Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article Special Issues

Jacobi forms over number fields from linear codes

  • We suggest a Jacobi form over a number field Q(5,i); for obtaining this, we use a linear code C over R:=F4+uF4, where u2=0. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus g1 of a linear code over R. Finally, we give invariants via a self-dual code of even length over R.

    Citation: Boran Kim, Chang Heon Kim, Soonhak Kwon, Yeong-Wook Kwon. Jacobi forms over number fields from linear codes[J]. AIMS Mathematics, 2022, 7(5): 8235-8249. doi: 10.3934/math.2022459

    Related Papers:

    [1] Adel Alahmadi, Tamador Alihia, Patrick Solé . The build up construction for codes over a non-commutative non-unitary ring of order 9. AIMS Mathematics, 2024, 9(7): 18278-18307. doi: 10.3934/math.2024892
    [2] Ismail Aydogdu . On double cyclic codes over Z2+uZ2. AIMS Mathematics, 2024, 9(5): 11076-11091. doi: 10.3934/math.2024543
    [3] Ted Hurley . Ultimate linear block and convolutional codes. AIMS Mathematics, 2025, 10(4): 8398-8421. doi: 10.3934/math.2025387
    [4] Adel Alahmadi, Asmaa Melaibari, Patrick Solé . Quasi self-dual codes over non-unital rings from three-class association schemes. AIMS Mathematics, 2023, 8(10): 22731-22757. doi: 10.3934/math.20231158
    [5] Adel Alahmadi, Altaf Alshuhail, Patrick Solé . The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring. AIMS Mathematics, 2023, 8(10): 24367-24378. doi: 10.3934/math.20231242
    [6] Chaofeng Guan, Ruihu Li, Hao Song, Liangdong Lu, Husheng Li . Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes. AIMS Mathematics, 2022, 7(4): 6516-6534. doi: 10.3934/math.2022363
    [7] Doris Dumičić Danilović, Andrea Švob . On Hadamard 2-(51,25,12) and 2-(59,29,14) designs. AIMS Mathematics, 2024, 9(8): 23047-23059. doi: 10.3934/math.20241120
    [8] Hatoon Shoaib . Double circulant complementary dual codes over F4. AIMS Mathematics, 2023, 8(9): 21636-21643. doi: 10.3934/math.20231103
    [9] Irwansyah, Intan Muchtadi-Alamsyah, Fajar Yuliawan, Muhammad Irfan Hidayat . Generalized Reed-Solomon codes over number fields and exact gradient coding. AIMS Mathematics, 2024, 9(4): 9508-9518. doi: 10.3934/math.2024464
    [10] Turki Alsuraiheed, Elif Segah Oztas, Shakir Ali, Merve Bulut Yilgor . Reversible codes and applications to DNA codes over F42t[u]/(u21). AIMS Mathematics, 2023, 8(11): 27762-27774. doi: 10.3934/math.20231421
  • We suggest a Jacobi form over a number field Q(5,i); for obtaining this, we use a linear code C over R:=F4+uF4, where u2=0. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus g1 of a linear code over R. Finally, we give invariants via a self-dual code of even length over R.



    There have been many developments in invariant theory and coding theory with various applications [5,13,16,17,18,19,20,21,27]. There are connections between invariants and weight enumerators for self-dual codes over various rings and fields [1,2,3,4,7,8,9,10,11,12,14]. Gleason [17] says the weight enumerators for binary Type Ⅱ codes are invariant by a certain finite group of order 192. In [6], the authors prove that elliptic modular forms can be obtained from homogeneous weight enumerators of binary Type Ⅱ codes by using specific Jacobi theta series. For a finite ring Z2m, a Jacobi form of the full Jacobi group is suggested by complete weight enumerator of Type Ⅱ codes over the ring [10]. Recently, in [23], the authors determine some Jacobi forms from Type Ⅱ codes over Z2m, and they also use shadow codes. Bannai et al. [2], construct Hermitian modular form by using Type Ⅱ codes over F2+uF2 with u2=0. They suggest invariants concerning the symmetrized biweight enumerators, i.e., the genus is equal to 2, of Type Ⅱ codes over the ring. In many works, a Jacobi form is studied over totally real fields (see [3,11,25]). For this reason, in this work, we figure out a Jacobi form which is not over a totally real field. We establish a connection between Jacobi forms and codes over R=F4+uF4(u2=0). Since the ring R is described using the ring of integers in the quartic field K=Q(5,i), we should consider Jacobi forms over the field K, which is not totally real. The notion of Jacobi forms over arbitrary number fields was defined by Skogman in [24]. In this paper, we add examples of Jacobi forms over K by modifying theta series of the lattices associated to codes over R.

    We focus on the ring F4+uF4 with u2=0 in this paper. This ring is a finite commutative local Frobenius ring of order 16. A Frobenius ring is one of the most significant part in coding theory since we get the result that |C||C|=|Rn| for a code C of length n over a Frobenius ring; this fact is connected to MacWilliams identity directly. Furthermore, for rings of order 16, we already know about their generating characters from [13]. This means that we can adjust this information to our studies when finding MacWilliams identity. MacWilliams identity is one of significant results in coding theory that describes how the weight enumerator of a linear code and the weight enumerator of the dual code relate to each other. MacWilliams identity give various application in coding theory. For example, in [13], the author presents an upper bound for the minimum distances of divisible codes through their dual distances. In [21], the authors study Type Ⅱ codes over F4+uF4 and in particular the Gray map, the Lee weight, the construction of lattices and invariants. Actually, in [21], there are no results for invariants in higher genus.

    In this paper, we suggest a Jacobi form from a linear code C over R:=F4+uF4, where u2=0 (Theorem 3.1). This Jacobi form is not over totally real field, and it is related to complete weight enumerator of the code C. We introduce MacWilliams identities for both, complete weight enumerator and symmetrized weight enumerator in higher genus g1 of a linear code over R. Finally, we give invariants via a self-dual code of even length over R (Theorem 4.4).

    Throughout this paper, we use the following notations.

    Notation

    K        an algebraic number field

    r1        the number of real embeddings of K

    r2        the number of conjugate pairs of complex embeddings of K

    δK        the different of K

    OK        the ring of integers of K

    Q        the full ring of quaternions{x+yκ:x,yC,κ2=1,aκ=κ¯a,aC}

    hQ        {x+yκQ:yR>0}

    u+vκC    u+iv foru+vκQ

    u+vκ¯C    ¯u+i¯v for u+vκQ

    R        a Frobenius ring F4+uF4, whereu2=0

    χ        the generating character of R 

    wtL        the Lee weight in F4

    ˆwtL        the Lee weight in R

    N        the cardinality of R

    tM        the transpose of a matrix  M

    Im        an m×m identity matrix

    diag(v1,,vm)  an m×m diagonal matrix, where an (i,i) -th component is vi (1im)

    GL(m,F)     the general linear group of degree m over F

    AB     the Kronecker product of two matrices A and B

    e[z]      e2πiz

    Let K be an algebraic number field, and Q be the full ring of quaternions {x+yκ:x,yC,κ2=1,aκ=κ¯a,aC}; the set of all the elements of Q is equal to {a+bi+cj+dκ:a,b,c,dR,i2=j2=κ2=1,ij=κ,jκ=i,ji=κ} (see [22,p. 220]). For an element αK, we denote the real conjugates of α by α(1),,α(r1), and the complex conjugates of α by α(r1+1),,α(r1+2r2), where α(j+r2)=¯α(j) for r1+1jr1+r2.

    We set ΓJ(K)=ΓO2K, where Γ=SL(2,OK); the group ΓJ(K) is called the Jacobi group of K. The group law of ΓJ(K) is given by

    (A,X)(B,Y)=(AB,XB+Y)(A,BΓ,X,YO2K).

    Let h be the upper half plane, and hQ={x+yκQxC,yR+} be the quaternionic upper half plane. Let H be the space hr1×hr2Q×Cr1×Qr2; an element of H is written as (τ,z):=(τ1,,τr1+r2,z1,,zr1+r2).

    The group ΓJ(K) acts on H, and the action is given as follows: For elements (αβγδ)SL(2,OK) and [λ,μ]O2K,

    (αβγδ)(τ,z)=(α(1)τ1+β(1)γ(1)τ1+δ(1),,α(r1)τr1+β(r1)γ(r1)τr1+δ(r1),(α(r1+1)τr1+1+β(r1+1))(γ(r1+1)τr1+1+δ(r1+1))1,,(α(r1+r2)τr1+r2+β(r1+r2))(γ(r1+r2)τr1+r2+δ(r1+r2))1,z1γ(1)τ1+δ(1),,zr1γ(r1)τr1+δ(r1),(γ(r1+1)τr1+1+δ(r1+1))1zr1+1,,(γ(r1+r2)τr1+r2+δ(r1+r2))1zr1+r2),

    and

    [λ,μ](τ,z)=(τ,z1+τ1λ(1)+μ(1),,zr1+r2+τr1+r2λ(r1+r2)+μ(r1+r2)).

    For γ,δ,λK and (τ,z)H, set

    TR(tMz(γτ+δ)1γzM)=r1j=1˜m(j)γ(j)z2jγ(j)τj+δ(j)+r1+r2j=r1+1tm(j)(uj+¯vjκ)(γ(j)τj+δ(j))1γ(j)(uj+vjκ)m(j)C+r1+r2j=r1+1tm(j)(uj+¯vjκ)(γ(j)τj+δ(j))1γ(j)(uj+vjκ)m(j)¯C,TR(tM(λτλ+2λz)M)=r1j=1˜m(j)(λ(j)2τj+2λ(j)zj)+r1+r2j=r1+1tm(j)(λ(j)τjλ(j)+2λ(j)zj)m(j)C+r1+r2j=r1+1tm(j)(λ(j)τjλ(j)+2λ(j)zj)m(j)¯C,

    where

    zj=uj+vjκ for j=r1+1,,r1+r2.

    m(i): vectors in Cr1+2r2 (1ir1+2r2) such that m(j+r2)=¯m(j) for j=r1+1,,r1+r2.

    M=(m(1)m(r1+2r2)): an (r1+2r2)×(r1+2r2)-matrix over C.

    ˜m(j)=tm(j)m(j).

    Next, we need to present a multiplier system for SL(2,OK). For doing this, we set the following: For A=(αβγδ)SL(2,OK) and τ=(τ1,,τr1+r2)hr1×hr2Q,

    Aτ=(α(1)τ1+β(1)γ(1)τ1+δ(1),,α(r1)τr1+β(r1)γ(r1)τr1+δ(r1),(α(r1+1)τr1+1+β(r1+1))(γ(r1+1)τr1+1+δ(r1+1))1,,(α(r1+r2)τr1+r2+βr1+r2)(γ(r1+r2)τr1+r2+δr1+r2)1),

    and

    J(A,τ)=N(γτ+δ),

    where

    N(γτ+δ):=r1j=1(γ(j)τj+δ(j))r1+r2j=r1+1(|γ(j)xj+δ(j)|2+y2j|γ(j)|2),

    and τj=xj+yjκ for j=r1+1,,r1+r2. A multiplier system for SL(2,OK) is a function χ:SL(2,OK)C such that

    χ(AB)J(AB,τ)12=χ(A)J(A,Bτ)12χ(B)J(B,τ)12

    for all A,BSL(2,OK) and τhr1×hr2Q.

    The next definition is about a Jacobi form of weight k and index m with an index vector for a number field.

    Definition 2.1. [22,24] Let K be an algebraic number field, k12Z, and mOK. Let χ be a multiplier system for SL(2,OK), and m be a vector in Cn such that tm(j)m(j)=m(j) for j=1,,n. A Jacobi form of weight k, index m, index vector m and the multiplier system χ for the number field K is a function Φ:HC satisfying

    Φ((αβγδ)(τ,z))=χ((αβγδ))N(γτ+δ)ke[TR(tMz(γτ+δ)1γzM)]Φ(τ,z)

    and

    Φ([λ,μ](τ,z))=e[TR(tM(λτλ+2λz)M)]Φ(τ,z)

    for all (αβγδ)SL(2,OK),[λ,μ]O2K, τhr1×hr2Q and zCr1×Qr2.

    A Frobenius ring is a finite commutative ring R satisfying that the R-module R is injective. We consider the number field Q(5,i) which has the ring of integers Z[1+52,i]. Let u be the residue class of x+1 in the quotient ring

    R:=F4+uF4=Z[1+52,x]/2,(x+1)2,

    i.e., u2=0 in R. On the other side, the ring R is isomorphic to F2[u,v]/v2+v+1,u2. This ring R is a finite commutative local Frobenius ring of order 16 (cf. [13]).

    A code C of length n over R is an R-submodule of Rn, and an element c=(c1,,cn) in C is called a codeword in C. The dual code C of C is {cRn:cˆc=0 for all ˆcC} with respect to the Euclidean inner product. If CC (resp. C=C), then C is a self-orthogonal (resp. self-dual) code.

    The Lee weight wtL(a) of an element a in F4={0,1,ω,ˉω} is given as follows:

    wtL(a)={0 if a=0,1 if a=ω or ˉω,2if a=1.

    For a vector w=(w1,,wn)Fn4, the Lee weight wtL(w) of w is ni=1wtL(wi).

    Definition 2.2 gives the Lee weight of an element in R=F4+uF4.

    Definition 2.2. For an element α=a+bu in R (a,bF4), the Lee weight ˆwtL(α) of α in R is

    ˆwtL(α)=wtL(b)+wtL(a+b),

    where wtL is the Lee weight in F4. For a vector v=(v1,,vn) in Rn, the Lee weight ˆwtL(v) of v is ni=1ˆwtL(vi).

