Research article

The build up construction for codes over a non-commutative non-unitary ring of order $ 9 $

  • Received: 29 January 2024 Revised: 28 March 2024 Accepted: 10 April 2024 Published: 31 May 2024
  • MSC : 94B05, 16D10

  • The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.

    Citation: Adel Alahmadi, Tamador Alihia, Patrick Solé. The build up construction for codes over a non-commutative non-unitary ring of order $ 9 $[J]. AIMS Mathematics, 2024, 9(7): 18278-18307. doi: 10.3934/math.2024892

    Related Papers:

  • The build-up method is a powerful class of propagation rules that generate self-dual codes over finite fields and unitary rings. Recently, it was extended to non-unitary rings of order four to generate quasi self-dual codes. In the present paper we introduce three such propagation rules to generate self-orthogonal, one-sided self-dual, and self-dual codes over a special non-unitary ring of order 9. As an application, we classify the three categories of codes in lengths at most $ 7, $ up to monomial equivalence. Mass formulas for the three classes of codes considered ensure that the classification is complete.



    加载中


    [1] A. Alahmadi, A. Altassan, H. Shoaib, A. Alkathiry, A. Bonnecaze, P. Sol$\acute{e}$, The build-up construction of quasi self-dual codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250143. https://doi.org/10.1142/S0219498822501432 doi: 10.1142/S0219498822501432
    [2] A. Alahmadi, A. Melaibari, P. Sol$\acute{e}$, Duality of codes over non-unital rings of order four, IEEE Access, 11 (2023), 53120–53133. https://doi.org/10.1109/ACCESS.2023.3261131 doi: 10.1109/ACCESS.2023.3261131
    [3] A. Alahmadi, A. Altassan, W. Basaffar, H. Shoaib, A. Bonnecaze P. Sol$\acute{e}$, Type IV codes over a non-unital ring, J. Algebra Appl., 21 (2022), 2250142. https://doi.org/10.1142/S0219498822501420 doi: 10.1142/S0219498822501420
    [4] A. Alahmadi, A. Alshuhail, R. A. Betty, L. Galvez, P. Sol$\acute{e}$, Mass formula for self-orthogonal and self-dual codes over non-unital rings of order four, Mathematics, 11 (2023), 4736. https://doi.org/10.3390/math11234736 doi: 10.3390/math11234736
    [5] A. Alahmadi, T. Alihia, R. A. Betty, L. Galvez, P. Sol$\acute{e}$, The build-up construction for codes over a commutative non-unitary ring of order 9, Mathematics, 12 (2024), 860. https://doi.org/10.3390/math12060860 doi: 10.3390/math12060860
    [6] C. Aguilar-Melchor, P. Gaborit, J. Kim, L. Sok, P. Sol$\acute{e}$, Classification of extremal and $s$-extremal binary self-dual codes of length 38, IEEE Trans. Inform. Theory, 58 (2012), 2253–2262. https://doi.org/10.1109/TIT.2011.2177809 doi: 10.1109/TIT.2011.2177809
    [7] J. M. P. Balmaceda, R. A. L. Betty, F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^2}$, Discrete Math., 308 (2008), 2984–3002. https://doi.org/10.1016/j.disc.2007.08.024 doi: 10.1016/j.disc.2007.08.024
    [8] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. Ⅰ. The user language, J. Symb. Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [9] B. Fine, Classification of finite rings of order $p^2$, Math. Magazine, 66 (1993), 248–252. https://doi.org/10.1080/0025570X.1993.11996133 doi: 10.1080/0025570X.1993.11996133
    [10] S. Han, H. Lee, Y. Lee, Construction of self-dual codes over $F_2 + uF_2$, Bull. Korean Math. Soc., 49 (2012), 135–143.
    [11] M. Harada, M. Kitazume, M. Ozeki, Ternary code construction of unimodular lattices and self-dual codes over $\mathbb{Z}_6$, J. Algebraic Comb., 16 (2002), 209–223. https://doi.org/10.1023/A:1021185314365 doi: 10.1023/A:1021185314365
    [12] W. C. Hufman, V. Pless, Fundamentals of error-correcting codes, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [13] J. L. Kim, Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Comb. Theory, Ser. A, 105 (2004), 79–95. https://doi.org/10.1016/j.jcta.2003.10.003 doi: 10.1016/j.jcta.2003.10.003
    [14] J. L. Kim, Y. Lee, An efficient construction of self-dual codes, Bull. Korean Math Soc., 52 (2015), 915–923.
    [15] K. H. Kim, Y. H. Park, The mass formula of self-orthogonal codes over $GF(q)$, Korean J. Math., 25 (2017), 201–209. https://doi.org/10.11568/kjm.2017.25.2.201 doi: 10.11568/kjm.2017.25.2.201
    [16] C. Mallows, V. Pless, N. J. Sloane, Self-dual codes over $GF(3)$, SIAM J. Appl. Math., 31 (1976), 649–666.
    [17] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, Elsevier, 1977.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(174) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Tables(22)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog