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1. Introduction

Historically, the classification of self-dual codes over unitary rings and finite fields has rested on
two pillars: an algorithm to generate short length codes, and a mass formula to signal the completion
of the classification [7,15]. While the pionneers (Conway, Pless Sloane, and so on), were using various
ad hoc methods like glueing theory to generate short codes [17], in recent years the build up method
emerged as a systematic generation method [10, 13, 14]. By using a recursion on generator matrices,
from a self-dual code of length n, it creates a self-dual code of length n + h (with h small and fixed).
This is sometimes called a propagation rule of order h. For concreteness, one may take h = 2 for binary
codes [6] and codes over a certain ring of order 4 [12], and h = 4 for ternary codes [13]. In [5], this
technique was applied to a commutative non-unital ring with success.
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In this paper, we initiate the study of self-dual codes over the ring E3, defined on two generators a, b
by the relations

E3 =
〈
a, b| 3a = 3b = 0, a2 = a, b2 = b, ab = a, ba = b

〉
.

This ring is a non-unital, non commutative ring of order 9. This notation is consistent with the
classification of rings of order p2 for p, a prime of [9]. While the use of finite fields as alphabets
in Coding Theory dates back to its inception in the 1940’s, and the use of finite rings from the 1980’s,
it is only in recent years that non-unitary rings have been used as alphabets at the cost of theoretical
hurdles [1–4].

We will use a definition of self-dual codes for non-commutative rings introduced in [2]. This new
notion of self-dual codes coincides with that of QS D codes for that special ring. Also of interest are
left self-dual (LS D) and right self-dual (RS D) codes, in agreement with the non-commutativity of the
alphabet ring. In particular, we modify the propagation rules of [1] to produce self-orthogonal and
self-dual codes, as well as one-sided self-dual codes. As an application, we classify the three types of
codes considered in lengths at most 7. We derive mass formulas for the these three types that guarantee
that the classification is complete.

The material is arranged as follows. The next section contains the preliminary notions and notations
needed in the later sections. Section 3 derives building-up constructions for the three classes of codes
mentioned. Section 4 applies these propagation rules to concrete classifications in short lengths.
Section 5 concludes the article.

2. Preliminaries

Let Fn
3 represent the vector space of n-tuples over the 3-element field F3. A ternary linear code C of

length n and dimension k, denoted shortly as an [n, k]3 code, is a k-dimensional subspace of Fn
3.

The number of nonzero coordinates of a vector x ∈ Fn
3 is called its Hamming weight wt(x). The

Hamming distance d(x, y) between two vectors x, y ∈ Fn
3 is defined by d(x, y) = wt(x − y). The

minimum distance of a linear code C is

d(C) = min {d(x, y)|x, y ∈ C, x , y} = min {wt(c)|c ∈ C, c , 0}

A 3-ary linear code of length n, dimension k, and minimum distance d is said to be an [n, k, d]3

code.

2.1. Ring theory

Following [9], we define the ring E3 of order 9 on two generators a and b by the relations:

E3 =
〈
a, b| 3a = 3b = 0, a2 = a, b2 = b, ab = a, ba = b

〉
.

Thus, E3 has characteristic three, and consists of nine elements

E3 = {0, a, b, c, d, e, f , g, h} ,

where
c = a + b, d = 2b, e = 2a, f = e + b, g = a + d, and h = d + e.
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These definitions immediately lead to the addition and the multiplication tables given as follow.

Table 1. Addition and multiplication tables for E3.

+ 0 a b c d e f g h

0 0 a b c d e f g h

a a e c f g 0 b h d

b b c d g 0 f h a e

c c f g h a b d e 0
d d g 0 a b h e c f

e e 0 f b h a c d g

f f b h d e c g 0 a

g g h a e c d 0 f b

h h d e 0 f g a b c

× 0 a b c d e f g h

0 0 0 0 0 0 0 0 0 0
a 0 a a e e e 0 0 a

b 0 b b d d d 0 0 b

c 0 c c h h h 0 0 c

d 0 d d b b b 0 0 d

e 0 e e a a a 0 0 e

f 0 f f g g g 0 0 f

g 0 g g f f f 0 0 g

h 0 h h c c c 0 0 h

We may deduce from the multiplication table that this ring is non-commutative without identity and
has unique maximal ideal J3 = {0, f , g = 2 f } with residue field E3/J3 ' F3.

As a result, we have the following f -adic decomposition. It can be checked by inspection that any
element i ∈ E3 can be expressed as i = ax + f y, for unique scalars x, y ∈ F3.

We have defined a natural action of F3 on the ring E3 by the rule

r0 = 0r = 0, r1 = 1r = r, and r2 = r + r = 2r for all r ∈ E3.

Note that, for all r ∈ E3, x, y ∈ F3, this action is “distributive” in the sense that r (x ⊕ y) = rx + ry,
where ⊕ denote the addition in F3. When x ∈ Fn

3, and r ∈ En
3, we will occasionally use the inner product

notation (x, r) to indicate
(x, r) = x1r1 + · · · + xnrn.

We define the reduction map modulo S as π : E3 −→ E3/J3 ' F3 by

π(0) = π( f ) = π(g) = 0,

π(a) = π(b) = π(h) = 1,

π(e) = π(d) = π(c) = 2.

This map is extended in the natural way in a map from En
3 to Fn

3.

2.2. Codes over E3

A linear E3-code C of length n is a one-sided E3-submodule of En
3. It may be thought of as the

E3-span of the rows of a matrix called a generator matrix (we assume that these rows belong to C).
There are two ternary codes of length n associated with the code C. The residue code res(C) is just
π (C), and the torsion code tor(C) is

{
x ∈ Fn

3| f x ∈ C
}
.
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It is easy to verify that res(C) ⊆ tor(C) [3]. We denote the dimension of the residue code by k1,
and the dimension of the torsion code by k1 + k2. Such a code C is of type {k1, k2}. A straightforward
application of the first isomorphism theorem [3] shows that

|C| = |res(C)| |tor(C)| = 32k1+k2 .

By a result similar to [3, Theorem 1], we can show that every code C over E3 of length n and type
{k1, k2} is equivalent to a code with a generator matrix[

aIk1 aX Y
0 f Ik2 f Z

]
,

where Y is a matrix with entries in E3, X and Z are matrices with entries from F3, and Ik1 , Ik2 are identity
matrices.

In fact, generator matrices of res(C) and tor(C) are given by

[
Ik1 X π(Y)

]
and

[
Ik1 X π(Y)
0 Ik2 Z

]
,

respectively.
Define the inner product of x and y in En

3 as (x, y) = x1y1 +x2y2 +· · ·+xnyn,where x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn).

The left dual code C⊥L of a code C is the module defined as

C⊥L =
{
y ∈ En

3 | ∀x ∈ C , (y, x) = 0
}
.

The right dual code C⊥R of a code C is the module defined as:

C⊥R =
{
y ∈ En

3 | ∀x ∈ C , (x, y) = 0
}
.

Thus, the left (respectively, right) dual of a left (respectively, right) module is a left (respectively,
right) module.

A left self-dual code C satisfies C = C⊥L . Likewise, a right self-dual code C satisfies C = C⊥R .
The two-sided dual of C, denoted by C⊥, is given by C⊥ = C⊥L ∩ C⊥R . We say that a code C is

self-dual (S D) iff C = C⊥L ∩ C⊥R . A code C is self-orthogonal (S O) if for all x, y ∈ C, (x, y) = 0.
Clearly, C is a self-orthogonal code C, iff C ⊆ C⊥L ∩ C⊥R .
Two E3-codes are monomially equivalent if there is a monomial transformation of coordinates that

maps one to the other. Here a monomial transformation is a matrix with entries in F3 and with exactly
one element per row and per column. The parameters (n, 3k, d) of an E3-code are identified with that
of its image by φ, defined in the next subsection.

2.3. Codes over F9

An additive code C of length n over F9 is an additive subgroup of Fn
9. Thus, C contains 3k codewords

for some integer 0 ≤ k ≤ 2n, and is called an (n, 3k) code. If, furthermore, C has minimum distance d,
we write the parameters of C as (n, 3k, d).

AIMS Mathematics Volume 9, Issue 7, 18278–18307.
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An additive code C over F9 can be represented by a k × n generator matrix with entries from F9

whose rows span C, called a generator matrix. That is, C is the F3-span of its rows.
Let ω ∈ F9 be such that ω2 = ω + 1. Since the polynomial t2 − t − 1 is irreducible over F3, we can

write F9 = F3 [ω] . The trace map, Tr : F9 −→ F3, is defined as Tr(x) = x + x3.
Every linear E3-code C is attached with an additive F9-code φ(C) by the alphabet substitution

0 −→ 0, a −→ 2, b −→ ω,

c −→ 2 + ω, d −→ 2ω, e −→ 1,

f −→ ω + 1, g −→ 2(ω + 1), h −→ 1 + 2ω,

extended naturally to Fn
9 . The parameters (n, 3k, d) of an E3-code are identified with that of its image

under φ. It can be checked that, for all x ∈ En
3, we have Tr(φ(x)) = π(x), and thus res(C) = Tr(φ(C)).

Similarly, we see that tor(C) is the so-called subfield subcode of φ(C), that is Fn
3 ∩ φ(C).

2.4. Weight enumerators

We recall from [17] that the weight enumerator of any linear or additive code C of length n is the
polynomial

WC(x, y) = xn +

n∑
i=1

Aixn−iyi

where the sequence A1, ......, An is the weight distribution of C. That is, Ai is the number of codewords
in C of weight i.

Lemma 1. If C is a linear code of length n over E3 with weight enumerator WC(x, y), then the weight
enumerator of the dual code C⊥ is given by

WC⊥ = 3−nWC(x + 8y, x − y).

In particular, the weight enumerator of a self-dual code is invariant under the matrix group generated

by 1
3

(
1 8
1 −1

)
.

Proof. The first statement, analogous to the MacWilliams identity for linear codes over Fq, follows
from the general theory [17, Theorem 13], since our trace inner product φ(C) is an (n, 32k1+k2) additive
code over F9 with

WC(x, y) = Wφ(C)(x, y).

The second statement follows from the first, by noticing that, for a self-dual code, we have WC⊥ =

WC. �

2.5. Mass formulas

Let ϕn,k denote the number of distinct self-orthogonal ternary codes having parameters [n, k1]

(see [15, Theorem 4.7]. We define the Gaussian coefficient
(
k
r

)
3

for r ≤ k as

(
k
r

)
3

=
(3k − 1)(3k−1 − 1)....(3k−r+1 − 1)

(3r − 1)(3r−1 − 1)....(3 − 1)
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which gives the number of subspaces of dimension r contained in a k-dimensional vector space over
F3.

In what follows, we present a mass formula for self-orthogonal codes over E3 which is a
characteristic 3-version of [4, Theorem 8].

Theorem 1. For all lengths n, and for the type {k1, k2}, where k1 ≥ 1, the number of self-orthogonal
codes over E3 is

NS O(n, k1, k2) = ϕn,k1

(
n − 2k1

k2

)
3

3k1(n−2k1−k2).

If k1 = 0, then

NS O(n, 0, k2) =

(
n
k2

)
3

.

The following mass formulas follow by the usual counting technique under group action.
Corollaries 1–4 are a consequence of Theorem 1.

Corollary 1. For given length n and type {k1, k2}, with 0 ≤ k1, k2 ≤ n, we have∑
C

1
|Aut(C)|

=
NS O(n, k1, k2)

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column
permutations of S O codes of length n and type (k1, k2).

Corollary 2. For given length n and type {k1, k2}, with k1 ≥ 1, we have∑
C

1
|Aut(C)|

=
NS D(n, k1, k2)

2nn!
=
ϕn,k1

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column
permutations of S D codes of length n and type {k1, k2}.

Corollary 3. For given length n and type {0, k2}, with k2 ≥ 1, we have∑
C

1
|Aut(C)|

=
NRS D(n, k1, k2)

2nn!
=

1
2nn!

,

where C runs over distinct representatives of equivalence classes under monomial column
permutations of RS D codes of length n and type {0, k2}.

Corollary 4. For given length n and type
{

n
2 , 0

}
, with n

2 ≥ 1, we have

∑
C

1
|Aut(C)|

=
NLS D(n, k1, k2)

2nn!
=
ϕn, n

2

2nn!
,

where C runs over distinct representatives of equivalence classes under monomial column
permutations of LS D codes of length n and type

{
n
2 , 0

}
.
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3. Construction

In this section we provide the building-up construction for self-orthogonal codes, (one-sided) self-
dual, and self-dual codes over E3. Our building-up construction needs the following theorems.

Theorem 2. Let C be an E3 code of length n, with residue code C1 and torsion code C2. The following
hold:

• If C is a linear code of length n over E3, then C = aC1 + fC2.

• If C1 is self-orthogonal with C1 ⊆ C2 ⊆ C
⊥
1 , then C is a self-orthogonal code.

• If, furthermore, |C| = 3n, then C2 = C⊥1 .

Proof. The first statement: It suffices to prove that C ⊆ aC1 + fC2.
Let i ∈ C. We can write i in f -adic decomposition form as i = ax + f y where x, y ∈ Fn

3.
Since π(ax + f y) = x, it follows that x ∈ res(C).
By following [3, Lemma 3], we have ax ∈ C. Also by a linearity of C, we can see that f y ∈ C, and

hence y ∈ tor(C).
This proves that C ⊆ aC1 + fC2.
The second statement: Suppose i1, i2 ∈ C. We can write i1 and i2 in f -adic decomposition form as

i1 = ax1 + f y1 and i2 = ax2 + f y2 where x1, x2 ∈ res(C) and y1, y2 ∈ tor(C). Compute (i1, i2),

(ax1 + f y1, ax2 + f y2) = a2(x1, x2) + a f (x1, y2) + f a(x2, y1) + f 2(y1, y2) = a(x1, x2) + f (x2, y1).

Since tor(C) ⊆ res(C)⊥, it follows that (x1, x2) = (x2, y1) = 0, which is self-orthogonal. Thus, C is
self-orthogonal.

The last statement: It follows that C2 = 3n−k1 = C⊥1 . �

The next result control the linear structure of SO codes.

Corollary 5. For any S O codes C over E3 of length n, we have

(i) tor(C) ⊆ res(C)⊥.
(ii) res(C) must be a self-orthogonal ternary code.

Proof. For (i), let y ∈ tor(C), then f y ∈ C and q ∈ C, we can write q in f -adic decomposition form as
q = au + f v, where u ∈ res(C) and v ∈ tor(C).

( f y, au + f v) = f a(y,u) = f (y,u) = 0.

Thus, y ∈ res(C)⊥ and tor(C) ⊆ res(C)⊥.
For (ii), By (i), and the fact that res(C) ⊆ tor(C), it follows that

res(C) ⊆ tor(C) ⊆ res(C)⊥.

�

The following theorem characterizes one-sided self-dual codes over E3.

Theorem 3. For any linear code C over E3, we have

AIMS Mathematics Volume 9, Issue 7, 18278–18307.
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(i) C⊥L = a res(C)⊥ + f res(C)⊥.
(ii) C⊥R = a tor(C)⊥ + f Fn

3.

Proof. For (i), we need to prove that res(C⊥L) = res(C)⊥ = tor(C⊥L).
From the fact res(C⊥L) ⊆ tor(C⊥L), it follows that res(C⊥L) ⊆ res(C)⊥ ⊆ tor(C⊥L).
Now, let y ∈ tor(C⊥L), then f y ∈ C⊥L and x ∈ res(C), then ax ∈ C. By definition of C⊥L , we can see

that
( f y, ax) = f a(y, x) = f (y, x) = 0.

Thus, y ∈ res(C)⊥ and tor(C⊥L) ⊆ res(C)⊥.
On the other hand, given r ∈ res(C)⊥ and i ∈ C, i may be expressed in f -adic decomposition form

as i = au + f v, where u ∈ res(C) and v ∈ tor(C), respectively. It can be seen that

(ar, i) = (ar, au + f v) = a(r,u) = 0

by definition of C⊥. Thus, ar ∈ C⊥L , and r ∈ res(C⊥L). This implies that, res(C)⊥ ⊆ res(C⊥L). Therefore,

res(C⊥L) = res(C)⊥ = tor(C⊥L).

For (ii), suppose y ∈ tor(C)⊥ ⊆ res(C)⊥, and i ∈ C, we can write i in f -adic decomposition form as
i = au + f v, where u ∈ res(C) and v ∈ tor(C). By definition of C⊥, we have

(i, ay) = (au + f v, ay) = a(u, y) + f (v, y) = 0.

Thus, ay ∈ C⊥R , and y ∈ res(C⊥R). This implies that, tor(C)⊥ ⊆ res(C⊥R).
Conversely, let x ∈ res(C⊥R), then ax ∈ C⊥R . Let y ∈ tor(C), then f y ∈ C. Observe that

( f y, ax) = f a(y, x) = f (y, x) = 0.

Thus, f y ∈ C⊥ and y ∈ tor(C)⊥. This implies that res(C⊥R) = tor(C)⊥.
Now to prove tor(C⊥R) = Fn

3, it suffices to show that Fn
3 ⊆ tor(C⊥R).

Let r ∈ Fn
3, and i ∈ C, we can write i in f -adic decomposition form as i = au + f v, where u ∈ res(C)

and v ∈ tor(C). We can see that

(i, f r) = (au + f v, f r) = a f (u, r) + f 2(v, r) = 0.

Thus, f r ∈ C⊥R , then r ∈ tor(C⊥R), and so Fn
3 ⊆ tor(C⊥R). This completes the proof. �

Corollary 6. For any linear code C over E3, we have

(i) C is left self-dual (LS D) iff C is of type
{

n
2 , 0

}
.

(ii) C is right self-dual (RS D) iff C = f Fn
3.

The lengths of LSD codes can be determined completely.

Corollary 7. Left self-dual codes over E3 of length n occurs if and only if n is a multiple of 4.

Proof. From Theorem 3, C is left self-dual iff res(C) is a self-dual ternary code. Then, by [16,
Theorem 3], a self-dual code over F3 of length n exists only if n is a multiple of 4. This completes the
proof. �
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The next theorem characterizes S D codes.

Theorem 4. Assume C is an E3-code of length n, C is a S D code if and only if

C = a res(C) + f res(C)⊥;

moreover, |C| = 3n.

Proof. We know that C is self-dual code over E3 iff C = C⊥ = C⊥R ∩ C⊥L . By Theorem 2, we can see
that

C = a (res(C⊥R) ∩ res(C⊥L)) + f (tor(C⊥R) ∩ tor(C⊥L)).

Thus, by Theorem 3, it can be seen that

C = a tor(C)⊥ + f res(C)⊥ = a res(C) + f res(C)⊥.

�

Corollary 8. For any linear code C over E3, we have:

(1) If C is S D with k1 = 0, then C is RS D.
(2) If C is S D with k2 = 0, then C is LS D.

The next result bounds the minimum distances of SD and LSD codes.

Corollary 9. (i) The minimum distance d(C) of a self-dual code over E3 is less than or equal to
min

{
d(res(C)), d(res(C)⊥)

}
.

(ii) If C is a left self-dual code C over E3, then the minimum distance d(C) is equal to d(res(C)).

Proof. For (i), by Theorem 4, we have C = a res(C) + f res(C)⊥.
Let d1 and d2 denote the minimum distances of res(C) and res(C)⊥, respectively.
By definition of tor(C), we have d(C) ≤ d2. By [3, Lemma 3], we have a res(C) ⊆ C, which indicates

that d(C) ≤ d1. It follows that d(C) ≤ min {d1, d2}.
For (ii), by Theorem 3, we have C = a res(C)⊥ + f res(C)⊥, where res(C)⊥ = res(C). This means

that d1 = d2.

We now establish that d(C) ≥ d1. Assume q is in C and wt(q) = d. Because r ∈ res(C)⊥ and
s ∈ res(C)⊥, q = ar + f s by Theorem 2. We have the following three scenarios, which rely on r and s,
since C is nonzero:

(1) wt(q) = wt(ar) = wt(r) if r , 0 and s = 0,
(2) wt(q) = wt( f s) = wt(s) if r = 0 and s , 0,
(3) wt(q) = wt(ar + f s) ≥ wt(ar) = wt(r) if r, s , 0.

It follows that d(C) ≥ d1 since d1 = d2. Thus, from (i), we conclude that d(C) = d1. �

3.1. Construction of self-orthogonal codes

In this subsection, we present the build-up construction method for self-orthogonal codes over E3.
The following theorem is a propagation rule of order three which increases the number of generators
by one.

AIMS Mathematics Volume 9, Issue 7, 18278–18307.
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Theorem 5. Let C0 be a self-orthogonal code over E3 of length n with generator matrix G0 = (ri)
where ri is the ith row of G0, for i = 1, 2, . . . ,m. Let x ∈ Fn

3 and α, β, γ ∈ E3, such that α + β + γ = 0.
Then the code C with the following generator matrix

G =


α β 0 γx

(x, r1) (x, r1) (x, r1) r1
...

...
...

...

(x, rm) (x, rm) (x, rm) rm


is a self-orthogonal code of length n + 3 if:

(i) (x, x) = 1, and α, β, γ ∈ E3 \ J3; or
(ii) (x, x) = −1 and (α , 0, β = 0, γ = 2α).

Proof. It suffices to show that the rows of G are orthogonal to each other. Let y0 =
(
α β 0 γx

)
,

the first row of G and yi =
(

(x, ri) (x, ri) (x, ri) ri

)
, the i + 1st row of G, for i = 1, 2, . . . ,m.

(i) If (x, x) = 1 and α, β, γ ∈ E3 \ J3, then

(y0, y0) = α2 + β2 + γ2(x, x) = α2 + β2 + γ2 = 0,
(y0, yi) = α(x, ri) + β(x, ri) + γ(x, ri) = (α + β + γ)(x, ri) = 0,
(yi, y j) = 3(x, ri)(x, r j) + (ri, r j) = 0,

for all i, j = 1, 2, . . . ,m.
(ii) If (x, x) = −1 and (α , 0, β = 0, γ = 2α), then

(y0, y0) = α2 + (2α)2(x, x) = α2 − α2 = 0,
(y0, yi) = α(x, ri) + 2α(x, ri) = 3α(x, ri) = 0,
(yi, y j) = 3(x, ri)(x, r j) + (ri, r j) = 0,

for all i, j = 1, 2, . . . ,m.

In both cases, we see that C is a self-orthogonal code. �

Example 1. We construct self-orthogonal codes of length 6 derived from length 3. By Theorem 2, we
have the self-orthogonal (3, 32, 3) code with generator matrix G0 given by

G0 =
(
a b h

)
.

Using Theorem 5 from G0, we get three non-equivalent monomial S O (6, 34, 3) codes, with generator
matrices: (

a 0 0 a e 0
f f f a b h

)
,

(
a a 0 a 0 0
a a a a b h

)
, and

(
a b 0 h 0 0
a a a a b h

)
.

Their Hamming weight enumerators are

W1(x, y) = x6 + 14x3y3 + 12x2y4 + 18xy5 + 36y6,
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W2(x, y) = x6 + 16x3y3 + 64y6,

and
W3(x, y) = x6 + 10x3y3 + 18xy5 + 52y6,

respectively.

Remark 1. The build-up construction method given in Theorem 5, cannot be also used for self-dual
codes as the cardinality of the code C is not 3n+3.

Remark 2. If any two self-orthogonal E3-codes are monomially equivalent, then their residue and
torsion codes are also monomially equivalent, but the converse is not necessarily true. For example,
when n = 3 and type {1, 0}, the codes C1 and C2 with generator matrices

(
a a a

)
and

(
a b h

)
,

respectively. They have the same residue and torsion codes, but are not monomially equivalent.

3.2. Construction of one-sided self-dual codes

We will provide a construction approach for one-sided self-dual codes over E3 in this subsection.
Initially, this structure was provided for left self-dual codes with two extra generators and a length
increase of four. We only need to take into consideration the situation in which the length n is a
multiple of 4, as a result of Corollary 7.

Theorem 6. Let C0 be a left self-dual code over E3 of length n with generator matrix G0 = (ri) where
ri is the ith row of G0, for i = 1, 2, . . . ,m. Let x1, x2 ∈ F

n
3 such that (x1, x2) = 0, and (xi, xi) = 2 for

i = 1, 2. For 1 ≤ i ≤ m, define ui = (x1, ri) and vi = (x2, ri). If α ∈ E3 \ J3, then the code C with the
following generator matrix

G =



α 0 0 0 2αx1

0 α 0 0 2αx2

u1 v1 u1 + v1 2u1 + v1 r1
...

...
...

...
...

um vm um + vm 2um + vm rm


is a left self-dual code of length n + 4.

Proof. Let y0 =
(
α 0 0 0 2αx1

)
and y′0 =

(
0 α 0 0 2αx2

)
. Then

(y0, y0) = α2 + (2α)2(x1, x1) = 0,
(y′0, y

′
0) = α2 + (2α)2(x2, x2) = 0,

(y0, y′0) = α(x1, x2) = 0.

Now, for 1 ≤ i ≤ m, let yi =
(

ui vi ui + vi 2ui + vi ri

)
. So, for 1 ≤ j ≤ m,

(yi, y j) = uiu j + viv j + (ui + vi)(u j + v j) + (2ui + vi)(2u j + v j) + (ri, r j) = 0.

Thus, C is self-orthogonal and since |C| = 92 |C0| = 3n+4, C is left self-dual. �
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Define Ĉ0 to be the span of the last m rows of G, and for every y ∈ E3 write

Ty = (y, 0, 0, 0, 2yx1), and Uy = (0, y, 0, 0, 2yx2).

The construction in Theorem 6 maybe demonstrated to be equivalent to

C = ∪̇t,u∈E3\S (Tt + Uu + Ĉ0).

Example 2. We construct a left self-dual code of length 8 derived from length 4. By Theorem 3, we
have the left self-duall (4, 34, 3) code with generator matrix G1 given by

G1 =

(
a 0 a a
0 a a e

)
.

Using Theorem 6 fromG1 with α = a, we get only one non-equivalent monomial left self-dual (8, 38, 3)
code with generator matrix

G1,1 =


a 0 0 0 e e 0 0
0 a 0 0 e a 0 0
a a e 0 a 0 a a
a e 0 e 0 a a e

 .
Its Hamming weight enumerator is

W1,1(x, y) = x8 + 64x5y3 + 96x4y4 + 1024x2y6 + 3072xy7 + 2304y8.

Repeating this process using G1,1 with x1 = (1, 1, 0, 0, 0, 0, 0, 0), we get only three non-equivalent
monomial left self-dual (12, 312, 3) codes with generator matrices

G1,1,1 =



a 0 0 0 e e 0 0 0 0 0 0
0 a 0 0 0 0 0 e a 0 0 0
a a e 0 a 0 0 0 e e 0 0
a a e 0 0 a 0 0 e a 0 0
e e a 0 a a e 0 a 0 a a
0 e e a a e 0 e 0 a a e


,

G1,1,2 =



a 0 0 0 e e 0 0 0 0 0 0
0 a 0 0 a e a a a 0 0 0
a 0 a a a 0 0 0 e e 0 0
a e 0 e 0 a 0 0 e a 0 0
e 0 e e a a e 0 a 0 a a
0 0 0 0 a e 0 e 0 a a e


,

and

G1,1,3 =



a 0 0 0 e e 0 0 0 0 0 0
0 a 0 0 0 0 0 e e e e e
a a e 0 a 0 0 0 e e 0 0
a 0 a a 0 a 0 0 e a 0 0
e 0 e e a a e 0 a 0 a a
0 0 0 0 a e 0 e 0 a a e


.
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Their Hamming weight enumerators are

W1,1,1(x, y) =x12 + 96x9y3 + 144x8y4 + 3072x6y6 + 9216x5y7 + 6912x4y8 + 32768x3y9

+ 147456x2y10 + 221184xy11 + 110592y12,

W1,1,2(x, y) =x12 + 24x9y3 + 8x8y4 + 176x7y5 + 1112x6y6 + 4376x5y7 + 15272x4y8

+ 47776x3y9 + 132776x2y10 + 208544xy11 + 121376y12,

and

W1,1,3(x, y) = x12 + 32x9y3 + 1248x6y6 + 5184x5y7 + 14256x4y8 + 46976x3y9 + 134784x2y10

+207360xy11 + 121600y12,

respectively.

Corollary 10. The minimum Hamming weight of left self-dual codes over E3 of length n is a multiple
of 3.

Proof. Following Corollary 9, the minimum distance d(C) of a left self-dual code C is equal to
d(res(C)). Thus, by [11, Lemma 1], self-dual codes over F3 of length n exist only if n is a multiple of 4
and a minimum weight is a multiple of 3. �

In the following theorem, we will now describe the general approach that we will utilize in finding
construction methods for right self-dual codes over E3.

Theorem 7. Let C0 be a right self-dual code of length n over E3, with generator matrix G0 = (ri),
where ri is the i-th row of G0, for 1 ≤ i ≤ m. Then the code C with the following generator matrix

G =


f Ih 0 ... 0
0
... G0

0


is a a right self-dual code of length n + h.

Proof. We can show that G generates a self-orthogonal code C in a similar way as given in Theorem 6.
Now, according to |C| = 3h |C0| = 3n+h, C is self-dual. �

Corollary 11. Every one-sided self-dual code is also self-dual.

Proof. Let C be a left self-dual in order to demonstrate that every left self-dual is self-dual. res(C) =

res(C)⊥ and tor(C) = res(C)⊥ are the results of Theorem 3. Hence, C is a self-dual code according to
Theorem 4.

To prove that every right self-dual is self-dual, let C be right self-dual. Also, by use Theorem 3, we
see that C = a {0}+ fFn

3. Observe that tor(C) = res(C)⊥. Then, by Theorem 4, C is a self-dual code. �

Example 3. The linear code of length 4 with the two generators

G2 =

(
a 0 a a
0 a a e

)
is a self-dual and left self-dual, but not right self-dual.
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Example 4. The linear code of length 3 defined by

C =

{
000, f 00, 0 f 0, 00 f , g00, 0g0, 00g, f f 0, f 0 f , 0 f f , gg0, g0g, 0gg, g f g,

gg f , f gg, f f g, f g f , g f f , f g0, 0g f , f 0g, g f 0, 0g f , g0 f , f f f , ggg

}
is a self-dual and right self-dual code, but not left self-dual.

Remark 3. We note that a similar construction method in Theorems 6 and 7 can be applied to self-dual
codes over E3.

3.3. Construction of self-dual codes

The following result constructs a self-dual code of length n + 3 from a self-dual code of length n.

Theorem 8. Let C0 be a self-dual code over E3 of length n with generator matrix G0 = (ri) where ri is
the ith row of G0, for i = 1, 2, . . . ,m. Let x ∈ Fn

3 and α, β, γ ∈ E3, such that α + β + γ = 0. Let σ ∈ J3,
non-zero element. Then the code C with the following generator matrix

G =



α β 0 γx
0 σ 0 2σx

(x, r1) (x, r1) (x, r1) r1
...

...
...

...

(x, rm) (x, rm) (x, rm) rm


is a self-dual code of length n + 3 if:

(1) (x, x) = 1, and (α, β, γ ∈ E3 \ J3); or
(2) (x, x) = −1, and (α = 0, β ∈ E3 \ J3, γ = 2β).

Proof. We first show that C is self-orthogonal. Let y0 =
(
α β 0 γx

)
, the first row of G, and

y′0 =
(

0 σ 0 2σx
)
, the second row of G. For 1 ≤ i ≤ m, let yi =

(
(x, ri) (x, ri) (x, ri) ri

)
.

Then,

(i) If (x, x) = 1 and (α, β, γ ∈ E3 \ J3), then

(y0, y0) = α2 + β2 + γ2(x, x) = (α2 + β2 + γ2) = 0,
(y′0, y

′
0) = σ2 + (2σ)2(x, x) = 0,

(y0, y′0) = βσ + γ(2σ)(x, x) = 0,
(y′0, y0) = σβ + 2σγ(x, x) = σ + 2σ = 0,
(y0, yi) = α(x, ri) + β(x, ri) + γ(x, ri) = (α + β + γ) = 0,
(y′0, yi) = (σ + 2σ)(x, ri) = 0,
(yi, y j) = 3(x, ri)(x, r j) + (ri, r j) = 0,

for all i, j = 1, 2, . . . ,m.
(ii) If (x, x) = −1 and (α = 0, β ∈ E3 \ J3, γ = 2β), then

(y0, y0) = β2 + (2β)2(x, x) = β2 − β2 = 0,
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(y′0, y0) = σβ + (2σ)(2β)(x, x) = σβ − σβ = 0,
(y0, yi) = β(x, ri) + 2β(x, ri) = 3β(x, ri) = 0,
(yi, y j) = 3(x, ri)(x, r j) + (ri, r j) = 0,

for all i, j = 1, 2, . . . ,m.

In both cases, we see that C is a self-orthogonal code. Since |C| = 9131|C0| = 3n+3, C is a self-dual
code of length n + 3. �

Example 5. We construct self-dual codes of length 7 derived from length 4. By Theorem 4, we have

the self-dual (4, 34, 1) code with generator matrix G3 =


a 0 a a
0 f 0 0
0 0 f g

 .
Using Theorem 8 from G3, we get five non-equivalent monomial self-dual codes with generator

matrices:
a a 0 0 a 0 0
0 f 0 0 g 0 0
0 0 0 a 0 a a
f f f 0 f 0 0
0 0 0 0 0 f g


,


a a 0 a e e a
0 f 0 g f f g
a a a a 0 a a
g g g 0 f 0 0
f f f 0 0 f g


,


0 a 0 e e 0 0
0 g 0 f f 0 0
a a a a 0 a a
f f f 0 f 0 0
0 0 0 0 0 f g


,


0 a 0 e 0 e 0
0 g 0 f 0 f 0
e e e a 0 a a
0 0 0 0 f 0 0
f f f 0 0 f g


, and


0 a 0 0 0 e a
0 g 0 0 0 f g
0 0 0 a 0 a a
0 0 0 0 f 0 0
g g g 0 0 f g


.

Their Hamming weight enumerators are

W1(x, y) = x7 + 2x6y + 12x5y2 + 64x4y3 + 116x3y4 + 312x2y5 + 880xy6 + 800y7,

W2(x, y) = x7 + 12x5y2 + 40x4y3 + 90x3y4 + 240x2y5 + 724xy6 + 1080y7,

W3(x, y) = x7 + 2x5y2 + 24x4y3 + 38x3y4 + 52x2y5 + 236xy6 + 376y7,

W4(x, y) = x7 + 2x6y + 6x5y2 + 40x4y3 + 56x3y4 + 48x2y5 + 256xy6 + 320y7,

and
W5(x, y) = x7 + 2x6y + 34x4y3 + 122x3y4 + 162x2y5 + 208xy6 + 200y7,

respectively.

Theorem 9. Two self-dual E3-codes are monomially equivalent if and only if their residue codes are
also equivalent.

Proof. Let C1 and C2 be two monomially equivalent codes over E3, then their residue codes are also
equivalent as a res(C1) ⊆ C1 and a res(C2) ⊆ C2 .

Conversely, LetC1 andC2 be two self-dual E3-codes, and res(C1) and res(C2) monomially equivalent
codes. Then, there is a monomial matrix M sends a code res(C1) into the equivalent code such that

res(C2) = res(C1)M = {uM : u ∈ res(C1)} .
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The set of all monomials such that res(C2) = res(C1) forms the automorphism group G(res(C1)) of the
code res(C1), and as res(C2)⊥ = res(C1)⊥M.

Thus, from Theorem 4, we have

C2 = a res(C2) + f res(C2)⊥ = a res(C1)M + f res(C1)⊥M = C1M. (3.1)

By Eq (3.1), we have C2 = C1M, proving that C1 and C2 are monomially equivalent. �

Remark 4. Every one-sided self-dual code is also a self-dual code, but not conversely as the next
example shows.

Example 6. The linear code with the three generators G =


a 0 a a
0 f 0 0
0 0 f g

 , is a self-dual code, but

neither left- nor right-self-dual.

4. Computational results

In this section, we use the multilevel constructs in Theorems 2–4 to categorize self-orthogonal,
(one-sided) self-dual, and self-dual E3-codes of length n < 8 with residue dimension k1 = 0, 1, 2. All
the computer calculations in this section were performed in Magma [8].

4.1. Length 1

There is one right self-dual code over E3 of type {0, 1}, with generator matrix in Table 2.

Table 2. RSD codes over E3 of type {0, 1}.

Generator matrix |Aut(C)| Weight distribution
( f ) 2 [1, 2]

4.2. Length 2

There is one right self-dual code over E3 of type {0, 2}, with generator matrix in Table 3.

Table 3. RSD codes over E3 of type {0, 2}.

Generator matrix |Aut(C)| Weight distribution(
f 0
0 f

)
8 [1, 4, 4]

4.3. Length 3

For type {0, 2}, there are three distinct self-orthogonal codes over E3, with generator matrices in
Table 4.
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Table 4. SO codes over E3 of type {0, 2}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution(
f 0 0
0 f f

)
8 [1, 2, 2, 4]

(
f 0 f
0 f f

)
12 [1, 0, 6, 2]

(
f 0 0
0 f f

)
16 [1, 4, 4, 0]

For type {0, 3}, there is one right self-dual code over E3, with generator matrix in Table 5.

Table 5. RSD codes over E3 of type {0, 3}.

Generator matrix |Aut(C)| Weight distribution
f 0 0
0 f 0
0 0 f

 48 [1, 6, 12, 8]

For type {1, 0}, there are two distinct self-orthogonal codes over E3, with generator matrices in
Table 6.

Table 6. SO codes over E3 of type {1, 0}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution(

a a a
)

12 [1, 0, 0, 8]
(
a b h

)
6 [1, 0, 0, 8]

For type {1, 1}, there is one distinct self-dual code over E3, with generator matrix in Table 7.

Table 7. SD codes over E3 of type {1, 1}.

Generator matrix |Aut(C)| Weight distribution(
a a a
0 g f

)
12 [1, 0, 6, 20]

4.4. Length 4

For type {0, 4}, there is one right self-dual code over E3, with generator matrix in Table 8.
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Table 8. RSD codes over E3 of type {0, 4}.

Generator matrix |Aut(C)| Weight distribution
f 0 0 0
0 f 0 0
0 0 f 0
0 0 0 f

 96 [1, 8, 24, 32, 16]

For type {1, 0}, there are four distinct self-orthogonal codes over E3, with generator matrices in
Table 9.

Table 9. SO codes over E3 of type {1, 0}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution(

a 0 a a
)

24 [1, 0, 0, 8, 0]
(
a 0 b h

)
12 [1, 0, 0, 8, 0](

a f a a
)

12 [1, 0, 0, 2, 6]
(
a f b h

)
6 [1, 0, 0, 2, 6]

For type {1, 1}, there are six distinct self-orthogonal codes over E3, with generator matrices in
Table 10.

Table 10. SO codes over E3 of type {1, 1}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution(

a 0 a a
0 f 0 0

)
24 [1, 2, 0, 8, 16]

(
a 0 b h
0 f 0 0

)
12 [1, 2, 0, 8, 16]

(
a 0 a a
0 f f g

)
12 [1, 0, 0, 14, 12]

(
a 0 b h
0 f f g

)
6 [1, 0, 0, 14, 12]

(
a 0 a a
0 0 f g

)
24 [1, 0, 6, 20, 0]

(
a f a a
f 0 0 g

)
12 [1, 0, 6, 2, 18]

For type {1, 2}, there is only one distinct self-dual codes over E3, with generator matrix in Table 11.
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Table 11. SD codes over E3 of type {1, 2}.

Generator matrix |Aut(C)| Weight distribution
a 0 a a

0 b 0 0
0 0 b d

 24 [1, 2, 6, 32, 40]

For type {2, 0}, there is only one left self-dual code over E3, with generator matrix in Table 12.

Table 12. LSD codes over E3 of type {2, 0}.

Generator matrix |Aut(C)| Weight distributiona 0 a a

0 a a e

 48 [1, 0, 0, 32, 48]

4.5. Length 5

For type {0, 5}, there is one right self-dual code over E3, with generator matrix in Table 13.

Table 13. RSD codes over E3 of type {0, 5}.

Generator matrix |Aut(C)| Weight distribution

f 0 0 0 0
0 f 0 0 0
0 0 f 0 0
0 0 0 f 0
0 0 0 0 f


3840 [1, 10, 40, 80, 80, 32]

For type {1, 0}, there are six distinct self-orthogonal codes, with generator matrices in Table 14.

Table 14. SO codes over E3 of type {1, 0}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution(

a 0 0 a a
)

96 [1, 0, 0, 8, 0, 0]
(
a 0 0 b h

)
48 [1, 0, 0, 8, 0, 0]

(
a f 0 a a

)
24 [1, 0, 0, 2, 6, 0]

(
a f 0 b h

)
12 [1, 0, 0, 2, 6, 0]

(
a f f a a

)
24 [1, 0, 0, 2, 0, 6]

(
a f f b h

)
12 [1, 0, 0, 2, 0, 6]

For type {1, 2}, there are ten distinct self-orthogonal codes, with generator matrices in Table 15.
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Table 15. SO codes over E3 of type {1, 2}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution

a 0 0 a a

0 f 0 0 0
0 0 f 0 0

 96 [1, 4, 4, 8, 32, 32]


a 0 0 b h

0 f 0 0 0
0 0 f 0 0

 48 [1, 4, 4, 8, 32, 32]


a 0 0 a a

0 f f 0 0
0 0 0 f g

 48 [1, 0, 8, 20, 12, 40]


a 0 0 a a

0 f 0 0 0
0 0 f f g

 24 [1, 2, 0, 14, 40, 24]


a 0 0 b h

0 f f 0 0
0 0 0 f g

 12 [1, 2, 0, 14, 40, 24]


a 0 0 a a

0 f f 0 0
0 0 f f g

 24 [1, 0, 2, 20, 30, 28]


a 0 0 b h

0 f f 0 0
0 0 f f g

 12 [1, 0, 2, 20, 30, 28]


a 0 0 a a

0 0 f 0 0
0 0 0 f g

 48 [1, 2, 6, 32, 40, 0]


a f f a a

0 0 f 0 0
0 0 0 g f

 24 [1, 2, 6, 14, 22, 36]


a f g a a

g 0 0 0 f

f 0 0 0 g

 24 [1, 0, 6, 2, 18, 0]

For type {1, 3}, there is only one distinct self-dual codes over E3, with generator matrix in Table 16.

Table 16. SD codes over E3 of type {1, 3}.

Generator matrix |Aut(C)| Weight distribution
a 0 0 a a
0 f 0 0 0
0 0 f 0 0
0 0 0 f g

 96 [1, 4, 10, 44, 104, 80]

4.6. Length 6

For type {0, 6}, there is one right self-dual code over E3, with generator matrix in Table 17.
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Table 17. RSD codes over E3 of type {0, 6}.

Generator matrix |Aut(C)| Weight distribution

f 0 0 0 0 0
0 f 0 0 0 0
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0
0 0 0 0 0 f


46080 [1, 6, 12, 16, 48, 96, 64]

For type {1, 3}, there are 13 distinct self-orthogonal codes, with generator matrices in Table 18.

Table 18. SO codes over E3 of type {1, 3}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution

a a 0 0 0 a
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0

 576
[1, 6, 12, 16,
48, 96, 64]


a b 0 0 0 h
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0

 288
[1, 6, 12, 16,
48, 96, 64]


a a 0 0 0 a
f 0 f 0 0 g
0 0 0 f 0 0
0 0 0 0 f 0

 96
[1, 4, 4, 14,
68, 104, 48]


a b 0 0 0 h
f 0 f 0 0 g
0 0 0 f 0 0
0 0 0 0 f 0

 48
[1, 4, 4, 14,
68, 104, 48]


a a 0 0 0 a
f 0 0 0 0 g
0 0 0 f 0 0
0 0 0 0 f 0

 192
[1, 4, 10, 44,
104, 80, 0]


a a 0 0 0 a
f 0 f 0 0 g
f 0 0 f 0 g
f 0 0 0 f g

 72
[1, 0, 6, 28,
54, 102, 52]


a b 0 0 0 h
f 0 f 0 0 g
f 0 0 f 0 g
f 0 0 0 f g

 36
[1, 0, 6, 28,
54, 102, 52]


a a a a a a
f 0 0 g 0 0
f 0 0 g 0 0
f 0 0 g 0 0

 96
[1, 0, 2, 0, 0,

4, 20]


a b h a b h
f 0 0 g 0 0
f 0 0 g 0 0
f 0 0 g 0 0

 16
[1, 0, 2, 0, 0,

4, 20]


a a a a a a
f f 0 g g 0
f f 0 g g 0
f f 0 g g 0

 96
[1, 0, 0, 0, 6,

0, 20]


a b h a b h
f f 0 g g 0
f f 0 g g 0
f f 0 g g 0

 8
[1, 0, 0, 0, 6,

0, 20]


a a a a a a
g f 0 0 0 0
g 0 f 0 0 0
g 0 0 f 0 0

 96
[1, 0, 12, 16, 18,

24, 172]


a b h a b h
g f 0 0 0 0
g 0 f 0 0 0
g 0 0 f 0 0

 48
[1, 0, 12, 16, 18,

24, 172]

For type {1, 4}, there are two distinct self-dual codes over E3, with generator matrices in Table 19.
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Table 19. SD codes over E3 of type {1, 4}.

Generator |Aut(C)| Weight Generator |Aut(C)| Weight
matrix distribution matrix distribution

a a 0 0 0 a
0 f 0 0 0 g
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0

 576
[1, 6, 18, 64,

192, 288, 160]


a a a a a a
0 f 0 0 0 g
0 0 f 0 0 g
0 0 0 f 0 g
0 0 0 0 f g

 1440
[1, 0, 30, 40, 90,

60, 508]

4.7. Length 7

For type {0, 7}, there is one right self-dual code over E3, with generator matrix in Table 20.

Table 20. RSD codes over E3 of type {0, 7}.

Generator matrix |Aut(C)| Weight distribution

f 0 0 0 0 0 0
0 f 0 0 0 0 0
0 0 f 0 0 0 0
0 0 0 f 0 0 0
0 0 0 0 f 0 0
0 0 0 0 0 f 0
0 0 0 0 0 0 f


604800 [1, 14, 84, 280, 560, 672, 448, 128]

For type {1, 5}, there are two distinct self-dual codes over E3, with generator matrices in Table 21.

Table 21. SD codes over E3 of type {1, 5}.

Generator matrix |Aut(C)| Weight distribution

a a 0 a a a a
0 f 0 0 0 0 g
0 0 f 0 0 0 0
0 0 0 f 0 0 g
0 0 0 0 f 0 g
0 0 0 0 0 f g


2880 [1, 2, 30, 100, 170, 240, 628, 1016]



a a 0 0 0 0 a
0 f 0 0 0 0 g
0 0 f 0 0 0 0
0 0 0 f 0 0 0
0 0 0 0 f 0 0
0 0 0 0 0 f 0


4608 [1, 8, 30, 100, 320, 672, 736, 320]

4.8. Examples

According to the mass formula in subsection 2.5, we enumerate all equivalent codes obtained under
the action of the monomial group, and illustrate how the mass formula can be used in the classification
of E3-codes, that is, we find representatives for the equivalence classes of E3-codes for each length and
type. The following examples illustrate our results.
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Example 7. Let C be the set of self-orthogonal codes over E3 of length 3 and type {1, 0} given by the
following generator matrices: ((

a a a
)
,
(
a b h

))
.

The codes in C are inequivalent and they have an automorphism group of order 12 and 6 respectively.
Therefore, from Corollary 1,

2∑
1

1
|Aut(C)|

=
1

12
+

1
6

=
1
4

=
NS O(n, k1, k2)

2nn!
=

4 × 3 × 1
6 × 8

=
1
4
.

It demonstrates that, up to monomial equivalency, there exist precisely two self-orthogonal codes.

Example 8. Let C be the set of left self-dual codes over E3 of length 4 and type {2, 0} given by the

following generator matrix:
(
a 0 a a
0 a a e

)
.

The code in C has an automorphism group of order 48. Therefore, by Corollary 4,

1∑
1

1
|Aut(C)|

=
1

48
=
ϕn, n

2

2nn!
=

8 × 1 × 1
24 × 16

=
1
48
.

It demonstrates that, up to monomial equivalency, there exist only one left self-dual code.

Example 9. Let C be the set of self-dual codes over E3 of length 7 and type {1, 5} given by the following
generator matrices: 



a a 0 0 0 0 a
0 f 0 0 0 0 g
0 0 f 0 0 0 0
0 0 0 f 0 0 0
0 0 0 0 f 0 0
0 0 0 0 0 f 0


,



a a 0 a a a a
0 f 0 0 0 0 g
0 0 f 0 0 0 0
0 0 0 f 0 0 g
0 0 0 0 f 0 g
0 0 0 0 0 f g




.

The codes in C are inequivalent and they have an automorphism group of order 4608 and 2880
respectively. Therefore, from Corollary 2, we have

2∑
1

1
|Aut(C)|

=
1

4608
+

1
2880

= 0.000564 =
ϕn,k1

277!
=

364
128 × 5040

= 0.000564,

which shows that there are exactly two self-dual codes, up to monomial equivalence.

Next, we use our build-up construction methods mentioned in Sections 3.1–3.3 to obtain SO, RSD,
LSD, and SD codes over E3. It is possible to discover several self-dual codes of suitable lengths in
a fairly effective manner, as demonstrated by our computation. The partial classification results are
summarized in Table 22 below.
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Table 22. Classification of SO, RSD, LSD, and SD codes using the building method in
Section 3.

n Code Construction Length of x d(C) Weight
constructed code distribution

1 ( f ) Theorem 5 4 (1) 1 [1, 2, 0, 8, 16]
Theorem 7 5 (0) 1 [1, 10, 40, 80, 80, 32]

2
(

f 0
0 f

)
Theorem 5 5 (10) 1 [1, 4, 4, 8, 32, 32]

5 (11) 2 [1, 0, 8, 20, 12, 40]
Theorem 7 6 (00) 1 [1, 6, 12, 16, 48, 96, 64]

3


f 0 0
0 f 0
0 0 f

 Theorem 5 6 (001) 1
[1, 12, 60, 160, 240, 192,

64]

Theorem 7 7 (000) 1
[1, 14, 84, 280, 560, 672,

448, 128](
a a a
0 f g

)
Theorem 5 6 (020) 2 [1, 0, 2, 20, 30, 28, 162]

(002) 3 [1, 0, 0, 16, 0, 0, 64]
(111) 2 [1, 0, 14, 20, 48, 160, 0]
(221) 2 [1, 0, 10, 0, 24, 68, 140]
(110) 2 [1, 0, 6, 28, 0, 48, 160]
(210) 2 [1, 0, 2, 32, 48, 64, 96]

Theorem 6 7 (110)(120) 2
[1, 0, 6, 52, 48, 192, 928,

960]
Theorem 7 6 (000) 1 [1, 6, 18, 64, 192, 288, 160]
Theorem 8 6 (100) 2 [1, 0, 12, 40, 36, 240, 400]

(110) 1 [1, 6, 12, 64, 30, 150, 466]

4


f 0 0 0
0 f 0 0
0 0 f 0
0 0 0 f

 Theorem 5 7 (0100) 2
[1, 8, 24, 40, 80, 192,

256, 128]

(1111) 1
[1, 2, 12, 40, 50, 60,

220, 344]

(1100) 1
[1, 4, 12, 52, 124, 168,

208, 160]

Theorem 7 7 (0000) 1
[1, 14, 84, 280, 560, 672,

448, 128]
a 0 a a
0 f 0 0
0 0 f g

 Theorem 5 7 (1000) 1 [1, 2, 6, 40, 56, 48, 256, 320]

(2211) 2 [1, 0, 2, 16, 34, 76, 232, 368]
(1212) 2 [1, 0, 2, 24, 38, 52, 236, 376]
(1010) 1 [1, 2, 6, 40, 56, 48, 256, 320]

Theorem 6 8 (1100), (1200) 1
[1, 2, 6, 64, 152, 288, 1312,

2816, 1920]

(1010), (0102) 2
[1, 0, 10, 40, 192, 412, 1084,

2850, 1972]

(2001), (0110) 2
[1, 0, 2, 40, 78, 164, 1012,

2784, 2480]
Continued on next page
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n Code Construction Length of x d(C) Weight
constructed distribution
code

4


a 0 a a
0 f 0 0
0 0 f g

 Theorem 8 7 (1000) 1
[1, 2, 12, 64, 116, 312,

880, 800]

(1221) 2
[1, 0, 12, 40, 90, 240,

724, 1080]

(1010) 1
[1, 2, 6, 40, 56, 48,

256, 320]

(1100) 2
[1, 0, 2, 24, 38, 52,

236, 376]a 0 a a
0 a a e

 Theorem 5 7 (1100) 3
[1, 0, 0, 40, 48, 0, 256,

384]

(1212) 3
[1, 0, 0, 16, 24, 72, 280,

336]

Theorem 8 7 (0001) 1
[1, 6, 12, 40, 240, 672,

832, 384]

(1111) 2
[1, 0, 6, 52, 48, 192,

928, 960]

Theorem 6 8 (1100), (0011) 3
[1, 0, 0, 34, 96, 0,

1024, 3072, 2304]

5



f 0 0 0 0
0 f 0 0 0
0 0 f 0 0
0 0 0 f 0
0 0 0 0 f


Theorem 5 8 (10000) 1

[1, 10, 40, 88, 160,
352, 640, 640, 256]

(11110) 1
[1, 4, 16, 64, 130, 160,

340, 784, 688]

Theorem 7 8 (00000) 1
[1, 16, 112, 448, 1120,
1792, 1792, 1024, 256]

a 0 0 a a
0 f 0 0 0
0 0 f 0 0
0 0 0 f g

 Theorem 5 8 (11110) 2
[1, 0, 6, 16, 60, 36,

388, 696, 984]

(10000) 1
[1, 4, 10, 52, 136,

160, 352, 832, 640]

(22000) 1
[1, 2, 2, 28, 86, 128,

340, 848, 752]

(00011) 1
[1, 4, 10, 52, 136, 160,

352, 832, 640]

Theorem 6 9 (01100), (01200) 1
[1, 4, 10, 76, 280, 592,

1888, 5440, 7552,
3840]

(01100), (00011) 2
[1, 0, 18, 60, 108, 720,

1416, 2160, 7200,
8000]

Continued on next page
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n Code Construction Length of x d(C) Weight
constructed distribution
code

5


a 0 0 a a
0 f 0 0 0
0 0 f 0 0
0 0 0 f g

 Theorem 6 9 (11112), (10001) 1
[1, 2, 2, 44, 158,
320, 1340, 4808,

8048, 4960]

Theorem 8 8 (11110) 2
[1, 0, 8, 64, 120, 176,

880, 2688, 2624]

(10000) 1
[1, 4, 16, 88, 244,
544, 1504, 2560,

1600]

(00011) 1
[1, 4, 10, 44, 116,

176, 396, 816, 624]

(11111) 2
[1, 0, 14, 40, 60,

320, 472, 480, 800]

(00021) 1
[1, 4, 6, 40, 148,

384, 544, 640, 384]

6



f 0 0 0 0 0
0 f 0 0 0 0
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0
0 0 0 0 0 f


Theorem 5 9 (100000) 1

[1, 12, 60, 168, 336,
672, 1344, 1920,

1536, 512]

(111100) 1
[1, 6, 24, 96, 258,
420, 660, 1464,

2256, 1376]

(110000) 1
[1, 8, 32, 116, 380,
872, 1376, 1664,

1472, 640]

Theorem 7 9 (000000) 1
[1, 18, 144, 672,

2016, 4032, 5376,
4608, 2304, 512]

a a 0 0 0 a
0 f 0 0 0 g
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0


Theorem 5 9 (111100) 1

[1, 2, 6, 28, 92, 156,
460, 1472, 2376,

1968]

(100000) 1
[1, 6, 14, 32, 120,
368, 908, 1800,

2192, 1120]

(001111) 2
[1, 0, 10, 30, 90, 136,

276, 1296, 1888,
2834]

(000022) 1
[1, 4, 6, 30, 136, 324,

654, 1462, 2352,
1592]

Continued on next page
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n Code Construction Length of x d(C) Weight
constructed distribution
code

6



a a 0 0 0 a
0 f 0 0 0 g
0 0 f 0 0 0
0 0 0 f 0 0
0 0 0 0 f 0


Theorem 5 9 (111011) 1

[1, 2, 14, 68, 140, 440,
1112, 1424, 1760,

1600]

(110000) 1
[1, 6, 18, 72, 240,

432, 672, 1536, 2304,
1280]

Theorem 6 10
(110000),
(120000)

1
[1, 6, 18, 96, 432, 1152,

3072, 9216, 18432,
18944, 7680]

(110000),
(001100)

1
[1, 2, 18, 96, 228, 936,

2856, 4992, 11520,
22400, 16000]

(111110),
(211110)

2
[1, 0, 12, 36, 138, 516,

1464, 4584, 10650,
20936, 20712]

(110000),
(211110)

2
[1, 0, 18, 60, 162, 720,

2064, 4320, 9144,
20960, 21600]

Theorem 7 9 (000000) 1
[1, 12, 66, 252, 840,
2352, 4704, 5952,

4224, 1280]

Theorem 8 9 (111100) 1
[1, 2, 8, 80, 248, 416,

1232, 4448, 8000,
5248]

(100000) 1
[1, 6, 20, 88, 336, 992,

2752, 5760, 6656,
3072]

(111011) 1
[1, 2, 14, 68, 140,
440, 1112, 1424,

1760, 1600]

(110000) 1
[1, 6, 18, 72, 240,

432, 672, 1536, 2304,
1280]

(111101) 1
[1, 2, 12, 70, 134, 402

1192, 1484, 1584,
1680]

a a a a a a
0 f 0 0 0 g
0 0 f 0 0 g
0 0 0 f 0 g
0 0 0 0 f g


Theorem 5 9 (001212) 1

[1, 2, 6, 28, 92, 156,
460, 1472, 2376,

1968]

Continued on next page
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n Code Construction Length of x d(C) Weight
constructed distribution
code

6



a a a a a a
0 f 0 0 0 g
0 0 f 0 0 g
0 0 0 f 0 g
0 0 0 0 f g


Theorem 5 9 (100000) 2

[1, 0, 20, 38, 60, 320,
410, 1218, 938,

3556]

(111100) 2
[1, 0, 18, 36, 90, 360,

600, 504, 1512,
3440]

(210000) 2
[1, 0, 14, 40, 114, 320,

904, 1560, 1448,
2160]

Theorem 6 10
(111110),
(121110)

2
[1, 0, 18, 60, 162, 720,

2064, 4320, 9144,
20960, 21600]

(110000),
(001100)

1
[1, 2, 18, 96, 228, 936,

2856, 4992, 11520,
22400, 16000]

(210111),
(000021)

1
[1, 4, 6, 48, 246, 636,
1980, 7488, 17664,

21056, 9920]

(110000),
(120000)

2
[1, 0, 30, 72, 138, 1020,

3228, 4800, 6240,
19136, 24384]

(110000),
(000011)

2
[1, 0, 12, 54, 156, 678,

2184, 4440, 8868,
21008, 21648]

Theorem 7 9 (000000) 1
[1, 6, 42, 228, 690, 1320,

2268, 4488, 6576,
4064]

Theorem 8 9 (100000) 2
[1, 0, 26, 70, 240, 980,

1330, 2622, 4718,
9696]

(111100) 2
[1, 0, 36, 60, 270, 900,

1848, 2160, 4248,
10160]

(002121) 1
[1, 2, 8, 80, 248,

416, 1232, 4448, 8000,
5248]

(002121) 2
[1, 0, 14, 40, 114, 320,

904, 1560, 1448,
2160]
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5. Conclusions

In this study, we have derived and used propagation rules over a certain non-unital ring of order 9 to
generate self-orthogonal, one-sided self-dual and self-dual codes. Combining this generating technique
with mass formulas we have classified these three classes of codes in length at most 7 up to monomial
equivalence. It is an open problem to know if, alike what happens in [4], all codes in the three families
can be generated by this technique up to some mild type condition.

In order to expand the classification results to longer lengths, more processing power or more
efficient automorphism algorithms may be required due to the combinatorial explosion of codes in
the three families.
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