    [18] N. Han, B. Kim, B. Kim, Y. Lee, Infinite families of MDR cyclic codes over $\Bbb Z_4$ via constacyclic codes over $\Bbb Z_4[u]/\langle u^2 -1 \rangle$, Discrete Math., 343 (2020), 111771. https://doi.org/10.1016/j.disc.2019.111771 doi: 10.1016/j.disc.2019.111771
    [19] B. Kim, Y. Lee, The minimum weights of two-point AG codes on norm-trace curves, Finite Fields Th. App., 53 (2018), 113–139. https://doi.org/10.1016/j.ffa.2018.06.005 doi: 10.1016/j.ffa.2018.06.005
    [20] B. Kim, Y. Lee, J. Doo, Classification of cyclic codes over a non-Galois chain ring $\Bbb Z_p[u]/\langle u^3 \rangle$, Finite Fields Th. App., 59 (2019), 208–237. https://doi.org/10.1016/j.ffa.2019.06.003 doi: 10.1016/j.ffa.2019.06.003
    [21] S. Ling, P. Solé, Type Ⅱ codes over $\Bbb F_4+u\Bbb F_4$, European J. Combin., 22 (2001), 983–997. https://doi.org/10.1006/eujc.2001.0509 doi: 10.1006/eujc.2001.0509
    [22] O. K. Richter, H. Skogman, Jacobi theta functions over number field, Monatsh. Math., 141 (2004), 219–235. https://doi.org/10.1007/s00605-003-0037-2 doi: 10.1007/s00605-003-0037-2
    [23] A. Sharma, A. K. Sharma, Construction of self-dual codes over $\Bbb Z_{2^m}$, Cryptogr. Commun., 8 (2016), 83–101. https://doi.org/10.1007/s12095-015-0139-4 doi: 10.1007/s12095-015-0139-4
    [24] H. Skogman, Jacobi forms over number fields, University of California, San Diego, 1999.
    [25] H. Skogman, Jacobi forms over totally real number fields, Results Math., 39 (2001), 169–182. https://doi.org/10.1007/BF03322682 doi: 10.1007/BF03322682
    [26] K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
    [27] K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
    [28] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121 (1999), 555–575. https://doi.org/10.1353/ajm.1999.0024 doi: 10.1353/ajm.1999.0024
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1701) PDF downloads(96) Cited by(1)

Article outline

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog