The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.
Citation: Adel Alahmadi, Tamador Alihia, Patrick Solé. The build up construction for codes over a non-commutative non-unitary ring of order $ 9 $[J]. AIMS Mathematics, 2024, 9(7): 18278-18307. doi: 10.3934/math.2024892
The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.
[1] | A. Alahmadi, A. Altassan, H. Shoaib, A. Alkathiry, A. Bonnecaze, P. Sol$\acute{e}$, The build-up construction of quasi self-dual codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250143. https://doi.org/10.1142/S0219498822501432 doi: 10.1142/S0219498822501432 |
[2] | A. Alahmadi, A. Melaibari, P. Sol$\acute{e}$, Duality of codes over non-unital rings of order four, IEEE Access, 11 (2023), 53120–53133. https://doi.org/10.1109/ACCESS.2023.3261131 doi: 10.1109/ACCESS.2023.3261131 |
[3] | A. Alahmadi, A. Altassan, W. Basaffar, H. Shoaib, A. Bonnecaze P. Sol$\acute{e}$, Type IV codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250142. https://doi.org/10.1142/S0219498822501420 doi: 10.1142/S0219498822501420 |
[4] | A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Sol$\acute{e}$, Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four, Mathematics, 11 (2023), 4736. https://doi.org/10.3390/math11234736 doi: 10.3390/math11234736 |
[5] | A. Alahmadi, T. Alihia, R. A. Betty, L. Galvez, P. Sol$\acute{e}$, The build-up construction for codes over a commutative non-unitary ring of order 9, Mathematics, 12 (2024), 860. https://doi.org/10.3390/math12060860 doi: 10.3390/math12060860 |
[6] | C. Aguilar-Melchor, P. Gaborit, J. Kim, L. Sok, P. Sol$\acute{e}$, Classification of extremal and $s$-extremal binary self-dual codes of length 38, IEEE Trans. Inform. Theory, 58 (2012), 2253–2262. https://doi.org/10.1109/TIT.2011.2177809 doi: 10.1109/TIT.2011.2177809 |
[7] | J. M. P. Balmaceda, R. A. L. Betty, F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^2}$, Discrete Math., 308 (2008), 2984–3002. https://doi.org/10.1016/j.disc.2007.08.024 doi: 10.1016/j.disc.2007.08.024 |
[8] | W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125 |
[9] | B. Fine, Classification of finite rings of order $p^2$, Math. Magazine, 66 (1993), 248–252. https://doi.org/10.1080/0025570X.1993.11996133 doi: 10.1080/0025570X.1993.11996133 |
[10] | S. Han, H. Lee, Y. Lee, Construction of self-dual codes over $F_2 + uF_2$, Bull. Korean Math. Soc., 49 (2012), 135–143. |
[11] | M. Harada, M. Kitazume, M. Ozeki, Ternary code construction of unimodular lattices and self-dual codes over $\mathbb{Z}_6$, J. Algebraic Comb., 16 (2002), 209–223. https://doi.org/10.1023/A:1021185314365 doi: 10.1023/A:1021185314365 |
[12] | W. C. Hufman, V. Pless, Fundamentals of error-correcting codes, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077 |
[13] | J. L. Kim, Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Comb. Theory, Ser. A, 105 (2004), 79–95. https://doi.org/10.1016/j.jcta.2003.10.003 doi: 10.1016/j.jcta.2003.10.003 |
[14] | J. L. Kim, Y. Lee, An efficient construction of self-dual codes, Bull. Korean Math Soc., 52 (2015), 915–923. |
[15] | K. H. Kim, Y. H. Park, The mass formula of self-orthogonal codes over $GF(q)$, Korean J. Math., 25 (2017), 201–209. https://doi.org/10.11568/kjm.2017.25.2.201 doi: 10.11568/kjm.2017.25.2.201 |
[16] | C. Mallows, V. Pless, N. J. Sloane, Self-dual codes over $GF(3)$, SIAM J. Appl. Math., 31 (1976), 649–666. |
[17] | F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, Elsevier, 1977. |