In this paper, we introduce $ \mathcal{J}_{s; \Omega} $-families of generalized pseudo-$ b $-distances in $ b $-gauge spaces $ (U, {Q}_{s; \Omega}) $. Moreover, by using these $ \mathcal{J}_{s; \Omega} $-families on $ U $, we define the $ \mathcal{J}_{s; \Omega} $-sequential completeness and construct an $ F $-type contraction $ T:U\rightarrow U $. Furthermore, we develop novel periodic and fixed point results for these mappings in the setting of $ b $-gauge spaces using $ \mathcal{J}_{s; \Omega} $-families on $ U $, which generalize and improve some of the results in the corresponding literature. The validity and importance of our theorems are shown through an application via an existence solution of an integral equation.
Citation: Nosheen Zikria, Aiman Mukheimer, Maria Samreen, Tayyab Kamran, Hassen Aydi, Kamal Abodayeh. Periodic and fixed points for $ F $-type contractions in $ b $-gauge spaces[J]. AIMS Mathematics, 2022, 7(10): 18393-18415. doi: 10.3934/math.20221013
In this paper, we introduce $ \mathcal{J}_{s; \Omega} $-families of generalized pseudo-$ b $-distances in $ b $-gauge spaces $ (U, {Q}_{s; \Omega}) $. Moreover, by using these $ \mathcal{J}_{s; \Omega} $-families on $ U $, we define the $ \mathcal{J}_{s; \Omega} $-sequential completeness and construct an $ F $-type contraction $ T:U\rightarrow U $. Furthermore, we develop novel periodic and fixed point results for these mappings in the setting of $ b $-gauge spaces using $ \mathcal{J}_{s; \Omega} $-families on $ U $, which generalize and improve some of the results in the corresponding literature. The validity and importance of our theorems are shown through an application via an existence solution of an integral equation.
[1] | S. Reich, A. J. Zaslavski, Convergence of iterates of nonlinear contractive mappings, Appl. Set-Valued Anal. Optim., 3 (2021), 109–115. |
[2] | M. Delfani, A. Farajzadeh, C. F. Wen, Some fixed point theorems of generalized -contraction mappings in b-metric spaces, J. Nonlinear Var. Anal., 5 (2021), 615–625. |
[3] | Q. Cheng, Hybrid viscosity approximation methods with generalized contractions for zeros of monotone operators and fixed point problems, J. Nonlinear Funct. Anal., 23 (2022). |
[4] | H. Afshari, Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces, Adv. Differ. Equ. 2019 (2019), 285. https://doi.org/10.1186/s13662-019-2227-9 |
[5] | H. Iiduka, Fixed point optimization algorithm and its application to network bandwidth allocation, J. Comput. Appl. Math., 236 (2012), 1733–1742. https://doi.org/10.1016/j.cam.2011.10.004 doi: 10.1016/j.cam.2011.10.004 |
[6] | J. Määttä, S. Siltanen, T. Roos, A fixed point image-denoising algorithm with automatic window selection, 5th European Workshop on Visual Information Processing (EUVIP), 2014. https://doi.org/10.1109/EUVIP.2014.7018393 |
[7] | H. Yang, J. Yu, Essential components of the set of weakly pareto-nash equilibrium points, Appl. Math. Lett., 15 (2002), 553–560. https://doi.org/10.1016/S0893-9659(02)80006-4 doi: 10.1016/S0893-9659(02)80006-4 |
[8] | J. Yu, H. Yang, The essential components of the set of equilibrium points for set-valued maps, J. Math. Anal. Appl., 300 (2004), 300–342. https://doi.org/10.1016/j.jmaa.2004.06.042 doi: 10.1016/j.jmaa.2004.06.042 |
[9] | M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Adv. Differ. Equ., 2021 (2021), 247. https://doi.org/10.1186/s13662-021-03405-w doi: 10.1186/s13662-021-03405-w |
[10] | I. Beg, G. Mani, A. J. Gnanaprakasam, Fixed point of orthogonal F-Suzuki contraction mapping on O-complete metric spaces with applications, J. Funct. Spaces, 2021 (2021), 6692112. https://doi.org/10.1155/2021/6692112 doi: 10.1155/2021/6692112 |
[11] | M. Nazam, On $J_c$-contraction and related fixed point problem with applications, Math. Meth. Appl. Sci., 43 (2020), 10221–10236. https://doi.org/10.1002/mma.6689 doi: 10.1002/mma.6689 |
[12] | M. Nazam, H. Aydi, C. Park, M. Arshad, E. Savas, D. Y. Shin, Some variants of Wardowski fixed point theorem, Adv. Differ. Equ., 2021 (2021), 485. https://doi.org/10.1186/s13662-021-03640-1 doi: 10.1186/s13662-021-03640-1 |
[13] | P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1 |
[14] | M. Cosentino, P. Vetro, Fixed point results for $F$contractive mappings of Hardy-Rogers-type, Filomat, 28 (2014), 715–722. |
[15] | G. Minak, A. Helvac, I. Altun, Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results, Filomat, 28 (2014), 1143–1151. |
[16] | H. Afshari, H. Hosseinpour, H. R. Marasi, Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative, J. Adv. Differ. Equ., 2021 (2021), 321. https://doi.org/10.1186/s13662-021-03476-9 doi: 10.1186/s13662-021-03476-9 |
[17] | M. U. Ali, P. Kumam, F. Uddin, Existence of fixed point for an integral operator via fixed point theorems on gauge spaces, J. Commun. Math. Appl., 9 (2018), 15–25. |
[18] | M. U. Ali, T. Kamran, M. Postolache, Fixed point theorems for Multivalued $G$-contractions in Housdorff $b$-Gauge space, J. Nonlinear Sci. Appl., 8 (2015), 847–855. |
[19] | J. Dugundji, Topology, Boston: Allyn and Bacon, 1966. |
[20] | M. Frigon, Fixed point results for generalized contractions in gauge spaces and applications, Proc. Amer. Math. Soc., 128 (2000), 2957–2965. https://doi.org/10.1090/S0002-9939-00-05838-X doi: 10.1090/S0002-9939-00-05838-X |
[21] | A. Chiş, R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory Appl., 3 (2004), 391090. https://doi.org/10.1155/S1687182004403027 doi: 10.1155/S1687182004403027 |
[22] | R. P. Agarwal, Y. J. Cho, D. O'Regan, Homotopy invariant results on complete gauge spaces, Bull. Aust. Math. Soc., 67 (2003), 241–248. https://doi.org/10.1017/S0004972700033700 doi: 10.1017/S0004972700033700 |
[23] | C. Chifu, G. Petrusel, Fixed point results for generalized contractions on ordered gauge spaces with applications, Fixed Point Theory Appl., 2011 (2011), 979586. https://doi.org/10.1155/2011/979586 doi: 10.1155/2011/979586 |
[24] | M. Cherichi, B. Samet, C. Vetro, Fixed point theorems in complete gauge spaces and applications to second ordernonlinear initial value problems, J. Funct. Space Appl., 2013 (2013), 293101. https://doi.org/10.1155/2013/293101 doi: 10.1155/2013/293101 |
[25] | M. Cherichi, B. Samet, Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations, J. Funct. Space Appl., 2012 (2012), 13. https://doi.org/10.1186/1687-1812-2012-13 doi: 10.1186/1687-1812-2012-13 |
[26] | T. Lazara, G. Petrusel, Fixed points for non-self operators in gauge spaces, J. Nonlinear Sci. Appl., 6 (2013), 29–34. |
[27] | M. Jleli, E. Karapinar, B. Samet, Fixed point results for a $\alpha$-$\psi_{\lambda}$-contractions on gauge spaces and applications, Abstr. Appl. Anal., 2013 (2013), 730825. https://doi.org/10.1155/2013/730825 doi: 10.1155/2013/730825 |
[28] | A. N. Branga, Some conditions for the existence and uniqueness of monotonic and positive solutions for nonlinear systems of ordinary differential equations, Electron. Res. Arch., 30 (2022), 1999–2017. https://doi.org/10.3934/era.2022101 doi: 10.3934/era.2022101 |
[29] | A. Lukács, S. Kájantó, Fixed point theorems for various types of $F$-contractionsin complete $b$-metric space, Fixed Point Theory, 19 (2018), 321–334. |
[30] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94 |
[31] | K. Wlodarczyk, R. Plebaniak, New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property, Fixed Point Theory Appl., 2013 (2013), 289. https://doi.org/10.1186/1687-1812-2013-289 doi: 10.1186/1687-1812-2013-289 |