    In the following Table 1, we suggest the Lee weights of all the elements in R.

    Table 1.  Lee weights of all the elements α of R.
    α ˆwtL(α) α ˆwtL(α) α ˆwtL(α) α ˆwtL(α)
    0 0 1 2 ω 1 ˉω 1
    u 4 1+u 2 ω+u 3 ˉω+u 3
    ωu 2 1+ωu 2 ω+ωu 1 ˉω+ωu 3
    ˉωu 2 1+ˉωu 2 ω+ˉωu 3 ˉω+ˉωu 1

     | Show Table
    DownLoad: CSV

    Proposition 2.3. [21]Let us define a map ϕ from Rn to F2n4 as follows:

    ϕ:RnF2n4(ai+biu,,an+bnu)(b1,a1+b1,,bn,an+bn),

    where ai,biF4 (1in). The map ϕ preserves the Lee weight from Rn to F2n4, it means that, the map ϕ is a Gray map.

    For a self-dual code C over R, C is a Type II code if the Lee weight of every codeword is divisible by 4. If not, the code C is called a Type I code.

    Lemma 2.4. [13,21] Let C be a linear code of length n over R.

    (ⅰ) We have that |C||C|=|Rn|.

    (ⅱ) There is a Type II code of length n over R if and only if n is even.

    From now on, we suggest some weight enumerators for a code C over R: A complete weight enumerator and a symmetrized weight enumerator of C. Let C be a linear code of length n over R, and v=(v1,,vn) be a codeword in C. Let na(v) be the number of coordinates vi such that vi=a, where aR and 1in. We define the complete weight enumerator cweC of C as

    cweC(x1,,xN):=vCNj=1xnaj(v)j,

    where xj is an indeterminate and ajR for 1jN.

    Let U be a fixed subgroup of the unit group of R. We note that the group U acts on R by the multiplication. We denote ab if a=ub for some uU; it is an equivalence relation in R. Moreover, S={s1,,s|S|} is a set of representatives of the distinct orbits of U. The symmetrized weight enumerator sweC of C in Rn is

    sweC(x1,,x|S|)=cC|S|j=1xrsjnr(c)j.

    We figure out a Jacobi form for a number field via a linear code over R. Before we do this, we first give a theta function as follows.

    Let K be a number field, and Λ be a lattice in Kn, i.e., Λ is a free OK-module of rank n. Now, for each Y in Λ, we define a theta function ΘΛ,Y:HC as

    ΘΛ,Y(τ,z):=xΛe[r1j=1(12tx(j)x(j)τj+tx(j)Y(j)zj)+r1+r2j=r1+112tx(j)τjx(j)+tx(j)zjY(j)C+r1+r2j=r1+112tx(j)τjx(j)+tx(j)zjY(j)¯C].

    In this section, let K=Q(5,i), and then OK=Z[(1+5)/2,i]; so r1=0 and r2=2. Here, we can check that RF2[u,v]/u2+u+1,v2OK/2OK; the first equivalence is introduced in Section 2, and the second equivalence is from the ring isomorphism F2[u,v]/u2+u+1,v2OK/2OK, where u+u2+u+1,v2(1+5)/2+2OK, and v+u2+u+1,v21+i+2OK.

    Let h:OKR be the reduction map by modulo 2, and ˜h:OnKRn be defined as (x1,,xn)(h(x1),,h(xn)). For a linear code C over R, the lattice Λ(C) is 12˜h1(C).

    In the following theorem, we obtain the relation between the theta function and complete weight enumerator for a linear code under the previous settings.

    Theorem 3.1. Let C be a linear code of length n over R. Then we get

    ΘΛ(C),2(1,,1)(τ,z)=cweC(ω1,μ(τ,z)μOK/2OK),

    where

    ω1,μ(τ,z)=rδ1K,rμ(mod

    Proof. Let v be a codeword (v_{1}, \ldots, v_{n}) in C , and \widetilde{v} be a vector (\widetilde{v}_{1}, \ldots, \widetilde{v}_{n})\in\widetilde{h}^{-1}(v) . We easily check \widetilde{h} is a ring homomorphism, thus \widetilde{h}^{-1}(v) = \widetilde{h}^{-1}({\bf 0})+\widetilde{v} . Then we obtain that

    \begin{equation} \begin{array}{cl} \sum\limits_{{x\in\widetilde{h}^{-1}(v) }}&e\left[\left\lVert\frac{1}{4}(x_{1}^{(1)}\tau_{1}x_{1}^{(1)}+\cdots+x_{n}^{(1)}\tau_{1}x_{n}^{(1)})+(x_{1}^{(1)}+\cdots+x_{n}^{(1)})z_{1}\right\rVert_{\mathbb{C}}\right.\\ &+\left.\left\lVert\frac{1}{4}(x_{1}^{(2)}\tau_{2}x_{1}^{(2)}+\cdots+x_{n}^{(2)}\tau_{2}x_{n}^{(2)})+(x_{1}^{(2)}+\cdots+x_{n}^{(2)})z_{2}\right\rVert_{\mathbb{C}}\right.\\ &+\left.\left\lVert\frac{1}{4}(x_{1}^{(1)}\tau_{1}x_{1}^{(1)}+\cdots+x_{n}^{(1)}\tau_{1}x_{n}^{(1)})+(x_{1}^{(1)}+\cdots+x_{n}^{(1)})z_{1}\right\rVert_{\overline{\mathbb{C}}}\right.\\ &+\left.\left\lVert\frac{1}{4}(x_{1}^{(2)}\tau_{2}x_{1}^{(2)}+\cdots+x_{n}^{(2)}\tau_{2}x_{n}^{(2)})+(x_{1}^{(2)}+\cdots+x_{n}^{(2)})z_{2}\right\rVert_{\overline{\mathbb{C}}}\right], \\ = \sum\limits_{{x_{1}\in 2\mathcal{O}_{K}+\widetilde{v}_{1}}}&e\left[\left\lVert\frac{1}{4}x_{1}^{(1)}\tau_{1}x_{1}^{(1)}+x_{1}^{(1)}z_{1}\right\rVert_{\mathbb{C}}+\left\lVert\frac{1}{4}x_{1}^{(2)}\tau_{2}x_{1}^{(2)}+x_{1}^{(2)}z_{2}\right\rVert_{\mathbb{C}}\right.\\ &\quad+\left.\left\lVert\frac{1}{4}x_{1}^{(1)}\tau_{1}x_{1}^{(1)}+x_{1}^{(1)}z_{1}\right\rVert_{\overline{\mathbb{C}}}+\left\lVert\frac{1}{4}x_{1}^{(2)}\tau_{2}x_{1}^{(2)}+x_{1}^{(2)}z_{2}\right\rVert_{\overline{\mathbb{C}}}\right]\\ \quad\cdots \sum\limits_{{ x_{n}\in 2\mathcal{O}_{K}+\widetilde{v}_{n}}}&e\left[\left\lVert\frac{1}{4}x_{n}^{(1)}\tau_{1}x_{n}^{(1)}+x_{n}^{(1)}z_{1}\right\rVert_{\mathbb{C}}+\left\lVert\frac{1}{4}x_{n}^{(2)}\tau_{2}x_{n}^{(2)}+x_{n}^{(2)}z_{2}\right\rVert_{\mathbb{C}}\right.\\ &\quad\left.+\left\lVert\frac{1}{4}x_{n}^{(1)}\tau_{1}x_{n}^{(1)}+x_{n}^{(1)}z_{1}\right\rVert_{\overline{\mathbb{C}}}+\left\lVert\frac{1}{4}x_{n}^{(2)}\tau_{2}x_{n}^{(2)}+x_{n}^{(2)}z_{2}\right\rVert_{\overline{\mathbb{C}}}\right], \\ = \mathop \prod \limits_{\mu \in R} \omega_{1, \mu}(\vec{\tau}, \vec{z})^{n_{\mu}(v)}; \end{array} \end{equation} (3.1)

    we only consider \tau_1 and \tau_2 because r_1 = 0 and r_2 = 2 as we mentioned before. And the second equation is from that

    \begin{array}{ll} \lVert (u_{1}+v_{1}\kappa)+(u_{2}+v_{2}\kappa)\rVert_{\mathbb{C}}& = (u_{1}+v_{1}i)+(u_{2}+v_{2}i) = \lVert u_{1}+v_{1}\kappa\rVert_{\mathbb{C}}+\lVert u_{2}+v_{2}\kappa\rVert_{\mathbb{C}}, \\ \lVert (u_{1}+v_{1}\kappa)+(u_{2}+v_{2}\kappa)\rVert_{\overline{\mathbb{C}}}& = (\overline{u_{1}}+\overline{v_{1}}i)+(\overline{u_{2}}+\overline{v_{2}}i) = \lVert u_{1}+v_{1}\kappa\rVert_{\overline{\mathbb{C}}}+\lVert u_{2}+v_{2}\kappa\rVert_{\overline{\mathbb{C}}} \end{array}

    for all u_{1}+v_{1}\kappa, u_{2}+v_{2}\kappa\in\mathcal{Q} . Therefore, we have that

    \begin{align*} &\Theta_{\Lambda(C), \sqrt{2}(1, \ldots, 1)}(\vec{\tau}, \vec{z})\\ & = \sum\limits_{x\in\Lambda(C)}e\left[\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\mathbb{C}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\mathbb{C}}\right.\\ &+\left.\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\overline{\mathbb{C}}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\overline{\mathbb{C}}}\right], \\ & = \sum\limits_{x\in\frac{1}{\sqrt{2}}\tilde{h}^{-1}(C)}e\left[\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\mathbb{C}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\mathbb{C}}\right.\\ &+\left.\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\overline{\mathbb{C}}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\overline{\mathbb{C}}}\right], \\ & = \sum\limits_{v\in C}\sum\limits_{x\in\frac{1}{\sqrt{2}}\tilde{h}^{-1}(v)}e\left[\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\mathbb{C}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\mathbb{C}}\right.\\ &+\left.\left\lVert\frac{1}{2}{}^{t}x^{(1)}\tau_{1}x^{(1)}+{}^{t}x^{(1)}z_{1}Y^{(1)}\right\rVert_{\overline{\mathbb{C}}}+\left\lVert\frac{1}{2}{}^{t}x^{(2)}\tau_{2}x^{(2)}+{}^{t}x^{(2)}z_{2}Y^{(2)}\right\rVert_{\overline{\mathbb{C}}}\right], \\ & = \sum\limits_{v\in C}\prod\limits_{\mu\in R}\omega_{1, \mu}(\vec{\tau}, \vec{z})^{n_{\mu}(v)}, \\ & = cwe_{C}(\omega_{1, \mu}(\vec{\tau}, \vec{z})\mid\mu\in \mathcal O_K/2\mathcal O_K); \end{align*}

    the fourth equation is from (3.1), where n_{\mu}(v): = |\{j: v_{j} = \mu\}| for each \mu\in\mathcal{O}_{K}/2\mathcal{O}_{K} . The result is proved.

    We fix an \mathcal O_K -basis \{v_1, \ldots, v_n\} for a lattice \Lambda , and set L to be an n \times n -matrix (v_1, \ldots, v_n) . The matrix Q: = {}^{t}LL is a symmetric matrix, and Q^{(j)}: = {}^{t}L_{j}L_{j} , where L_{j} = (v_{1}^{(j)}, \ldots, v_{n}^{(j)}) for 1\leq j\leq n . Morevoer, Q^{(j)} is positive definite for 1\leq j\leq r_{1} .

    In [24], for b\in \mathcal O_K^n , the function \theta_{Q, b}(\vec{\tau}, \vec{z}) is defined as

    \begin{align*} \theta_{Q, b}(\vec{\tau}, \vec{z})& = \sum\limits_{x \in\mathcal{O}_{K}^{n}}e\left[\left(\sum\limits_{j = 1}^{r_{1}}\left(Q^{(j)}[x^{(j)}]\tau_{j}+2{}^{t}x^{(j)}Q^{(j)}b^{(j)}z_{j}\right)\right.\right. +\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\mathbb{C}}\right.\right. \\ &\quad+\left.\left. \sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\overline{\mathbb{C}}}\right)\right]. \end{align*}

    The next theorem says that we can obtain a Jacobi form by using a linear code of length n over R .

    Theorem 3.2. We use the same notations as above.Let C be a linear code of length n over R , and b an element of \mathbb{Z}[\alpha, i]^{n} with \alpha = (1+\sqrt 5)/2 .Then we get a Jacobi form of weight \frac{n}{2} , index 4n and index vector (2, \ldots, 2) as follows:

    \sum\limits_{\substack{p_{1}^{2}+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2} = 4n \\ p_{\ell}\neq 2, \; q_{\ell} = 0 \; for\; all\; 1\le \ell\le n}}\theta_{Q, b}(\vec{\tau}, \vec{z})+cwe_{C}\left(\omega_{1, \mu}(4\vec{\tau}, 4\vec{z})\mid\mu\in \mathcal{O}_{K}/2\mathcal{O}_{K}\right),

    where Lb = (p_{1}+q_{1}\alpha, \ldots, p_{n}+q_{n}\alpha)\in\mathbb{Z}[\alpha]^{n} (in particular, \omega_{1, \mu}(\vec{\tau}, \vec{z}) is introduced in Theorem 3.1) .

    Proof. First, we claim that Lb is in \Bbb Z[\alpha]^n . We set an n -tuple Lb = (t_1, \ldots, t_n) satisfying {}^{t}(Lb)Lb = t_{1}^{2}+\cdots+t_{n}^{2} = 4n , and \overline{{}^{t}(Lb)}Lb = |t_{1}|^{2}+\cdots+|t_{n}|^{2} = 4n ; the \ell -th component t_{\ell} can be written as p_{\ell}+q_{\ell}\alpha+r_{\ell}i+s_{\ell}\alpha i , where p_\ell, q_\ell, r_\ell, s_\ell\in \Bbb Z (1 \le \ell \le n) . It means that

    \begin{align} (p_{1}+q_{1}\alpha+r_{1}i+s_{1}\alpha i)^{2}+\cdots+(p_{n}+q_{n}\alpha+r_{n}i+s_{n}\alpha i)^{2}& = 4n, \end{align} (3.2)
    \begin{align} (p_{1}+q_{1}\alpha)^{2}+(r_{1}+s_{1}\alpha)^{2}+\cdots+(p_{n}+q_{n}\alpha)^{2}+(r_{n}+s_{n}\alpha)^{2}& = 4n. \end{align} (3.3)

    Let \sigma be the complex embedding of K such that \sigma:\sqrt 5 \mapsto -\sqrt 5 and i \mapsto i . Applying \sigma to (3.3), we have (p_{1}+q_{1}\sigma(\alpha))^{2}+(r_{1}+s_{1}\sigma(\alpha))^{2}+\cdots+(p_{n}+q_{n}\sigma(\alpha))^{2}+(r_{n}+s_{n}\sigma(\alpha))^{2} = 4n . It follows that

    \begin{equation} (\alpha p_{1}-q_{1})^{2}+(\alpha r_{1}-s_{1})^{2}+\cdots+(\alpha p_{n}-q_{n})^{2}+(\alpha r_{n}-s_{n})^{2} = 4n\alpha^{2} = 4n+4n\alpha. \end{equation} (3.4)

    We get that combining (3.3) and (3.4), we see that

    p_{1}^{2}+q_{1}^{2}-r_{1}^{2}-s_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}-r_{n}^{2}-s_{n}^{2} = 4n = p_{1}^{2}+q_{1}^{2}+r_{1}^{2}+s_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}+r_{n}^{2}+s_{n}^{2};

    the first equality is obtained by expanding (3.2), and the second equality is from combining (3.3) and (3.4). Thus r_{\ell} = s_{\ell} = 0 since r_{\ell}, s_{\ell} \in \Bbb Z for \ell = 1, \ldots, n . Hence we proved the first claim.

    By using [24,p. 41], we can say that

    \sum\limits_{\substack{b\in\mathbb{Z}[\alpha, i]^{n}, \\ Lb = (p_{1}+q_{1}\alpha, \ldots, p_{n}+q_{n}\alpha)\in\mathbb{Z}[\alpha]^{n}, \\ p_{1}^{2}+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2} = 4n}}\theta_{Q, b}(\vec{\tau}, \vec{z})

    is a Jacobi form of weight \frac{n}{2} , index 4n and index vector (2, \ldots, 2) .

    Next, when Lb = (2, \ldots, 2) , \theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z}) is obtained from the complete weight enumerator of the code C ; in this case, the condition p_{1}^{2}+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2} = 4n is satisfied. In detail, we have that

    \Theta_{\Lambda(C), \sqrt{2}(1, \ldots, 1)}(4\vec{\tau}, 4\vec{z}) = \Theta_{\tilde h^{-1}(C), (2, \ldots, 2)}(2\vec{\tau}, 2\vec{z}) = \theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z}),

    where b = L^{-1}(2, \ldots, 2) ; the first equation can be checked easily, and the second equation follows by the below reasoning

    \begin{align*} &\Theta_{\tilde h^{-1}(C), (2, \ldots, 2)}(2\vec{\tau}, 2\vec{z})\\ & = \sum\limits_{x\in\tilde h^{-1}(C)}e\left[\left(\sum\limits_{j = 1}^{r_{1}}{}^{t}x^{(j)}x^{(j)}\tau_{j}+2{}^{t}x^{(j)}Y^{(j)}z_{j}\right.\right.+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}\tau_{j}x^{(j)}+2{}^{t}x^{(j)}z_{j}Y^{(j)}\right\rVert_{\mathbb{C}}\right.\right.\\ &\quad+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}\tau_{j}x^{(j)}+2{}^{t}x^{(j)}z_{j}Y^{(j)}\right\rVert_{\overline{\mathbb{C}}}\right)\right], \\ & = \sum\limits_{x\in\mathcal{O}_{K}^{n}}e\left[\left(\sum\limits_{j = 1}^{r_{1}}{}^{t}x^{(j)}{}^{t}L_{j}L_{j}x^{(j)}\tau_{j}+2{}^{t}x^{(j)}{}^{t}L_{j}L_{j}b^{(j)}z_{j}\right.\right.+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\mathbb{C}}\right.\right.\\ &\quad+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\overline{\mathbb{C}}}\right)\right], \\ & = \sum\limits_{x\in\mathcal{O}_{K}^{n}}e\left [\left(\sum\limits_{j = 1}^{r_{1}}Q^{(j)}[x^{(j)}]\tau_{j}+2{}^{t}x^{(j)}Q^{(j)}b^{(j)}z_{j}\right.\right.+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\mathbb{C}}\right.\right.\\ &\quad+\left.\left.\sum\limits_{j = r_{1}+1}^{r_{1}+r_{2}}\left\lVert {}^{t}x^{(j)}{}^{t}L_{j}\tau_{j}L_{j}x^{(j)}+2{}^{t}x^{(j)}{}^{t}L_{j}z_{j}L_{j}b^{(j)}\right\rVert_{\overline{\mathbb{C}}}\right)\right], \\ & = \theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z}) \end{align*}

    (here Y = (2, \ldots, 2) ). This implies the second claim, thus this is the result here.

    We close this section with an examlple.

    Example 3.3. Let C be the linear code over R of length 2 generated by the following 1\times 2 matrix

    \begin{pmatrix}\alpha & 1+\alpha+i \end{pmatrix}

    (here \alpha = (1+\sqrt{5})/2 ).By using Table 1, we can check that the code C is a Type II code over R . Meanwhile, \tilde{h}^{-1}(C) is generated by (\alpha, 1+\alpha+i), (2, 0) and (0, 2) over \mathcal{O}_{K} . And then \{(\alpha, 1+\alpha+i), (0, 2)\} is a basis for \tilde{h}^{-1}(C) ; since (\alpha, 1+\alpha+i) and (0, 2) are linearly independent over \mathcal{O}_{K} , and (2, 0) = (-2+2\alpha)(\alpha, 1+\alpha+i)+(-\alpha+i-\alpha i)(0, 2) .Thus the matrix L is obtained as

    L = \begin{pmatrix}\alpha & 0 \\ 1+\alpha+i & 2\end{pmatrix},

    and the matrix Q = {}^tLL .We note that

    L^{-1} = \frac{1}{2\alpha}\begin{pmatrix}2 & 0 \\ -1-\alpha-i & \alpha\end{pmatrix} = \frac{1}{2}\begin{pmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{pmatrix}.

    As a result, by Theorem 3.2, we have a Jacobi form of weight 1, index 8 and index vector (2, 2) as follows:

    \begin{align*} \sum\limits_{\substack{b\in\mathbb{Z}[\alpha, i]^{2}, \\ Lb = (p_{1}+q_{1}\alpha, p_{2}+q_{2}\alpha)\in\mathbb{Z}[\alpha]^{2}, \\ p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2} = 8}}\theta_{Q, b}(\vec{\tau}, \vec{z})& = \sum\limits_{\substack{p_{1}, q_{1}, p_{2}, q_{2}\in\mathbb{Z}, \\ p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2} = 8}}\theta_{Q, L^{-1}\left(\begin{smallmatrix}p_{1}+q_{1}\alpha \\ p_{2}+q_{2}\alpha\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})\\ & = \theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 2\pm 2\alpha \\ 0\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 2 \\ \pm 2\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})\\ &\quad+\theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 2 \\ \pm 2\alpha\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 2\alpha \\ \pm 2\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})\\ &\quad+\theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 2\alpha \\ \pm2\alpha\end{smallmatrix}\right)}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}0 \\ \pm 2\pm 2\alpha\end{smallmatrix}\right)}(\vec{\tau}, \vec{z}), \\ & = cwe_{C}\left(\omega_{1, \mu}(4\vec{\tau}, 4\vec{z})\mid\mu\in \mathcal{O}_{K}/2\mathcal{O}_{K}\right)+ \theta_{Q, b_1}(\vec{\tau}, \vec{z}) +\theta_{Q, b_2}(\vec{\tau}, \vec{z})\\ &+\theta_{Q, b_3}(\vec{\tau}, \vec{z}) +\theta_{Q, b_4}(\vec{\tau}, \vec{z}) +\theta_{Q, b_5}(\vec{\tau}, \vec{z})+\theta_{Q, b_6}(\vec{\tau}, \vec{z})+\theta_{Q, b_{7}}(\vec{\tau}, \vec{z}), \end{align*}

    where b_1 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 1\pm \alpha \\ 0\end{smallmatrix}\right) , b_2 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}- 1 \\ - 1\end{smallmatrix}\right) , b_{3} = \pm\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}1 \\ -1\end{smallmatrix}\right) , b_4 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm 1 \\ \pm\alpha\end{smallmatrix}\right) , b_5 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm \alpha \\ \pm 1\end{smallmatrix}\right) , b_6 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}\pm \alpha \\ \pm\alpha\end{smallmatrix}\right) , b_7 = \left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}0 \\ \pm 1\pm\alpha\end{smallmatrix}\right)

    (\mathit{\mbox{in detail }},\; \theta_{Q, \frac{1}{2}\left(\begin{smallmatrix}2\alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{smallmatrix}\right)\left(\begin{smallmatrix}2 \\ 2\end{smallmatrix}\right)}(\vec{\tau}, \vec{z}) \mathit{\mbox{ term is equal to }} \;cwe_{C}\left(\omega_{1, \mu}(4\vec{\tau}, 4\vec{z})\mid\mu\in \mathcal{O}_{K}/2\mathcal{O}_{K}\right)) .

    In this section, we study invariants by using self-dual codes over R . First, we give definition for some weight enumerators in higher genus g \ge 1 .

    Definition 4.1. Let C be a code of length n over R .

    (ⅰ) The complete weight enumerator in genus g is

    cwe_{C, g}(x_a {\; with\; } a \in R^g): = \sum\limits_{c_1, \ldots, c_g \in C} \prod _{a\in R^g} x_a^{n_a(c_1, \ldots, c_g)},

    where n_a(c_1, \ldots, c_g) is the number of i such that a = ^t(c_{1i}, \ldots, c_{gi}) .

    (ⅱ) The symmetrized weight enumerator in genus g is

    swe_{C, g}(x_{[a]} {\; with\; } [a]\in S^g): = \sum\limits_{c_1, \ldots c_g \in C}\prod _{[a]\in S^g} x_{[a]}^{n_{[a]}(c_1, \ldots c_g)},

    where S is the set introduced in Section 2, and n_{[a]}(c_1, \ldots, c_g) is the number of i satisfying [a] = [^t(c_{1i, }, \ldots, c_{gi})] .

    The following lemma says the MacWilliams identity for linear codes over R . For this, we give that an n\times n matrix M = (m_{ij}) over \Bbb C acts on \Bbb C[x_1, \ldots, x_n] as follows:

    M\cdot h(x_1, \ldots, x_n) = h\left(\sum\limits_{1\le i \le n}m_{1i}x_i, \ldots, \sum\limits_{1\le i \le n}m_{ni}x_i\right),

    where h(x_1, \ldots, x_n)\in \Bbb C[x_1, \ldots, x_n] .

    As we mentioned before, the ring R is a finite commutative local Frobenius ring of order 16 . We note that the generating character \chi of R\cong \Bbb F_2[u, v]/\langle v^2+v+1, u^2 \rangle is

    \chi(a+bu+cv+duv): = (-1)^{a+b+c+d},

    where a, b, c, d \in \Bbb F_2 .

    Lemma 4.2 is about the MacWilliams identity for a linear code over R with weight enumerators in genus g . We recall that S is a set of representatives of the distinct orbits of a fixed unit subgroup U in R .

    Lemma 4.2. Let C be a linear code of length n over R , and \chi be the generating character of R .Let a_i (resp. b_j ) be an element of R (resp. S ) with any ordering for 1\le i \le N (resp. 1 \le j \le |S| ).

    (ⅰ) Let T_1 be a N \times N -matrix such that (i, j) -th component of T_1 is \chi(a_ia_j) with 1\le i, j \le N .For complete weight enumerator, we have

    cwe_{C^{\perp}, g}(x_a) = \frac{1}{|C|^g}\left(\mathop \otimes \limits^g T_1\right) \cdot cwe_{C, g}(x_a).

    (ⅱ) Let T_2 be a |S|\times |S| -matrix such that (i, j) -th component of T_2 is \sum_{a'\in\tau}T_{a, a'} , where [a] = b_{i} and \tau = \{a' \in R : a' \approx b_j\} .For symmetrized weight enumerator, we get

    swe_{C^\perp, g}(x_{[a]}) = \frac{1}{|C|^g}\left(\mathop \otimes \limits^g T_2\right) \cdot swe_{C, g}(x_{[a]}).

    Proof. We give an equivalence relation as a\approx b if a = bu , where u \in U , and U is a unit subgroup in R . By the equivalence relation, the generating character for the ring R , and [28,Theorem 8.4], we obtain the result.

    For an arbitrary unit subgroup for the ring R , we can suggest a symmetrized weight enumerator for a code over R . In the following remark, we show a symmterized weight enumerator and MacWilliams identity for a certain unit group of R .

    Remark 4.3. Let U be a subgroup of the unit group of R .There are eight subgroups of the unit group of R .For example, let U = \langle \omega \rangle .Then we get the set S = \{0, 1, u, 1+u, 1+\omega u, u+ \omega\} which is the set of representatives of the distinct orbits of U . We note that the equivalence classes are [0] = \{0\} , [1]= \{1, \omega, 1+\omega\} , [u] = \{u, \omega u, u+\omega u\} , [1+u] = \{1+u, \omega+\omega u, 1+\omega+u+\omega u\} , [1+\omega u] = \{1+\omega u, \omega+u+\omega u, 1+\omega+u\} and [u+\omega] = \{u+\omega, 1+\omega+\omega u, 1+u+\omega u\} .The ordering in S is given as 0, 1, u, 1+u, 1+\omega u, u+ \omega .In this case, we obtain the following matrix T_2 as follows:

    T_2 = \left( \begin{array}{cccccc} 1&3&3&3&3&3\\ 1&-1&-1&3&-1&-1\\ 1&-1&3&-1&-1&-1\\ 1&3&-1&-1&-1&-1\\ 1&-1&-1&-1&-1&3\\ 1&-1&-1&-1&3&-1 \end{array} \right).

    For the genus g = 1 , the MacWilliams identity for a linear code C of length n over R is

    swe_{C^\perp}(x_{[0]}, x_{[1]}, x_{[u]}, x_{[1+u]}, x_{[1+\omega u]}, x_{[u+\omega]}) = \frac{1}{|C|} swe_{C}(y_1, y_2, y_3, y_4, y_5, y_6),

    where

    \begin{array}{ll} y_1 = &x_{[0]}+3x_{[1]}+3x_{[u]}+3x_{[1+u]}+3x_{[1+\omega u]}+3x_{[u+\omega]}, \\ y_2 = &x_{[0]}-x_{[1]}-x_{[u]}+3x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\ y_3 = &x_{[0]}-x_{[1]}+3x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\ y_4 = &x_{[0]}+3x_{[1]}-x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\ y_5 = &x_{[0]}-x_{[1]}-x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}+3x_{[u+\omega]}, \\ y_6 = &x_{[0]}-x_{[1]}-x_{[u]}-x_{[1+u]}+3x_{[1+\omega u]}-x_{[u+\omega]}, \\ \end{array}

    x_{[i]} and y_j are indeterminates.

    Finally, we will show invariants by the complete weight enumerator and symmetrized weight enumerator for a self-dual code over R . First, we define a subgroup G_g of GL(N^g, \Bbb C) as

    G_g: = \langle M_g, M_J, -I_{N^g} : J \;\mbox{ is any integer symmetric matrix}\rangle,

    where M_g = \left(\frac{-1}{\sqrt N}\right)^g { \otimes ^g}\; T_1 and M_J = diag((-1)^{{}^taJa} \;\mbox{ with }\; a\in R^g) . Similarly, let us a subgroup \hat G_g of GL(|S|^g, \Bbb C) as

    \hat G_g: = \langle \hat M_g, \hat M_J, -I_{|S|^g} : J \; \mbox{is any integer symmetric matrix}\rangle,

    where \hat M_g = \left(\frac{-1}{\sqrt N}\right)^g { \otimes ^g}\; T_2 and \hat M_J = diag((-1)^{{}^taJa}\; \mbox{ with }\; a\in S^g) .

    Especially, for a self-dual code of even length over R , we obtain the result of invariant.

    Theorem 4.4. Let C be a self-dual code of even length n over R .The complete weight enumerator cwe_{C, g} of C in genus g is invariant under the action of the group G_g .Similarly, the symmetrized weight enumerator swe_{C, g} of C in genus g is invariant under the action of the group \hat G_g .

    Proof. We prove the statement for the complete weight enumerator for the code C . We can easily check that -I_{n^g} and M_g invariant for cwe_C(x_i) ; first, -I_{N^g}\cdot cwe_C(x_i) = cwe_C(x_i) since cwe_C(x_i) = \sum_{c\in C}x_i^{n_{x_i}(c)} = \sum_{c\in C}((-1)x_i)^{n_{x_i}(c)} by 2\mid n . Second, M_g\cdot cwe_C(x_i) = cwe_C(x_i) is from the MacWilliams identity Lemma 4.2. Now, we claim that M_J is in G_g . We note that

    \begin{array}{ll} M_J \cdot cwe_C(x_a)& = \sum\nolimits_{c_1, \ldots, c_g \in C}\prod\nolimits_{a\in R^g} ((-1)^{{}^taJa}x_a)^{n_a(c_1, \ldots, c_g)}, \\ & = \sum\nolimits_{c_1, \ldots, c_g \in C}\prod\nolimits_{a\in R^g} (-1)^{{}^taJa\cdot n_a(c_1, \ldots, c_g)}x_a^{n_a(c_1, \ldots, c_g)}. \end{array}

    In detail,

    \begin{array}{ll} \sum\nolimits_{a\in R^g}{}^t aJa \cdot n_a(c_1, \ldots, c_g)& = \sum\nolimits_{1\le i \le n}J({}^t (c_{1i}, \ldots, c_{gi})), \\ & = \sum\nolimits_{1\le i \le n} \left(\sum\nolimits_{1\le k \le g}J_{kk}(c_{ki})^2 + 2\sum\nolimits_{1\le l < m \le g}J_{lm}c_{li}c_{mi}\right), \\ & = \sum\nolimits_{1\le k \le g}J_{kk}\sum\nolimits_{1\le i \le n}(c_{ki})^2+2\sum\nolimits_{1\le l < m \le g}J_{lm}\sum\nolimits_{1\le i \le n}c_{li}c_{mi};\\ \end{array}

    the right hand side value is divisible by 2 since the code C is self-dual over R .

    Thus, we have

    M_J\cdot cwe_C(x_a) = \sum\limits_{c_1, \ldots, c_g\in C}\prod\limits_{a\in R^g}x_a^{n_a(c_1, \ldots, c_g)} = cwe_C(x_a),

    by the above equations. We proved the statement. For symmetrized weight enumerator for C , the proof is similar with the previous case.

    If a linear code C is Type Ⅱ of length n over R , then the length n is automatically even. Thus, we obtain the following corollary.

    Corollary 4.5. For a Type II code C of length n over R , cwe_{C, g} and swe_{C, g} are invariant under the action of the group G_g and \hat G_g , respectively.

    Proof. By Lemma 2.4 (ⅱ), for a Type Ⅱ code of length n over R , n is even. So by using Theorem 4.4, the result follows.

    We suggested a Jacobi form from a linear code C over R: = \Bbb F_4+u\Bbb F_4 , where u^2 = 0 . This Jacobi form is not over totally real field, and it is related to complete weight enumerator of the code C . We introduced MacWilliams identities for both, complete weight enumerator and symmetrized weight enumerator in an arbitrary genus g\ge 1 of a linear code over R . Moreover, we presented invariants via a self-dual code of even length over R . In the future work, we can consider another finite ring for linear codes and their various weight enumerators. From these results, we can also establish a new Jacobi form.

    Boran Kim is a corresponding author and supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C2012517 and NRF-2019R1I1A1A01060467). Chang Heon Kim is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07045618 and 2016R1A5A1008055). Soonhak Kwon is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A5A1008055). Yeong-Wook Kwon is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07045618 and 2020R1A4A1016649).

    The authors declare no conflict of interest.



    [1] E. Bannai, S. T. Dougherty, M. Harada, M. Oura, Type Ⅱ codes, even unimodular lattices, and invariant rings, IEEE T. Inform. Theory, 45 (1999), 1194–1205. https://doi.org/10.1109/18.761269 doi: 10.1109/18.761269
    [2] E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa, M. Oura, Type Ⅱ codes over \Bbb F_2+u\Bbb F_2 and applications to Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg, 73 (2003), 13–42. https://doi.org/10.1007/BF02941267 doi: 10.1007/BF02941267
    [3] K. Betsumiya, Y. Choie, Jacobi forms over totally real fields and type II codes over Galois rings GR(2^m, f), European J. Combin., 25 (2004), 475–486. https://doi.org/10.1016/j.ejc.2003.01.001 doi: 10.1016/j.ejc.2003.01.001
    [4] K. Betsumiya, Y. Choie, Codes over \Bbb F_4, Jacobi forms and Hilbert-Siegel modular forms over \Bbb Q(\sqrt 5), European J. Combin., 26 (2005), 629–650. https://doi.org/10.1016/j.ejc.2004.04.010 doi: 10.1016/j.ejc.2004.04.010
    [5] K. Betsumiya, S. Ling, F. R. Nemenzo, Type Ⅱ codes over \Bbb F_{2^m}+u\Bbb F_{2^m}, Discrete Math., 275 (2004), 43–65. https://doi.org/10.1016/S0012-365X(03)00097-9 doi: 10.1016/S0012-365X(03)00097-9
    [6] M. Broué, M. Enguehard, Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Sci. École Norm. Sup., 5 (1972), 157–181. https://doi.org/10.24033/asens.1223 doi: 10.24033/asens.1223
    [7] Y. Choie, S. T. Dougherty, Codes over \Sigma_2m and Jacobi forms over the quaternions, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 129–147. https://doi.org/10.1007/s00200-004-0153-9 doi: 10.1007/s00200-004-0153-9
    [8] Y. Choie, S. T. Dougherty, Codes over rings, complex lattices and Hermitian modular forms, European J. Combin., 26 (2005), 145–165. https://doi.org/10.1016/j.ejc.2004.04.002 doi: 10.1016/j.ejc.2004.04.002
    [9] Y. Choie, H. Kim, Codes over \Bbb Z_2m and Jacobi forms of genus n, J. Combin. Theory Ser. A, 95 (2001), 335–348. https://doi.org/10.1006/jcta.2000.3168 doi: 10.1006/jcta.2000.3168
    [10] Y. Choie, N. Kim, The complete weight enumerator of Type Ⅱ codes over \Bbb Z_2m and Jacobi forms, IEEE T. Inform. Theory, 47 (2001), 396–399. https://doi.org/10.1109/18.904543 doi: 10.1109/18.904543
    [11] Y. Choie, E. Jeong, Jacobi forms over totally real fields and codes over \Bbb F_p, Illinois J. Math., 46 (2002), 627–643. https://doi.org/10.1215/ijm/1258136214 doi: 10.1215/ijm/1258136214
    [12] Y. Choie, P. Solé, Ternary codes and Jacobi forms, Discrete Math., 282 (2004), 81–87. https://doi.org/10.1016/j.disc.2003.12.002 doi: 10.1016/j.disc.2003.12.002
    [13] S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-59806-2
    [14] S. T. Dougherty, T. A. Gulliver, M. Harada, Type Ⅱ self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combin., 9 (1999), 233–250. https://doi.org/10.1023/A:1018696102510 doi: 10.1023/A:1018696102510
    [15] I. Duursma, Extremal weight enumerators and ultraspherical polynomials, Discrete Math., 268 (2003), 103–127. https://doi.org/10.1016/S0012-365X(02)00683-0 doi: 10.1016/S0012-365X(02)00683-0
    [16] M. Eighler, D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
    [17] A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, In: Actes du Congrès International des Mathématiciens, Gauthier-Villars, 1971.
    [18] N. Han, B. Kim, B. Kim, Y. Lee, Infinite families of MDR cyclic codes over \Bbb Z_4 via constacyclic codes over \Bbb Z_4[u]/\langle u^2 -1 \rangle, Discrete Math., 343 (2020), 111771. https://doi.org/10.1016/j.disc.2019.111771 doi: 10.1016/j.disc.2019.111771
    [19] B. Kim, Y. Lee, The minimum weights of two-point AG codes on norm-trace curves, Finite Fields Th. App., 53 (2018), 113–139. https://doi.org/10.1016/j.ffa.2018.06.005 doi: 10.1016/j.ffa.2018.06.005
    [20] B. Kim, Y. Lee, J. Doo, Classification of cyclic codes over a non-Galois chain ring \Bbb Z_p[u]/\langle u^3 \rangle, Finite Fields Th. App., 59 (2019), 208–237. https://doi.org/10.1016/j.ffa.2019.06.003 doi: 10.1016/j.ffa.2019.06.003
    [21] S. Ling, P. Solé, Type Ⅱ codes over \Bbb F_4+u\Bbb F_4, European J. Combin., 22 (2001), 983–997. https://doi.org/10.1006/eujc.2001.0509 doi: 10.1006/eujc.2001.0509
    [22] O. K. Richter, H. Skogman, Jacobi theta functions over number field, Monatsh. Math., 141 (2004), 219–235. https://doi.org/10.1007/s00605-003-0037-2 doi: 10.1007/s00605-003-0037-2
    [23] A. Sharma, A. K. Sharma, Construction of self-dual codes over \Bbb Z_{2^m}, Cryptogr. Commun., 8 (2016), 83–101. https://doi.org/10.1007/s12095-015-0139-4 doi: 10.1007/s12095-015-0139-4
    [24] H. Skogman, Jacobi forms over number fields, University of California, San Diego, 1999.
    [25] H. Skogman, Jacobi forms over totally real number fields, Results Math., 39 (2001), 169–182. https://doi.org/10.1007/BF03322682 doi: 10.1007/BF03322682
    [26] K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
    [27] K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265–278. https://doi.org/10.1016/j.disc.2011.09.002 doi: 10.1016/j.disc.2011.09.002
    [28] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121 (1999), 555–575. https://doi.org/10.1353/ajm.1999.0024 doi: 10.1353/ajm.1999.0024
  • This article has been cited by:

    1. Boran Kim, Quantum codes from one-point codes on norm-trace curves, 2022, 14, 1936-2447, 1179, 10.1007/s12095-022-00586-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1995) PDF downloads(97) Cited by(1)

Figures and Tables

Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog