Loading [MathJax]/jax/element/mml/optable/Arrows.js
Research article Special Issues

Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties

  • † These authors contributed equally to this work and are co-first authors.
  • In current days, hybrid models have become more essential in a wide range of systems, including medical treatment, aerosol particle handling, laboratory instrument design, industry and naval academia, and more. The influence of linear, nonlinear, and quadratic Rosseland approximations on 3D flow behavior was explored in the presence of Fourier fluxes and Boussinesq quadratic thermal oscillations. Ternary hybrid nanoparticles of different shapes and densities were also included. Using the necessary transformation, the resulting partial differential system is transformed into a governing ordinary differential system, and the solution is then furnished with two mixed compositions (Case-Ⅰ and Case-Ⅱ). Combination one looked at aluminum oxide (Platelet), graphene (Cylindrical), and carbon nanotubes (Spherical), whereas mixture two looked at copper (Cylindrical), copper oxide (Spherical), and silver oxide (Platelet). Many changes in two mixture compositions, as well as linear, quadratic, and nonlinear thermal radiation situations of the flow, are discovered. Case-1 ternary combinations have a wider temperature distribution than Case-2 ternary mixtures. Carbon nanotubes (Spherical), graphene (Cylindrical), and aluminum oxide (Platelet) exhibit stronger conductivity than copper oxide (Spherical), copper (Cylindrical), and silver oxide (Platelet) in Case 1. (Platelet). In copper oxide (Spherical), copper (Cylindrical), and silver (Platelet) compositions, the friction factor coefficient is much higher. The combination of liquids is of great importance in various systems such as medical treatment, manufacturing, experimental instrument design, aerosol particle handling and naval academies, etc. Roseland's quadratic and linear approximation of three-dimensional flow characteristics with the existence of Boussinesq quadratic buoyancy and thermal variation. In addition, we combine tertiary solid nanoparticles with different shapes and densities. In many practical applications such as the plastics manufacturing and polymer industry, the temperature difference is remarkably large, causing the density of the working fluid to vary non-linearly with temperature. Therefore, the nonlinear Boussinesq (NBA) approximation cannot be ignored, since it greatly affects the flow and heat transport characteristics of the working fluid. Here, the flow of non-Newtonian elastomers is controlled by the tension of an elastic sheet subjected to NBA and the quadratic form of the Rosseland thermal radiation is studied.

    Citation: Kiran Sajjan, Nehad Ali Shah, N. Ameer Ahammad, C.S.K. Raju, M. Dinesh Kumar, Wajaree Weera. Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties[J]. AIMS Mathematics, 2022, 7(10): 18416-18449. doi: 10.3934/math.20221014

    Related Papers:

    [1] Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(5): 10395-10396. doi: 10.3934/math.2023526
    [2] Amer Hassan Albargi . Some new results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528
    [3] Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
    [4] Erdal Karapınar, Marija Cvetković . An inevitable note on bipolar metric spaces. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162
    [5] Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
    [6] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [7] Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025
    [8] Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969
    [9] Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović . Fixed point results for a new α-θ-Geraghty type contraction mapping in metric-like space via CG-simulation functions. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548
    [10] Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad . Common fixed point results in F-metric spaces with application to nonlinear neutral differential equation. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237
  • In current days, hybrid models have become more essential in a wide range of systems, including medical treatment, aerosol particle handling, laboratory instrument design, industry and naval academia, and more. The influence of linear, nonlinear, and quadratic Rosseland approximations on 3D flow behavior was explored in the presence of Fourier fluxes and Boussinesq quadratic thermal oscillations. Ternary hybrid nanoparticles of different shapes and densities were also included. Using the necessary transformation, the resulting partial differential system is transformed into a governing ordinary differential system, and the solution is then furnished with two mixed compositions (Case-Ⅰ and Case-Ⅱ). Combination one looked at aluminum oxide (Platelet), graphene (Cylindrical), and carbon nanotubes (Spherical), whereas mixture two looked at copper (Cylindrical), copper oxide (Spherical), and silver oxide (Platelet). Many changes in two mixture compositions, as well as linear, quadratic, and nonlinear thermal radiation situations of the flow, are discovered. Case-1 ternary combinations have a wider temperature distribution than Case-2 ternary mixtures. Carbon nanotubes (Spherical), graphene (Cylindrical), and aluminum oxide (Platelet) exhibit stronger conductivity than copper oxide (Spherical), copper (Cylindrical), and silver oxide (Platelet) in Case 1. (Platelet). In copper oxide (Spherical), copper (Cylindrical), and silver (Platelet) compositions, the friction factor coefficient is much higher. The combination of liquids is of great importance in various systems such as medical treatment, manufacturing, experimental instrument design, aerosol particle handling and naval academies, etc. Roseland's quadratic and linear approximation of three-dimensional flow characteristics with the existence of Boussinesq quadratic buoyancy and thermal variation. In addition, we combine tertiary solid nanoparticles with different shapes and densities. In many practical applications such as the plastics manufacturing and polymer industry, the temperature difference is remarkably large, causing the density of the working fluid to vary non-linearly with temperature. Therefore, the nonlinear Boussinesq (NBA) approximation cannot be ignored, since it greatly affects the flow and heat transport characteristics of the working fluid. Here, the flow of non-Newtonian elastomers is controlled by the tension of an elastic sheet subjected to NBA and the quadratic form of the Rosseland thermal radiation is studied.



    The famous Banach Contraction Principle [1] of 1922 laid the foundation for the Metric Fixed Point theory. Over the years, plenty of generalizations have been made by various researchers to the Banach Contraction Principle using different types of contractive conditions in various topological spaces which are both Hausdorff and non-Hausdorff in nature and presented analytical applications of the derived results. In the sequel, in 2012, [2] introduced F-contraction and established fixed point results in the setting of complete metric spaces. In 2004, P. Dhivya et al. [3] analyzed the coupled fixed point and best proximity points involving simulation functions. Later, in 2015, Khojasteh, Shukla and Radenović [5], introduced the concept of simulation function and proved fixed point theorems using these functions. Subsequently, various fixed point results have been proved using various contractive conditions and simulation functions by numerous researchers in metric and metric-like spaces [4,5,6,7,8,9,10,11,12,13,14].

    As the distance function for a pair of points is always nonnegative real, metric fixed point theory has varied applications. The generalization of metric and metric-like spaces and the study of their properties have always been a matter of interest to researchers. As a result, Gahler [15] adopted metrics that are non-negative reals (i.e., [0,+)) and presented the idea of 2-metric spaces. In metric spaces, different types of distance functions are considered. Still, we can see the distance arising between the elements of two different sets where in distance between the same type of points is either unknown or undefined due to the non-availability of information. The distance between points and lines of Euclidean space, and the distance between sets and points of a metric space are these types of distances to name a few.

    Formalizing these types of distances, in the year 2016, Mutlu et al. [16] introduced the concept of Bi-polar metric space and established fixed point theorems in these spaces but without analyzing the topological structure in detail. In the recent past, many researchers have established various fixed point results using various types of contractions in the setting of Bi-polar metric spaces. One can refer to [17,18,19,20,21,23,24,25,26] and references there on for better understanding. The existence of fixed points of contraction mappings in Bi-polar metric spaces is currently an important topic in fixed point theory, which can be considered as a generalization of the Banach contraction principle.

    Moreover, varied applications of metric fixed point theory have been reported in different areas such as variational inequalities, differential, and integral equations, fractal calculus and dynamical systems and space science, etc.

    Inspired by the scope and its varied applications, the study is performed to examine the following:

    ● To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using F-contraction.

    ● To analyze the existence of unique fixed point in the setting of Bi-polar metric spaces using Simulation Functions.

    ● To apply the derived results to find solutions to integral equations.

    Accordingly, the rest of the paper is organized as follows. In Section 2, we review some definitions and concepts present in literature and some monograph. In Section 3, we establish fixed point results using F-contraction and simulation functions in the setting of Bi-polar metric space and supplement the derived results with examples. We have also applied the derived results to find the analytical solution of integral equations.

    Before proceeding further, we present a notation table listing the symbols and their meanings that are frequently used in this manuscript (see Table 1):

    Table 1.  List of symbols used in this article.
    Symbols Description
    Υ,Ω Sets
    d Metric distance function
    M Mapping
    F Set of all functions F:(0,+)R
    R Real Number
    β Element of Ω
    Element of Υ
    σ Element of N
    ϱ Bi-polar distance function
    ξ Simulation Function
    Θ Set of all simulation functions
    ξ:[0,+)×[0,+)R

     | Show Table
    DownLoad: CSV

    The following are required in the sequel. Let us begin with the concept of a F-contraction introduced by Wardowski [2].

    Definition 2.1. [2] Let (Υ,d) be a metric space. A mapping M:ΥΥ is called an F-contraction if there exist τ>0 and FF such that

    τ+F(d(M,M1))F(d(,1))

    holds for any ,1Υ with d(M,M1)>0, where F is the set of all functions F:(0,+)R satisfying the following conditions:

    (A1) F is strictly increasing;

    (A2) For each sequence {n} of positive numbers, we have

    limn+n=0ifflimn+F(n)=;

    (A3) There exists k(0,1) such that lim0+kF()=0.

    Definition 2.2. [16] Let Υ and Ω be non-void sets and ϱ:Υ×Ω[0,+) be a function, such that

    (a) ϱ(,β)=0 if and only if =β, for all (,β)Υ×Ω;

    (b) ϱ(,β)=ϱ(β,), for all (,β)ΥΩ;

    (c) ϱ(,β)ϱ(,γ)+ϱ(1,γ)+ϱ(1,β), for all ,1Υ and γ,βΩ.

    The pair (Υ,Ω,ϱ) is called a Bi-polar metric space.

    Example 2.3. Let Φ=[0,1], Ψ=[1,1] and φ:Φ×Ψ[0,+) be defined by

    φ(η,σ)=|ησ|

    for all ηΦ and σΨ. Then (Υ,Ω,ϱ) is a Bi-polar metric space.

    Definition 2.4. [16] Let M:Υ1Ω1Υ2Ω2 be a mapping, where (Υ1,Ω1) and (Υ2,Ω2) pairs of sets.

    (H1) If M(Υ1)Υ2 and M(Ω1)Ω2, then M is called a covariant map, or a map from (Υ1,Ω1,ϱ1) to (Υ2,Ω2,ϱ2) and this is written as \mathcal{M} :(\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\rightrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) .

    (H2) If \mathcal{M}(\varUpsilon_{1})\subseteq \varOmega_{2} and \mathcal{M}(\varOmega_{1})\subseteq \varUpsilon_{2} , then \mathcal{M} is called a contravariant map from (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\, \, to\, \, (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) and this is denoted as \mathcal{M} :(\varUpsilon_{1}, \varOmega_{1}, \varrho_{1}) \leftrightarrows(\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) .

    Definition 2.5. [16] Let (\varUpsilon, \varOmega, \varrho) be a Bi-polar metric space.

    (B1) A point {\pmb{\aleph}}\in\varUpsilon\cup\varOmega is said to be a left point if {\pmb{\aleph}}\in \varUpsilon , a right point if {\pmb{\aleph}}\in \varOmega and a central point if both hold.

    (B2) A sequence \{{\pmb{\aleph}}_{\sigma}\}\subset\varUpsilon is called a left sequence and a sequence \{\beta_{\sigma}\}\subset\varOmega is called a right sequence.

    (B3) A sequence \{\eta_{\sigma}\}\subset\varUpsilon \cup\varOmega is said to converge to a point \eta if and only if \{\eta_{\sigma}\} is a left sequence, \eta is a right point and \lim\limits_{\sigma\to +\infty}\varrho(\eta_{\sigma}, \eta) = 0 or \{\eta_{\sigma}\} is a right sequence, \eta is a left point and \lim\limits_{\sigma\to +\infty}\varrho(\eta, \eta_{\sigma}) = 0 .

    (B4) A sequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\}\subset\varUpsilon \times \varOmega is called a bisequence. If the sequences \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\sigma}\} both converge then the bisequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is called convergent in \varUpsilon \times \varOmega .

    (B5) If \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\sigma}\} both converge to a point \beta\in\varUpsilon \cap\varOmega then the bisequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is called biconvergent. A sequence \{({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\} is a Cauchy bisequence if \lim\limits_{\sigma, \zeta\to +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\zeta}) = 0 .

    (B6) A Bi-polar metric space is said to be complete if every Cauchy bisequence is convergent.

    Definition 2.6. [5] Let \xi: [0, +\infty) \times [0, +\infty) \to \mathbb{R} be a mapping, then \xi is called a simulation function if

    (\xi 1) \xi(0, 0) = 0 ;

    (\xi 2) \xi(\delta, \eta) < \eta-\delta for all \delta, \eta > 0 ;

    (\xi 3) if \{\delta_{\sigma}\}, \{\eta_{\sigma}\} are sequences in (0, +\infty) such that \lim \limits_{\sigma\to +\infty}\delta_{\sigma} = \lim \limits_{\sigma\to +\infty}\eta_{\sigma} > 0 , then

    \begin{align*} \lim \limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0. \end{align*}

    We denote the set of all simulation functions by \Theta .

    Example 2.7. [5] Let \xi_{\mathfrak{i}}: [0, +\infty) \times [0, +\infty) \to \mathbb{R} , \mathfrak{i} = 1, 2, 3 be defined by

    (G1) \xi_{1}(\delta, \eta) = \psi(\eta)-\phi(\delta) for all \delta, \eta\in [0, +\infty) , where \phi, \psi: [0, +\infty)\to [0, +\infty) are two continuous functions such that \psi(\delta) = \phi(\delta) = 0 if and only if \delta = 0 and \psi(\delta) < \delta\leq \phi(\delta) for all \delta > 0 .

    (G2) \xi_{2}(\delta, \eta) = \eta-\frac{\mathfrak{f}(\delta, \eta)}{\mathfrak{g}(\delta, \eta)}\delta for all \delta, \eta\in [0, +\infty) where \mathfrak{f}, \mathfrak{g}: [0, +\infty)\to [0, +\infty) are two continuous functions with respect to each variable such that \mathfrak{f}(\delta, \eta) > \mathfrak{g}(\delta, \eta) for all \delta, \eta > 0 .

    (G3) \xi_{3}(\delta, \eta) = \eta-\phi(\eta)-\delta for all \delta, \eta \in [0, +\infty) , where \phi: [0, +\infty)\to [0, +\infty) is a continuous function such that \phi(\delta) = 0 if and only if \delta = 0 .

    Then \xi_{\mathfrak{i}} for \mathfrak{i} = 1, 2, 3 are simulation functions.

    Definition 2.8. Let (\varUpsilon, \varOmega, \varrho) be a Bi-polar metric space, \mathcal{M}: (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) a mapping and \xi \in \Theta . Then \mathcal{M} is called a \Theta -contraction with respect to \xi if

    \begin{align*} \xi(\varrho(\mathcal{ M}{\pmb{\aleph}}, \mathcal{ M}\beta), \varrho({\pmb{\aleph}}, \beta))\geq 0\; \; {\rm{for\ all}}\; {\pmb{\aleph}}\in \varUpsilon, \beta\in \varOmega. \end{align*}

    Now we present our main results.

    In 2016, Mutlu et al. [16], introduced the cocept of a contraction and proved the following theorem.

    Definition 3.1. Let (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\, \, to\, \, (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) be bipolar metric spaces and \lambda > 0 . A covariant map \mathcal{M} : (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1})\rightrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) such that \varrho_{2}(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) \leq\lambda\varrho_{1}({\pmb{\aleph}}, \beta) for all {\pmb{\aleph}} \in \varUpsilon_{1}, \beta \in \varOmega_{1} , or a contravariant map \mathcal{M}: (\varUpsilon_{1}, \varOmega_{1}, \varrho_{1}) \leftrightarrows (\varUpsilon_{2}, \varOmega_{2}, \varrho_{2}) such that \varrho_{2}(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) \leq\lambda\varrho_{1}({\pmb{\aleph}}, \beta) for all {\pmb{\aleph}} \in \varUpsilon_{1}, \beta \in \varOmega_{1} is called Lipschitz continuous. If \lambda = 1 , then this covariant or contravariant map is said to be non-expansive, and if \lambda\in (0, 1) , it is called a contraction.

    Theorem 3.2. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space and given a contraction \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) . Then the function \mathcal{M} : \varUpsilon\cup\varOmega \rightarrow \varUpsilon\cup\varOmega has a unique fixed point.

    Motivated by the above theorem, we prove fixed point theorems on Bi-polar metric space using \mathcal{F} -contraction and simulation functions.

    Now we present our first fixed point theorem on Bi-polar metric space using \mathcal{F} -contraction function.

    Theorem 3.3. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space. Suppose \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) is a covariant mapping and there exists \tau > 0 such that

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta))) \leq \mathcal{F}( \varrho({\pmb{\aleph}}, \beta)) \, \, {{{for\ all}}} \, \, {\pmb{\aleph}} \in \varUpsilon, \beta \in \varOmega, \end{align*}

    holds for any {\pmb{\aleph}}\in \varUpsilon , \beta\in \Omega with \varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) > 0 . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon and \beta_{0} \in \varOmega . For each \sigma\in\mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} and \mathcal{M}(\beta_{\sigma}) = \beta_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\} , \{\beta_{\sigma}\}) is a bisequence on ( \varUpsilon, \varOmega, \varrho ) and {\pmb{\aleph}}_{\sigma}\neq\beta_{\sigma} . By hypothesis of the theorem, we have

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}_{\sigma-1}), \mathcal{M}(\beta_{\sigma-1}))) \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))-\tau \\ &\vdots\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-\sigma\tau. \end{align} (3.1)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) = 0. \end{align} (3.2)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = 0. \end{align} (3.3)

    Using (3.1), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\sigma\tau\\ &\leq 0. \label{bft4} \end{align} (3.4)

    As \sigma\to +\infty in (3.4), and using (3.2) and (3.3), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.5)

    Now, let us observe that from (3.5) there exists \sigma_{1} such that \sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\leq \frac{1}{\sigma^{\frac{1}{\mathfrak{k}}}}, \, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{1}. \end{align*}

    Also,

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) & = \mathcal{F}(\varrho(\mathcal{M}({\pmb{\aleph}}_{\sigma-1}), \mathcal{M}(\beta_{\sigma})))\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma}))-\tau \\ &\vdots\\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))-\sigma\tau. \end{align} (3.6)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) = 0. \end{align} (3.7)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})) = 0. \end{align} (3.8)

    Using (3.6), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))-\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{1}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\sigma\tau\\ &\leq 0. \end{align} (3.9)

    As \sigma\to +\infty in (3.9), and using (3.7) and (3.8), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}} = 0. \end{align} (3.10)

    Now, let us observe that from (3.10) there exists \sigma_{2} such that \sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{2} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1})\leq \frac{1}{\sigma^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{2}. \end{align*}

    Let \sigma = \max\{\sigma_{1}, \sigma_{2}\} .

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma})&\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) \\ &\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\\ &\vdots\\ &\leq \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+\mathfrak{p}}) +\cdots+ \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) \\ &\leq \sum\limits_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}}. \end{align*}

    Since \mathfrak{k}\in (0, 1) , the series \sum_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}} is convergent. Therefore, (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\})) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \mathfrak{u} and \{\beta_{\sigma}\}\to \mathfrak{u} , where \mathfrak{u} \in \varUpsilon \cap \varOmega and

    \begin{align*} \{\mathcal{M}(\beta_{\sigma})\} = \{\beta_{\sigma+1}\} \rightarrow \mathfrak{u}\in \varUpsilon \cap \varOmega. \end{align*}

    Since \mathcal{M} is continuous \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\mathfrak{u}) , so \mathcal{M}(\mathfrak{u}) = \mathfrak{u} . Hence \mathfrak{u} is a fixed point of \mathcal{M} . If \mathfrak{v} is any fixed point of \mathcal{M} , then \mathcal{M}(\mathfrak{v}) = \mathfrak{v} implies that \mathfrak{v}\in \varUpsilon\cap\varOmega and

    \begin{align*} \tau\leq \mathcal{F}(\varrho(\mathcal{M}(\mathfrak{u}) , \mathcal{M}(\mathfrak{v}))-\mathcal{F}(\varrho(\mathfrak{u}, \mathfrak{v})) = 0, \end{align*}

    which is absurd. Hence \mathfrak{u} = \mathfrak{v} .

    Remark 3.4. If we take \varUpsilon = \varOmega , then our result is reduced to Theorem 2.1 in [2].

    Theorem 3.5. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space. Suppose \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \leftrightarrows (\varUpsilon, \varOmega, \varrho) is a contravariant mapping and there exists \tau > 0 such that

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M}(\varpi), \mathcal{M}({\pmb{\aleph}}))) \leq \mathcal{F}(\varrho({\pmb{\aleph}}, \varpi)) \, \, \mathit{{\rm{for\ all}}}\, \, {\pmb{\aleph}} \in \varUpsilon, \varpi \in \varOmega, \end{align*}

    holds for any {\pmb{\aleph}}\in \varUpsilon , \beta\in \Omega with \varrho(\mathcal{M}({\pmb{\aleph}}), \mathcal{M}(\beta)) > 0 . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon . For each \sigma\in \mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = \beta_{\sigma} and \mathcal{M}(\beta_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a bisequence on (\varUpsilon, \varOmega, \varrho) and {\pmb{\aleph}}_{\sigma}\neq\beta_{\sigma} . Then

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma-1}), \mathcal{M}({\pmb{\aleph}}_{\sigma}))) \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma-1}))-\tau \\ & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma-1}), \mathcal{M}({\pmb{\aleph}}_{\sigma-1})))-\tau \\ &\leq \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})-2\tau \\ &\vdots \\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-2\sigma\tau. \end{align} (3.11)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) = 0. \end{align} (3.12)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})) = 0. \end{align} (3.13)

    Using (3.11), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-2\sigma\tau)-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}2\sigma\tau\\ &\leq 0. \end{align} (3.14)

    As \sigma\to +\infty in (3.14), and using (3.12) and (3.13), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}2\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.15)

    Now, let us observe that from (3.15) there exists \sigma_{1} such that 2\sigma\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma})\leq \frac{1}{(2\sigma)^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \sigma\geq \sigma_{1}. \end{align*}

    Also,

    \begin{align} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) & = \mathcal{F}(\varrho(\mathcal{M}(\beta_{\sigma}), \mathcal{M}({\pmb{\aleph}}_{\sigma})))\\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}))-\tau\\ &\leq\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))-(2\sigma+1)\tau. \end{align} (3.16)

    As \sigma\to +\infty , we have

    \begin{align*} \lim\limits_{\sigma\to +\infty} \mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) = -\infty. \end{align*}

    Using (A2), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma}) = 0. \end{align} (3.17)

    Using (A3), there exists \mathfrak{k}\in (0, 1) such that

    \begin{align} \lim\limits_{\sigma \rightarrow +\infty}\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})) = 0. \end{align} (3.18)

    Using (3.16), for all \sigma\in \mathbb{N}

    \begin{align} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma}))&-\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ &\leq \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}(\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0})-(2\sigma+1)\tau)\\ &-\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\mathcal{F}(\varrho({\pmb{\aleph}}_{0}, \beta_{0}))\\ & = -\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}(2\sigma+1)\tau\\ &\leq 0. \end{align} (3.19)

    As \sigma\to +\infty in (3.19), and using (3.17) and (3.18), we derive that

    \begin{align} \lim\limits_{\sigma\to +\infty}(2\sigma+1)\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}} = 0. \end{align} (3.20)

    Now, let us observe that from (3.20) there exists \sigma_{1} such that (2\sigma+1)\varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})^{\mathfrak{k}}\leq 1 for all \sigma\geq \sigma_{1} . Consequently we have

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})\leq \frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}, \, \, {\rm{for\ all}}\, \, \, \sigma\geq \sigma_{1}. \end{align*}

    Now,

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma}) &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1}) + \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma+1})+ \varrho({\pmb{\aleph}}_{\sigma+1}, \beta_{\sigma})\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+1})+ \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) + \varrho({\pmb{\aleph}}_{\sigma+2}, \beta_{\sigma+2})+ \varrho({\pmb{\aleph}}_{\sigma+2}, \beta_{\sigma+1})\\ &\; \; \; + \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\leq\varrho({\pmb{\aleph}}_{\sigma+\mathfrak{p}}, \beta_{\sigma+2}) +\frac{1}{(2(\sigma+2))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+3)^{\frac{1}{\mathfrak{k}}}}+ \frac{1}{(2(\sigma+1))^{\frac{1}{\mathfrak{k}}}}+\frac{1}{(2\sigma+1)^{\frac{1}{\mathfrak{k}}}}\\ &\vdots\\ &\leq \sum\limits_{\mathfrak{i} = 2\sigma+1}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}}. \end{align*}

    Since \mathfrak{k}\in (0, 1) , the series \sum_{\mathfrak{i} = \sigma}^{+\infty}\frac{1}{\mathfrak{i}^{\frac{1}{\mathfrak{k}}}} is convergent. Therefore, (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\})) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \mathfrak{u} and \{\beta_{\sigma}\}\to \mathfrak{u} where \mathfrak{u} \in \varUpsilon \cap \varOmega and

    \begin{align*} \{\mathcal{M}(\beta_{\sigma})\} = \{\beta_{\sigma+1}\} \rightarrow \mathfrak{u}\in \varUpsilon \cap \varOmega. \end{align*}

    Since \mathcal{M} is continuous \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\mathfrak{u}) , so \mathcal{M}(\mathfrak{u}) = \mathfrak{u} . Hence \mathfrak{u} is a fixed point of \mathcal{M} . If \mathfrak{v} is any fixed point of \mathcal{M} , then \mathcal{M}(\mathfrak{v}) = \mathfrak{v} implies that \mathfrak{v}\in \varUpsilon\cap\varOmega and

    \begin{align*} \tau\leq \mathcal{F}(\varrho(\mathcal{M}(\mathfrak{u}) , \mathcal{M}(\mathfrak{v}))-\mathcal{F}(\varrho(\mathfrak{u}, \mathfrak{v})) = 0, \end{align*}

    which is absurd. Hence \mathfrak{u} = \mathfrak{v} .

    Example 3.6. Let \varUpsilon = [0, 1] and \varOmega = [1, 2] be equipped with \varrho({\pmb{\aleph}}, \beta) = |{\pmb{\aleph}}-\beta| for all {\pmb{\aleph}} \in \varUpsilon and \beta\in \varOmega . Then, (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space. Define \mathcal{M} :\varUpsilon\cup\varOmega \rightrightarrows\varUpsilon\cup\varOmega by

    \begin{equation*} \mathcal{M}({\pmb{\aleph}}) = \frac{{\pmb{\aleph}}+4}{5}, \end{equation*}

    for all {\pmb{\aleph}} \in \varUpsilon\cup \varOmega . Let {\pmb{\aleph}}\in \varUpsilon and \beta\in \varOmega . Now, let us consider the mapping \mathcal{F} defined by \mathcal{F}(\delta) = \ln \delta . Let \tau > 0 . Note that if \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta) > 0 implies

    \begin{align*} \tau+\mathcal{F}(\varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta))\leq \mathcal{F}(\varrho( {\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega, \end{align*}

    is equivalent to

    \begin{align*} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta)\leq e^{-\tau}(\varrho({\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega. \end{align*}

    Then

    \begin{align*} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta) = \varrho\bigg(\frac{{\pmb{\aleph}}+4}{5}, \frac{\beta+4}{5}\bigg) = \bigg|\frac{{\pmb{\aleph}}}{5}-\frac{\beta}{5}\bigg|\leq\frac{1}{3}\varrho({\pmb{\aleph}}, \beta), \end{align*}

    which implies that

    \begin{align} \varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta)\leq e^{-\tau}(\varrho({\pmb{\aleph}}, \beta)), \, \, \forall\, {\pmb{\aleph}}\in \varUpsilon\, \, and\, \, \beta\in \varOmega. \end{align} (3.21)

    Therefore, all the conditions of Theorem 3.8 are satisfied. Hence we can conclude that \mathcal{M} has a unique fixed point, which is {\pmb{\aleph}} = 1 .

    Now we examine the existence and unique solution to an integral equation as an application of Theorem 3.3.

    Theorem 3.7. Let us consider the integral equation

    \begin{align*} {\pmb{\aleph}}(\delta) = \mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\mathcal{E}_{2}}\mathcal{G}\mathfrak(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{E}_{1}\cup\mathcal{E}_{2}, \end{align*}

    where \mathcal{E}_{1}\cup\mathcal{E}_{2} is a Lebesgue measurable set. Suppose

    (T1) \mathcal{M}:(\mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2})\times [0, +\infty)\to[0, +\infty) and b\in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) ;

    (T2) There is a continuous function \theta :\mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2}\to [0, +\infty) and \tau > 0 such that

    \begin{align*} |\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{G}(\delta, \eta, \beta(\eta)|\leq e^{-\tau}|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|, \end{align*}

    for \delta, \eta\in \mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2} ;

    (T3) ||\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\theta(\delta, \eta)d\eta||_{\infty}\leq 1 i.e \sup_{\delta\in\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\leq 1 .

    Then the integral equation has a unique solution in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) .

    Proof. Let \varUpsilon = L^{\infty}(\mathcal{E}_{1}) and \varOmega = L^{\infty}(\mathcal{E}_{2}) be two normed linear spaces, where \mathcal{E}_{1}, \mathcal{E}_{2} are Lebesgue measurable sets and m(\mathcal{E}_{1}\cup\mathcal{E}_{2}) < \infty .

    Consider \varrho : \varUpsilon\times \varOmega\to [0, +\infty) to be defined by \varrho({\pmb{\aleph}}, \beta) = ||{\pmb{\aleph}}-\beta||_{\infty} for all ({\pmb{\aleph}}, \beta)\in \varUpsilon\times\varOmega . Then (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space.

    Define the covariant mapping \mathcal{M}:L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2})\to L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) by

    \begin{align*} \mathcal{M}({\pmb{\aleph}}(\delta)) = \mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{E}_{1}\cup\mathcal{E}_{2}. \end{align*}

    Now, we have

    \begin{align*} \varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))& = ||\mathcal{M}{\pmb{\aleph}}(\delta)-\mathcal{M}\beta(\delta)||\\ & = \bigg|\mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta-\bigg(\mathfrak{b}(\delta)+\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta\bigg)\bigg|\\ &\leq\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\mathcal{G}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{G}(\delta, \eta, \beta(\eta))|d\eta\\ &\leq\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}e^{-\tau}|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|)d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\sup\limits_{\delta\in\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq e^{-\tau}(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\\ & = e^{-\tau} \varrho({\pmb{\aleph}}, \beta). \end{align*}

    Hence, all the hypothesis of a Theorem 3.3 are satisfied with \mathcal{F}(\delta) = \ln \delta and consequently, the integral equation has a unique solution.

    Here we present a fixed point theorem on Bi-polar metric space using simulation function.

    Theorem 3.8. Let (\varUpsilon, \varOmega, \varrho) be a complete Bi-polar metric space and given a \Theta -contraction \mathcal{M} : (\varUpsilon, \varOmega, \varrho) \rightrightarrows (\varUpsilon, \varOmega, \varrho) . Then the function \mathcal{M} : \varUpsilon \cup \varOmega \rightarrow \varUpsilon \cup \varOmega has a unique fixed point.

    Proof. Let {\pmb{\aleph}}_{0} \in \varUpsilon and \beta_{0} \in \varOmega . For each \sigma\in\mathbb{N} , define \mathcal{M}({\pmb{\aleph}}_{\sigma}) = {\pmb{\aleph}}_{\sigma+1} and \mathcal{M}(\beta_{\sigma}) = \beta_{\sigma+1} . Then (\{{\pmb{\aleph}}_{\sigma}\} , \{\beta_{\sigma}\}) is a bisequence on ( \varUpsilon, \varOmega, \varrho ). Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\sigma-1}, \mathcal{M}\beta_{\sigma-1}), \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}), \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}))\\ & < \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})-\varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) < \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\sigma}, \beta_{\sigma}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\sigma-1}, \beta_{\sigma-1}) = 0. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta-1}, \mathcal{M}\beta_{\sigma-1}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}))\\ & < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1})-\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}) < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma-1}) = 0. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta-1}, \mathcal{M}\beta_{\sigma}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}), \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}))\\ & < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma})-\varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}) < \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}), \, \, {\rm{for\ all}}\, \, \sigma\in \mathbb{N}. \end{align*}

    Therefore, the sequence \{\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma})\} is nonincreasing bisequence and so we can find \mathfrak{r}\geq 0 satisfying \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) = \mathfrak{r} . Assume that \mathfrak{r}\neq 0 . Let \delta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta}, \beta_{\sigma+1}) and \eta_{\sigma} = \varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) , then \lim\limits_{\sigma\to +\infty}\delta_{\sigma} = \lim\limits_{\sigma\to +\infty}\eta_{\sigma} = \mathfrak{r} > 0 and \delta_{\sigma} < \eta_{\sigma} , for all \sigma\in \mathbb{N} . Therefore,

    \begin{align*} 0\leq\lim\limits_{\sigma\to +\infty}\sup\xi(\delta_{\sigma}, \eta_{\sigma}) < 0, \end{align*}

    which is a contradiction. Thus,

    \begin{align*} \lim\limits_{\sigma\to +\infty}\varrho({\pmb{\aleph}}_{\zeta-1}, \beta_{\sigma}) = 0. \end{align*}

    Now, we show that (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a Cauchy bisequence. On the contrary, assume that (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is not a Cauchy bisequence. Then, there exists an \epsilon > 0 for which we can find two subsequences \{{\pmb{\aleph}}_{\sigma_{\mathfrak{k}}}\} of \{{\pmb{\aleph}}_{\sigma}\} and \{\beta_{\zeta_{\mathfrak{k}}}\} of \{\beta_{\zeta}\} such that \sigma_{\mathfrak{k}} > \zeta_{\mathfrak{k}} > \mathfrak{k} , for all \mathfrak{k}\in \mathbb{N} and

    \begin{align} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}})\geq \epsilon. \end{align} (3.22)

    Suppose that \sigma_{\mathfrak{k}} is the least integer exceeding \zeta_{\mathfrak{k}} satisfying inequality (3.22). Then,

    \begin{align} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}-1}}) < \epsilon. \end{align} (3.23)

    Using (3.22), (3.23) and (c), we obtain

    \begin{align*} \epsilon&\leq \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}})\\ &\leq \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}-1})+\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1})+\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}}). \end{align*}

    As \mathfrak{k}\to +\infty , we obtain

    \begin{align*} \lim\limits_{\mathfrak{k}\to +\infty}\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}) = \epsilon. \end{align*}

    Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq\xi(\varrho(\mathcal{M}{\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \mathcal{M}\beta_{\sigma_{\mathfrak{k}}-1}), \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}))\\ & = \xi(\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}), \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}))\\ & < \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1})-\varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}), \end{align*}

    which implies that

    \begin{align*} \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}}, \beta_{\sigma_{\mathfrak{k}}}) < \varrho({\pmb{\aleph}}_{\zeta_{\mathfrak{k}}-1}, \beta_{\sigma_{\mathfrak{k}}-1}), \, \, {\rm{for\ all}}\, \, \sigma_{\mathfrak{k}}\in \mathbb{N}. \end{align*}

    As \sigma\to +\infty , we obtain

    \begin{align*} \epsilon < 0. \end{align*}

    Therefore (\{{\pmb{\aleph}}_{\sigma}\}, \{\beta_{\sigma}\}) is a Cauchy bisequence. Since (\varUpsilon, \varOmega, \varrho) is complete, then \{{\pmb{\aleph}}_{\sigma}\}\to \rho and \{\beta_{\sigma}\}\to \rho where \rho \in \varUpsilon \cap \varOmega . Since \mathcal{M} is continuous, \mathcal{M}(\beta_{\sigma}) \rightarrow \mathcal{M}(\rho) , so \mathcal{M}(\rho) = \rho . Hence \rho is a fixed point of \mathcal{M} . Next, we prove that \mathcal{M} has a unique fixed point. Suppose not, assume that there are two fixed points such that \varrho(\rho, \upsilon) = \varrho(\mathcal{M}(\rho), \mathcal{M}(\upsilon)) > 0 . Since \mathcal{M} is a \Theta -contraction, we have

    \begin{align*} 0&\leq \xi(\varrho(\mathcal{M}(\rho) , \mathcal{M}(\upsilon)), \varrho(\rho, \upsilon))\\ & = \xi(\varrho(\rho, \upsilon), \varrho(\rho, \upsilon))\\ & < \varrho(\rho, \upsilon)-\varrho(\rho, \upsilon). \end{align*}

    Therefore, \mathcal{M} has a unique fixed point.

    Example 3.9. Let \varUpsilon = [0, 1] and \varOmega = [1, 2] be equipped with \varrho({\pmb{\aleph}}, \beta) = |{\pmb{\aleph}}-\beta| for all {\pmb{\aleph}} \in \varUpsilon and \beta\in \varOmega . Then, (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space. Define \mathcal{M} :\varUpsilon\cup\varOmega \rightrightarrows\varUpsilon\cup\varOmega by

    \begin{equation*} \mathcal{M}({\pmb{\aleph}}) = \frac{{\pmb{\aleph}}+4}{5}, \end{equation*}

    for all {\pmb{\aleph}} \in \varUpsilon\cup \varOmega . We now show that \Theta -contraction with respect to \xi\in \Theta , where

    \begin{align*} \xi(\delta, \eta) = \frac{\eta}{\eta+1}-\delta, \end{align*}

    for all \delta, \eta\in [0, +\infty) . Then

    \begin{align*} \xi(\varrho(\mathcal{M} {\pmb{\aleph}}, \mathcal{M}\beta), \varrho( {\pmb{\aleph}}, \beta))& = \frac{\varrho({\pmb{\aleph}}, \beta)}{1+\varrho({\pmb{\aleph}}, \beta)}-\varrho(\mathcal{M}{\pmb{\aleph}}, \mathcal{M}\beta)\\ & = \frac{|{\pmb{\aleph}}-\beta|}{5+|{\pmb{\aleph}}-\beta|}-\bigg|\frac{{\pmb{\aleph}}}{5}-\frac{\beta}{5}\bigg|\geq 0. \end{align*}

    Therefore, conditions of Theorem 3.8 are fulfilled and \mathcal{M} has a unique fixed point {\pmb{\aleph}} = 1 .

    Now we examine the application of the derived result in Theorem 3.8.

    Theorem 3.10. Let

    \begin{align*} {\pmb{\aleph}}(\delta) = \mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}\mathfrak(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}, \end{align*}

    where \mathcal{A}_{1}\cup\mathcal{A}_{2} is a Lebesgue measurable set. Suppose

    (T1) \mathcal{H}:(\mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2})\times [0, +\infty)\to[0, +\infty) and b\in L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) ;

    (T2) There is a continuous function \theta :\mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2}\to [0, +\infty) and \lambda\in (0, 1) such that

    \begin{align*} |\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{H}(\delta, \eta, \beta(\eta)|\leq \lambda|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|, \end{align*}

    for \delta, \eta\in \mathcal{A}^{2}_{1}\cup\mathcal{A}^{2}_{2} ;

    (T3) ||\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\theta(\delta, \eta)d\eta||_{\infty}\leq 1 i.e \sup_{\delta\in\mathcal{A}_{1}\cup\mathcal{A}_{2}}\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\leq 1 .

    Then the integral equation has a unique solution in L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) .

    Proof. Let \varUpsilon = L^{\infty}(\mathcal{A}_{1}) and \varOmega = L^{\infty}(\mathcal{A}_{2}) be two normed linear spaces, where \mathcal{A}_{1}, \mathcal{A}_{2} are Lebesgue measurable sets and m(\mathcal{A}_{1}\cup\mathcal{A}_{2}) < \infty .

    Consider \varrho:\varUpsilon\times \varOmega\to [0, +\infty) defined by \varrho({\pmb{\aleph}}, \beta) = ||{\pmb{\aleph}}-\beta||_{\infty} = \sup_{\delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}}|{\pmb{\aleph}}(\delta)-\beta(\delta)| for all ({\pmb{\aleph}}, \beta)\in \varUpsilon\times\varOmega . Then (\varUpsilon, \varOmega, \varrho) is a complete Bi-polar metric space.

    Define \mathcal{M}:L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2})\rightrightarrows L^{\infty}(\mathcal{A}_{1})\cup L^{\infty}(\mathcal{A}_{2}) by

    \begin{align*} \mathcal{M}({\pmb{\aleph}}(\delta)) = \mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta, \, \, \delta\in \mathcal{A}_{1}\cup\mathcal{A}_{2}. \end{align*}

    Now,

    \begin{align*} \varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))& = ||\mathcal{M}{\pmb{\aleph}}(\delta)-\mathcal{M}\beta(\delta)||\\ & = \bigg|\mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta-\bigg(\mathfrak{b}(\delta)+\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))d\eta\bigg)\bigg|\\ &\leq\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\mathcal{H}(\delta, \eta, {\pmb{\aleph}}(\eta))-\mathcal{H}(\delta, \eta, \beta(\eta))|d\eta\\ &\leq\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}\lambda|\theta(\delta, \eta)|(|{\pmb{\aleph}}(\eta)-\beta(\eta)|)d\eta\\ &\leq\lambda(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq\lambda(||{\pmb{\aleph}}(\eta)-\beta(\eta)||)\sup\limits_{\delta\in\mathcal{A}_{1}\cup\mathcal{A}_{2}}\int_{\mathcal{A}_{1}\cup\mathcal{A}_{2}}|\theta(\delta, \eta)|d\eta\\ &\leq \lambda||{\pmb{\aleph}}(\eta)-\beta(\eta)||\\ & = \lambda \varrho({\pmb{\aleph}}, \beta), \end{align*}

    which implies that

    \begin{align*} \lambda \varrho({\pmb{\aleph}}, \beta)-\varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta))\geq 0. \end{align*}

    We consider the simulation function as \xi(\delta, \eta) = \lambda\eta-\delta . Then

    \begin{align*} \xi(\varrho(\mathcal{M}{\pmb{\aleph}}(\delta), \mathcal{M}\beta(\delta)), \varrho({\pmb{\aleph}}, \beta))\geq 0. \end{align*}

    Therefore, all the hypothesis of a Theorem 3.8 are fulfilled. Hence, the integral equation has a unique solution.

    In the present work, we established fixed point results using \mathcal{F} -contraction and simulation functions. The derived results have been supported with suitable example and application to find analytical solution of integral equation. Our results are extensions/generalisation of some proven results in the past. Readers can explore extending the results in the setting of Bi-polar p-metric space, complex metric space etc.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors declare no conflicts of interest.



    [1] S. E. Ahmed, Z. A. S. Raizah, A. Chamkha, Mixed convective transport in inclined porous open arc-shaped enclosures saturated by nanofluids using a second-order Boussinesq approximation, Case Stud. Therm. Eng., 27 (2021), 101295. https://doi.org/10.1016/j.csite.2021.101295 doi: 10.1016/j.csite.2021.101295
    [2] A. Ayub, Z. Sabir, D. Le, A. Aly. Ayman, Nanoscale heat and mass transport of magnetized 3-D chemically radiative hybrid nanofluid with orthogonal/inclined magnetic field along rotating sheet, Case Stud. Therm. Eng., 26 (2021), 101193. https://doi.org/10.1016/j.csite.2021.101193 doi: 10.1016/j.csite.2021.101193
    [3] H. T. Basha, R. Sivaraj, V. R. Prasad, O. A. Beg, Entropy generation of tangent hyperbolic nanofluid flow over a circular cylinder in the presence of nonlinear Boussinesq approximation: A non-similar solution, J. Therm. Anal. Calorim., 143 (2021), 2273–2289. https://doi.org/10.1007/s10973-020-09981-5 doi: 10.1007/s10973-020-09981-5
    [4] L. A. Dombrovsky, S. S. Sazhin, E. M. Sazhina, G. Feng, M. R. Heikal, M. E. A. Bardsley, et al., Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation, Fuel, 80 (2001), 1535–1544. https://doi.org/10.1016/S0016-2361(01)00025-4 doi: 10.1016/S0016-2361(01)00025-4
    [5] H. M. Elshehabey, Z. Raizah, H. F. Öztop, S. E. Ahmed, MHD natural convective flow of Fe3O4-H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation, Int. J. Mech. Sci., 170 (2020), 105352. https://doi.org/10.1016/j.ijmecsci.2019.105352 doi: 10.1016/j.ijmecsci.2019.105352
    [6] M. D. Kumar, C. S. K. Raju, K. Sajjan, E. R. El-Zahar, N. A. Shah, Linear and quadratic convection on 3D flow with transpiration and hybrid nanoparticles, Int. Comm. Heat Mass, 134 (2022), 105995. https://doi.org/10.1016/j.icheatmasstransfer.2022.105995 doi: 10.1016/j.icheatmasstransfer.2022.105995
    [7] V. P. Kabashnikov, G. I. Kmit. Effect of turbulent pulsations on thermal radiation from a medium in the quadratic approximation, Inzhenerno Fizicheskii Zhurnal, 37 (1979), 405–411. https://doi.org/10.1007/BF00861672 doi: 10.1007/BF00861672
    [8] B. Mahanthesh, J. Mackolil, Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic Boussinesq approximation: Sensitivity analysis, Int. Comm. Heat Mass, 120 (2021), 105040. https://doi.org/10.1016/j.icheatmasstransfer.2020.105040 doi: 10.1016/j.icheatmasstransfer.2020.105040
    [9] B. Mahanthesh, J. Mackolil, M. Radhika, W. Al-Kouz, Significance of quadratic thermal radiation and quadratic convection on boundary layer two-phase flow of a dusty nanoliquid past a vertical plate, Int. Comm. Heat Mass., 120 (2021), 105029. https://doi.org/10.1016/j.icheatmasstransfer.2020.105029 doi: 10.1016/j.icheatmasstransfer.2020.105029
    [10] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S. J. Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 35 (2022), 102046. https://doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [11] T. Elnaqeeb, I. L. Animasaun, N. A. Shah, Ternary-hybrid nanofluids: significance of suction and dual-stretching on three-dimensional flow of water conveying nanoparticles with various shapes and densities, Zeitschrift für Naturforschung A, 76 (2021), 231–243. https://doi.org/10.1515/zna-2020-0317 doi: 10.1515/zna-2020-0317
    [12] W. Al-Kouz, B. Mahanthesh, M. S. Alqarni, K. Thriveni, A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations, Int. Comm. Heat Mass., 126 (2021), 105364. https://doi.org/10.1016/j.icheatmasstransfer.2021.105364 doi: 10.1016/j.icheatmasstransfer.2021.105364
    [13] B. Mahanthesh, Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow, In: Mathematical Fluid Mechanics, (2021), 13–54. https://doi.org/10.1515/9783110696080-002
    [14] T. Muhammad, H. Waqas, U. Farooq, M. S. Alqarni, Numerical simulation for melting heat transport in nanofluids due to quadratic stretching plate with nonlinear thermal radiation, Case Stud. Therm. Eng., 27 (2021), 101300. https://doi.org/10.1016/j.csite.2021.101300 doi: 10.1016/j.csite.2021.101300
    [15] P. Naveen, C. RamReddy, Soret and viscous dissipation effects on MHD flow along an inclined channel: Nonlinear Boussinesq approximation, In: Numerical Heat Transfer and Fluid Flow, 267–274. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-1903-7_31
    [16] E. C. Okonkwo, I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif, T. Al-Ansari, An updated review of nanofluids in various heat transfer devices, J. Therm. Anal. Calorim., 145 (2021), 2817–2872. https://doi.org/10.1007/s10973-020-09760-2 doi: 10.1007/s10973-020-09760-2
    [17] G. Palani, I. A. Abbas, Free convection MHD flow with thermal radiation from an impulsively-started vertical plate, Nonlinear Anal-Model., 14 (2009), 73–84. https://doi.org/10.15388/NA.2009.14.1.14531 doi: 10.15388/NA.2009.14.1.14531
    [18] D. Srinivasacharya, C. RamReddy, P. Naveen, Effects of nonlinear Boussinesq approximation and double dispersion on a micropolar fluid flow under convective thermal condition, Heat Transf.-Asian Re., 48 (2019), 414–434. https://doi.org/10.1002/htj.21391 doi: 10.1002/htj.21391
    [19] K. Thriveni, B. Mahanthesh, Optimization and sensitivity analysis of heat transport of hybrid nanoliquid in an annulus with quadratic Boussinesq approximation and quadratic thermal radiation, Eur. Phys. J. Plus, 135 (2020), 1–22. https://doi.org/10.1140/epjp/s13360-020-00484-8 doi: 10.1140/epjp/s13360-020-00484-8
    [20] K. Thriveni, B. Mahanthesh, Nonlinear Boussinesq buoyancy driven flow and radiative heat transport of magnetohybrid nanoliquid in an annulus: A statistical framework, Heat Transfer, 49 (2020), 4759–4782. https://doi.org/10.1002/htj.21851 doi: 10.1002/htj.21851
    [21] Z. A. Zainal, R. Nazar, K. Naganthran, I. Pop, Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity, Alex. Eng. J., 60 (2021), 915–926. https://doi.org/10.1016/j.aej.2020.10.020 doi: 10.1016/j.aej.2020.10.020
    [22] M. Dostalík, C. Matyska, V. Průša, Weakly nonlinear analysis of Rayleigh–Bénard convection problem in extended Boussinesq approximation, Appl. Math. Comput., 408 (2021), 126374. https://doi.org/10.1016/j.amc.2021.126374 doi: 10.1016/j.amc.2021.126374
    [23] B. K. Jha, M. O. Oni, Theory of fully developed mixed convection including flow reversal: A nonlinear Boussinesq approximation approach, Heat Transf.-Asian Re., 48 (2019), 3477–3488. https://doi.org/10.1002/htj.21550 doi: 10.1002/htj.21550
    [24] P. K. Kameswaran, B. Vasu, P. V. S. N. Murthy, R. S. R. Gorla, Mixed convection from a wavy surface embedded in a thermally stratified nanofluid saturated porous medium with non-linear Boussinesq approximation, Int. Comm. Heat Mass, 77 (2016), 78–86. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.006 doi: 10.1016/j.icheatmasstransfer.2016.07.006
    [25] M. Krishnani, D. N. Basu, On the validity of Boussinesq approximation in transient simulation of single-phase natural circulation loops, Int. J. Therm. Sci., 105 (2016), 224–232. https://doi.org/10.1016/j.ijthermalsci.2016.03.004 doi: 10.1016/j.ijthermalsci.2016.03.004
    [26] J. O. Olabode, A. S. Idowu, M. T. Akolade, E. O. Titiloye, Unsteady flow analysis of Maxwell fluid with temperature dependent variable properties and quadratic thermo-solutal convection influence, Partial Differential Equations Appl. Math., 4 (2021), 100078. https://doi.org/10.1016/j.padiff.2021.100078 doi: 10.1016/j.padiff.2021.100078
    [27] S. O. Opadiran, S. S. Okoya, Importance of convective boundary layer flows with inhomogeneous material properties under linear and quadratic Boussinesq approximations around a horizontal cylinder, Heliyon, 7 (2021), e07074. https://doi.org/10.1016/j.heliyon.2021.e07074 doi: 10.1016/j.heliyon.2021.e07074
    [28] C. RamReddy, P. Naveen, D. Srinivasacharya, Influence of non-linear Boussinesq approximation on natural convective flow of a power-law fluid along an inclined plate under convective thermal boundary condition, Nonlinear Eng., 8 (2019), 94–106. https://doi.org/10.1515/nleng-2017-0138 doi: 10.1515/nleng-2017-0138
    [29] P. Rana, W. Al-Kouz, B. Mahanthesh, J. Mackolil. Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation, Int. Comm. Heat Mass., 126 (2021), 105443. https://doi.org/10.1016/j.icheatmasstransfer.2021.105443 doi: 10.1016/j.icheatmasstransfer.2021.105443
    [30] B. Vasu, R. S. R. Gorla, O. A. Bég, P. V. S. N. Murthy, V. R. Prasad, A. Kadir, Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation, J. Therm. Heat Transfer, 33 (2019), 343–355. https://doi.org/10.2514/1.T5516 doi: 10.2514/1.T5516
    [31] W. Prandtl, Über Flussigkeitsbewegung bei sehr kleiner Reibung, Verhandl. Ⅲ, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904 (1904), 484–491.
    [32] G. Ramesh, J. K. Madhukesh, R. Das, N. A. Shah, S. J. Yook, Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink, Waves Random Complex., 2022. https://doi.org/10.1080/17455030.2022.2053237 doi: 10.1080/17455030.2022.2053237
    [33] N. A. Shah, I. L. Animasaun, A. Wakif, O. K. Koriko, R. Sivaraj, K. S. Adegbie, et al., Significance of suction and dual stretching on the dynamics of various hybrid nanofluids: Comparative analysis between type I and type Ⅱ models, Phys. Scripta, 95 (2020), 095205. https://doi.org/10.1088/1402-4896/aba8c6 doi: 10.1088/1402-4896/aba8c6
    [34] R. Gorla, R. Subba, I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Appl. Sci. Res., 52 (1994), 247–257. https://doi.org/10.1007/BF00853952 doi: 10.1007/BF00853952
    [35] C. Y. Wang, Free convection on a vertical stretching surface, ZAMM Z. Angew. Math. Mech., 69 (1989), 418–420. https://doi.org/10.1002/zamm.19890691115 doi: 10.1002/zamm.19890691115
    [36] P. Rana, G. Gupta, Heat transfer optimization of Marangoni convective flow of nanofluid over an infinite disk with Stefan blowing and slip effects using Taguchi method, Int. Comm. Heat Mass, 130 (2022), 105822. https://doi.org/10.1016/j.icheatmasstransfer.2021.105822 doi: 10.1016/j.icheatmasstransfer.2021.105822
    [37] P. Rana, G. Gupta, Numerical and sensitivity computations of three-dimensional flow and heat transfer of nanoliquid over a wedge using modified Buongiorno model, Comput. Math. Appl., 101 (2021), 51–62. https://doi.org/10.1016/j.camwa.2021.09.010 doi: 10.1016/j.camwa.2021.09.010
    [38] C. S. K. Raju, N. A. Ahammad, K. Sajjan, N. A. Shah, S. J. Yook, M. D. Kumar, Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls with different shapes and densities: Simple linear regression, Int. Comm. Heat Mass, 135 (2022), 106110. https://doi.org/10.1016/j.icheatmasstransfer.2022.106110 doi: 10.1016/j.icheatmasstransfer.2022.106110
    [39] P. Rana, W. Al-Kouz, B. Mahanthesh, J. Mackolil, Heat transfer of TiO2-EG nanoliquid with active and passive control of nanoparticles subject to nonlinear Boussinesq approximation, Int. Comm. Heat Mass, 126 (2021), 105443. https://doi.org/10.1016/j.icheatmasstransfer.2021.105443 doi: 10.1016/j.icheatmasstransfer.2021.105443
    [40] P. Rana, G. Gupta. FEM Solution to quadratic convective and radiative flow of Ag-MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology, Math. Comput. Simul., 201 (2022), 121–140. https://doi.org/10.1016/j.matcom.2022.05.012 doi: 10.1016/j.matcom.2022.05.012
    [41] M. K. B. Gratuito, T. Panyathanmaporn, R. A. Chumnanklang, N. B. Sirinuntawittaya, A. Dutta, Production of activated carbon from coconut shell: Optimization using response surface methodology, Bioresource Technol., 99 (2008), 4887–4895. https://doi.org/10.1016/j.biortech.2007.09.042 doi: 10.1016/j.biortech.2007.09.042
    [42] P. Rana, S. Gupta, G. Gupta, Unsteady nonlinear thermal convection flow of MWCNT-MgO/EG hybrid nanofluid in the stagnation-point region of a rotating sphere with quadratic thermal radiation: RSM for optimization, Int. Comm. Heat Mass, 134 (2022), 106025. https://doi.org/10.1016/j.icheatmasstransfer.2022.106025 doi: 10.1016/j.icheatmasstransfer.2022.106025
    [43] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 doi: 10.1016/j.talanta.2008.05.019
  • This article has been cited by:

    1. Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Amr Elsonbaty, Ola A. Ashour Abdelnaby, Stojan Radenović, Application of Fixed Points in Bipolar Controlled Metric Space to Solve Fractional Differential Equation, 2023, 7, 2504-3110, 242, 10.3390/fractalfract7030242
    2. Manoj Kumar, Pankaj Kumar, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Amr Elsonbaty, Stojan Radenović, (α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces, 2023, 11, 2227-7390, 1310, 10.3390/math11061310
    3. Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Khizar Hyatt Khan, Stojan Radenović, Application of Fixed-Point Results to Integral Equation through F-Khan Contraction, 2023, 15, 2073-8994, 773, 10.3390/sym15030773
    4. Fahad Jahangeer, Salha Alshaikey, Umar Ishtiaq, Tania A. Lazăr, Vasile L. Lazăr, Liliana Guran, Certain Interpolative Proximal Contractions, Best Proximity Point Theorems in Bipolar Metric Spaces with Applications, 2023, 7, 2504-3110, 766, 10.3390/fractalfract7100766
    5. Erdal Karapınar, Marija Cvetković, An inevitable note on bipolar metric spaces, 2024, 9, 2473-6988, 3320, 10.3934/math.2024162
    6. Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan, Some well known inequalities for (h_1, h_2) -convex stochastic process via interval set inclusion relation, 2023, 8, 2473-6988, 19913, 10.3934/math.20231015
    7. Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović, Fixed point theorem on an orthogonal extended interpolative \psi\mathcal{F} -contraction, 2023, 8, 2473-6988, 16151, 10.3934/math.2023825
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2565) PDF downloads(148) Cited by(80)

Figures and Tables

Figures(30)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog