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1. Introduction

For a nonempty set U, let T : U → U be a single valued map. The set of its fixed points is denoted
by Fix(T ) and is defined by Fix(T ) = {u ∈ U : u = T (u)}. The set of all periodic points of T denoted
by Per(T ) is defined by Per(T ) = {u ∈ U : u = T [k](u) for some k in N}, where T[k]=T ◦ T ◦ T ◦ · · · ◦ T
(k-times). Also, for each z0 ∈ U, a sequence (zm : m ∈ {0} ∪ N) starting at z0 such that zm = T [m](z0),
for all m ∈ {0} ∪ N is called a Picard iteration.

The metric fixed point theory is originated from the concept of Picard successive approximations by
Picard (one result in this direction can be found in [1]). The famous mathematician Banach placed the
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underlying idea into an abstract framework, hence presented his most eminent research as the Banach
contraction principle. Since then, numerous researchers expanded the Banach contraction principle in
different directions by generalizing the metric spaces and the contraction conditions for single valued
as well as for multi valued maps. For instance, see [2–4]. In general, fixed point theory remained
successful in solving various problems and has participated significantly to many real world problems,
such as optimization theory [5], image processing [6] and game theory [7, 8].

A useful generalization of Banach contraction is an F-contraction presented by Wardowski [30].
Due to the simplicity and effectiveness of F-contractions numerous research papers have been
published in this direction which can be seen in [9–16].

In 1966, Dugundji [19] initiated the idea of gauge spaces which generalizes metric spaces (or more
generally, pseudo-metric spaces). Gauge spaces have the characteristic that even the distance between
two distinct points of the space may be zero. This simple characterization has been the center of
interest for many researchers world wide. For further facts on gauge spaces, we recommend the
readers to Agarwal et al. [22], Frigon [20], Chis and Precup [21], Chifu and Petrusel [23], Lazara and
Petrusel [26], Cherichi et al. [24, 25], Jleli et al. [27] and Branga [28].

In 2013, Wlodarczyk and Plebaniak [31] have given the notion of left (right) J-families of
generalized quasi-pseudo distances in quasi-gauge spaces that generalizes the structure of a quasi
gauge and provides powerful and useful tools to obtain more general results with weaker assumptions.

The aim of this paper is to introduce Js;Ω-families of generalized pseudo-b-distances in b-gauge
spaces (U,Qs;Ω). Moreover, by using these Js;Ω-families on U, we define the Js;Ω-sequential
completeness and construct F-type contractions T : U → U. Furthermore, we develop novel periodic
and fixed point results for these mappings in the setting of b-gauge spaces using Js;Ω-families on U.
The obtained results generalize and improve the existing ones in the literature of fixed point theory.
The validity and importance of our theorems are shown through an application by ensuring the
existence of a solution of an integral type equation.

2. Preliminaries

The core reason behind to add this section is to recollect some essential concepts and results which
are valuable throughout this paper.

In view of generalizing the concept of Banach contraction, Wardowski [30] succeeded to generalize
Banach contraction condition by introducing the notions of F-contractions. He introduced the family
F of all functions F : (0,∞)→ R which satisfies the following three conditions:

(F1) F is a strictly increasing function, i.e., for any a, b ∈ (0,∞) with a < b we have F(a) < F(b).
(F2) For any sequence (bn : n ∈ N) in R+, we have limn→∞ bn = 0 iff limn→∞ F(bn) = −∞.
(F3) There exists p ∈ (0, 1) such that limb→0+ bpF(b) = 0.

According to Wardowski [30], a mapping T : U → U on the metric space (U, d) is called an
F-contraction if there exists τ > 0, such that

d(Tu,Tv) > 0⇒ τ + F(d(Tu,Tv)) ≤ F(d(u, v)), for all u, v ∈ U. (2.1)

The implication (2.1) covers various types of contractions. For instance, the case Fy = ln y
corresponds to the Banach contraction.

Wardowski [30] stated a fixed point theorem involving F-contraction mappings.
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Theorem 2.1. Let (U, d) be a complete metric space and let T : U → U be an F-contraction mapping.
Then T has a unique fixed point z ∈ U and for any z0 ∈ U, the sequence (zm = T [m](z0) : m ∈ N)
converges to the fixed point z.

Minak et al. [15] generalized the above result in the following way:

Theorem 2.2. Let (U, d) be a complete metric space and let T : U → U be an F-contraction such that

τ + F(d(Tu,Tv)) ≤ F
(

max
{
d(u, v), d(u,Tu), d(v,Tv),

d(u,Tv) + d(v,Tu)
2

})
for all u, v ∈ U, with d(Tu,Tv) > 0. Then T has a unique fixed point, whenever T or F is continuous.

A generalized F-contraction of Hardy-Rogers-type is as follows:

Theorem 2.3. Let (U, d) be a complete metric space and let T : U → U be a generalized F-contraction
of Hardy-Rogers-type, i.e., there exist τ > 0 and F ∈ F such that

τ + F(d(Tu,Tv)) ≤ F
(
ad(u, v) + bd(u,Tu) + cd(v,Tv) + ed(u,Tv) + Ld(v,Tu)

)
for all u, v ∈ U, with d(Tu,Tv) > 0 where a, b, c, d, L ≥ 0, c , 1, then T has a fixed point. Further, if
a + d + L ≤ 1, such a fixed is unique.

Cosentino et al. [14] introduced the family Fs of all functions F : (0,∞) → R satisfying the
following four conditions:

(F1) F is a strictly increasing function, i.e., for any a, b ∈ (0,∞) with a < b we have F(a) < F(b).
(F2) For any sequence (bn : n ∈ N) in R+, we have limn→∞ bn = 0 iff limn→∞ F(bn) = −∞.
(F3) For any sequence (bn : n ∈ N) in R+, we have limn→∞ bn = 0, there exists p ∈ (0, 1) such that

limn→∞ bp
n F(bn) = 0.

(F4) For any sequence (bn : n ∈ N) in R+ such that τ + F(sbn) ≤ F(bn−1) for each n ∈ N and some
τ > 0, then τ + F(snbn) ≤ F(sn−1bn−1).

Some examples of functions belonging to Fs are given below:

(i) Fx = x + ln x for any x ∈ (0,∞).
(ii) Fy = ln y for any y ∈ (0,∞).

Recently, Ali et al. [18] introduced the notion of b-gauge spaces, thus extended the idea of gauge spaces
in the setting of b-metric spaces. We note down the following definitions of their work.

Definition 2.4. A map q : U × U → [0,∞) is called as a b-pseudo metric, if for all x, y, z ∈ U, there
exists s ≥ 1 satisfying the following conditions:

(a) q(x, x) = 0;
(b) q(x, y) = q(y, x);
(c) q(x, z) ≤ s{q(x, y) + q(y, z)}.

The pair (U, q) is called a b-pseudo metric space.

Definition 2.5. Each family Qs;Ω = {qβ : β ∈ Ω} of b-pseudo metrics qβ : U × U → [0,∞), is called as
a b-gauge on U.
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Definition 2.6. The family Qs;Ω = {qβ : β ∈ Ω} is called to be separating if for every pair (x, y) where
x , y, there exists qβ ∈ Qs;Ω such that qβ(x, y) > 0.

Definition 2.7. Let the family Qs;Ω = {qβ : β ∈ Ω} be a b-gauge on U. The topology T (Qs;Ω) on
U whose subbase is defined by the family B(Qs;Ω) = {B(x, εβ) : x ∈ U, εβ > 0, β ∈ Ω} of all balls
B(x, εβ) = {y ∈ U : qβ(x, y) < εβ}, is called the topology induced by Qs;Ω. The pair (U,T (Qs;Ω)) is
called to be a b-gauge space and is Hausdorff if Qs;Ω is separating.

The following examples shows that a b-pseudo metric space (in fact, a b-gauge space) is the
generalization of a metric space, a pseudo metric space (in fact, a gauge space) and a b-metric space.

Example 2.8. [18] Let U = C([0,∞),R). Describe q : U × U → [0,∞) by

q(x(t), y(t)) = sup
t∈[0,1]

|x(t) − y(t)|2.

Then q is a b-pseudo metric, but neither a metric, nor a pseudo metric, nor a b-metric.
In this regard, consider x, y, z ∈ U defined by

x(t) =

0 if 0 ≤ t ≤ 1,
t − 1 if t > 1,

y(t) = 3 for each t ≥ 0 and z(t) = −3 for each t ≥ 0. We note that d(y, z) = 36 � 18 = d(y, x) + d(x, z).
Therefore, q is neither a metric, nor a pseudo metric on U. Also, if u, v ∈ U are defined by

u(t) =

0 if 0 ≤ t ≤ 1,
t − 1 if t > 1,

and

v(t) =

0 if 0 ≤ t ≤ 1,
2t − 2 if t > 1,

then u , v, but q(u, v) = 0. Therefore, q is not a b-metric on U.

Example 2.9. [18] Let U = C([0,∞),R). Define the family of b-pseudo metrics as qm(x(t), y(t)) =

supt∈[0,m] |x(t) − y(t)|2, m ∈ N. Obviously, Qs;Ω = {qm : m ∈ N} defines a b-gauge on U. Thus (U,Qs;Ω)
is a b-gauge space.

Note that (U,Qs;Ω) is not a gauge space, and hence it is not a metric space (as explained in
Example 2.8).

3. Main results

In this section, we introduce Js;Ω-families of generalized pseudo-b-distances in the b-gauge space
(U,Qs;Ω). The new structure determined by these families of distances is a generalization of b-gauges
and gives valuable and important tools for inquiring periodic points and fixed points of maps in b-gauge
spaces. Moreover, by using these Js;Ω-families on U, we define the Js;Ω-sequential completeness
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which generalizes the usual Qs;Ω-sequential completeness. Furthermore, we develop novel periodic
and fixed point results for F-type contractions in the setting of b-gauge spaces using Js;Ω-families on
U, which generalize and improve all the results in [17] and some of the results in [29].

We now introduce the notion of Js;Ω-family of generalized pseudo-b-distances on U (Js;Ω-family
on U is the generalization of b-gauges).

Definition 3.1. Let (U,Qs;Ω) be a b-gauge space. The family Js;Ω = {Jβ : β ∈ Ω} where Jβ : U × U →
[0,∞), β ∈ Ω, is said to be the Js;Ω-family of generalized pseudo-b-distances on U (for short, Js;Ω-
family on U) if the following statements hold for all β ∈ Ω and for all u, v,w ∈ U:

(J1) Jβ(u,w) ≤ sβ{Jβ(u, v) + Jβ(v,w)}; and
(J2) for each sequences (um : m ∈ N) and (vm : m ∈ N) in U fulfilling

lim
m→∞

sup
n>m

Jβ(um, un) = 0, (3.1)

and

lim
m→∞

Jβ(vm, um) = 0, (3.2)

the following holds:

lim
m→∞

qβ(vm, um) = 0. (3.3)

Take
J(U,Qs;Ω) = {Js;Ω : Js;Ω = {Jβ : β ∈ Ω}}.

Also, we denote
U0
Js;Ω

= {u ∈ U : Jβ(u, u) = 0}, for all β ∈ Ω

and
U+
Js;Ω

= {u ∈ U : Jβ(u, u) > 0}, for all β ∈ Ω.

Then, of course U = U0
Js;Ω
∪ U+

Js;Ω
.

Example 3.2. Let (U,Qs;Ω) be a b-gauge space, where U contains at least two distinct elements and
suppose Qs;Ω = {qβ : β ∈ Ω} the family of pseudo-b-metrics is a b-gauge on U.

Let the set F ⊂ U contain at least two distinct elements, but arbitrary and fixed. Let dβ ∈ (0,∞)
satisfy δβ(F) < dβ, where δβ(F) = sup{qβ(e, f ) : e, f ∈ F}, for all β ∈ Ω. Let Jβ : U × U → [0,∞) for
all e, f ∈ U and for all β ∈ Ω be defined by

Jβ(e, f ) =

qβ(e, f ) if F ∩ {e, f } = {e, f }

dβ if F ∩ {e, f } , {e, f }.
(3.4)

Then Js;Ω = {Jβ : β ∈ Ω} ∈ J(U,Q).
We observe that Jβ(e, g) ≤ sβ{Jβ(e, f ) + Jβ( f , g)}, for all e, f , g ∈ U, thus condition (J1) holds.

Indeed, condition (J1) will not hold in case if there exist some e, f , g ∈ U such that Jβ(e, g) = dβ,
Jβ(e, f ) = qβ(e, f ), Jβ( f , g) = qβ( f , g) and sβ{qβ(e, f ) + qβ( f , g)} ≤ dβ. However, this implies the
existence of h ∈ {e, g} such that h < F and on other hand, e, f , g ∈ F, which is impossible.
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Now, suppose that (3.1) and (3.2) are satisfied by the sequences (um : m ∈ N) and (vm : m ∈ N) in
U. Then (3.2) yields that for all 0 < ε < dβ, for all β ∈ Ω, there exists m1 = m1(β) ∈ N such that

Jβ(vm, um) < ε for all m ≥ m1, for all β ∈ Ω. (3.5)

By (3.5) and (3.4), denoting m2 = min{m1(β) : β ∈ Ω}, we have

F ∩ {vm, um} = {vm, um}, for all m ≥ m2

and

qβ(vm, um) = Jβ(vm, um) < ε.

Thus, (3.3) is satisfied by the sequences (um : m ∈ N) and (vm : m ∈ N). Therefore, Js;Ω is a Js;Ω-
family on U.

Example 3.3. Let U = [0, 1] and B = { 1
2m : m ∈ N}.

Let Qs;Ω = {q}, where q : U × U → [0,∞) is a pseudo-b-metric on U defined for all x, y ∈ U by

q(x, y) =

|x − y|2 if x = y or {x, y} ∩ B = {x, y},

|x − y|2 + 1 if x , y and {x, y} ∩ B , {x, y}.
(3.6)

Then (U,Qs;Ω) is a b-gauge space.
Let the set F = [ 1

8 , 1] ⊂ U and let J : U × U → [0,∞) for all x, y ∈ U be defined by

J(x, y) =

q(x, y) if F ∩ {x, y} = {x, y},

4 if F ∩ {x, y} , {x, y}.
(3.7)

Then Js;Ω = {J} is a Js;Ω-family on U (see Example 3.2).

We mention here some trivial properties of Js;Ω-families in the following remark.

Remark 3.4. Let (U,Qs;Ω) be a b-gauge space. Then the following hold:

(a) Qs;Ω ∈ J(U,Qs;Ω).
(b) Let Js;Ω ∈ J(U,Qs;Ω). If Jβ(v, v) = 0 and Jβ(u, v) = Jβ(v, u) for all β ∈ Ω and for all u, v ∈ U then for

each β ∈ Ω, Jβ is a pseudo-b metric.
(c) There exist examples of Js;Ω ∈ J(U,Qs;Ω) which show that the maps Jβ, β ∈ Ω are not pseudo-b

metrics.

Proposition 3.5. Let (U,Qs;Ω) be a Hausdorff b-gauge space andJs;Ω = {Jβ : β ∈ Ω} be theJs;Ω-family
of generalized pseudo-b-distances on U. Then for each e, f ∈ U, there exists β ∈ Ω such that

e , f ⇒ Jβ(e, f ) > 0 ∨ Jβ( f , e) > 0.

Proof. Let there be e, f ∈ U where e , f such that Jβ(e, f ) = 0 = Jβ( f , e) for all β ∈ Ω. Then by using
property (J1), we have Jβ(e, e) = 0, for all β ∈ Ω.
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Defining sequences (um : m ∈ N) and (vm : m ∈ N) in U by um = f and vm = e, we see that
conditions (3.1) and (3.2) of property (J2) are satisfied, and therefore condition (3.3) holds, which
implies that qβ(e, f ) = 0, for all e, f ∈ U and for all β ∈ Ω. It is a contradiction to the fact that
(U,Qs;Ω) is a Hausdorff b-gauge space. Therefore, our supposition is wrong and there exists β ∈ Ω

such that for all e, f ∈ U
e , f ⇒ Jβ(e, f ) > 0 ∨ Jβ( f , e) > 0.

�

Now, using Js;Ω-families on U, we establish the following concept of Js;Ω-completeness in the
b-gauge space (U,Qs;Ω) which generalizes the usual Qs;Ω-sequential completeness.

Definition 3.6. Let (U,Qs;Ω) be a b-gauge space. Let Js;Ω = {Jβ : β ∈ Ω} be the Js;Ω-family on U. A
sequence (um : m ∈ N) is a Js;Ω-Cauchy sequence in U if

lim
m→∞

sup
n>m

Jβ(vm, vn) = 0, for all β ∈ Ω.

Definition 3.7. Let (U,Qs;Ω) be a b-gauge space. LetJs;Ω = {Jβ : β ∈ Ω} be theJs;Ω-family on U. The
sequence (um : m ∈ N) is called to be Js;Ω-convergent to u ∈ U if limJs;Ω

m→∞ um = u , where

Js;Ω

lim
m→∞

um = u⇔ lim
m→∞

Jβ(u, um) = 0 = lim
m→∞

Jβ(um, u), for all β ∈ Ω.

Definition 3.8. Let (U,Qs;Ω) be a b-gauge space. Let Js;Ω = {Jβ : β ∈ Ω} be the Js;Ω-family on U. If
S Js;Ω

(um:m∈N) , ∅, where

S Js;Ω
(um:m∈N) = {u ∈ U :

Js;Ω

lim
m→∞

um = u}.

Then the sequence (um : m ∈ N) in U is Js;Ω-convergent in U.

Definition 3.9. Let (U,Qs;Ω) be a b-gauge space. LetJs;Ω = {Jβ : β ∈ Ω} be theJs;Ω-family on U. The
space (U,Qs;Ω) is called Js;Ω-sequentially complete, if every Js;Ω-Cauchy in U is a Js;Ω-convergent
in U.

Example 3.10. Let U, Qs;Ω = {q}, F and Js;Ω = {J} be as in Example 3.3.
First, we show that (U,Qs;Ω) is not Qs;Ω-sequential complete.
For this, let {vm} = { 1

2m : m ∈ N}, then by (3.6) for all ε > 0 and for all n,m ∈ N, there exists k0 ∈ N

such that
q(vm, vn) =

∣∣∣∣ 1
2m −

1
2n

∣∣∣∣2 < ε, for all n ≥ m ≥ k0.

Thus, {vm : m ∈ N} is a Qs;Ω-Cauchy sequence. However, this sequence is not Qs;Ω-convergent in U.
Otherwise, suppose that limm→∞ vm = v, for some v ∈ U. We may suppose without loosing generality
that for all 0 < ε < 1, there exists k0 ∈ N such that

q(v, vm) < ε < 1, for all m ≥ k0. (3.8)

We have the following two cases:
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(i) If v < B, then using (3.6) we can write

q(v, vm) = |v − vm|
2 + 1 < ε < 1, for all m ≥ k0.

It is not possible.
(ii) If v ∈ B, then let v = 1

2m1 , for some m1 ∈ N and using (3.6), we can write

q(v, vm) = |v − vm|
2 =

∣∣∣∣ 1
2m1
−

1
2m

∣∣∣∣2.
Taking limit interior as m→ ∞, we get

lim
m→∞

q(v, vm) =
1

2m2
, where m2 = 2m1.

By (3.8), it is impossible.

Thus, we conclude that (U,Qs;Ω) is not Qs;Ω-sequential complete. Next, we show that (U,Qs;Ω) is
Js;Ω-sequential complete.

Let {vm : m ∈ N} be a Js;Ω-Cauchy sequence. Without loosing generality, we may assume that for
0 < ε < 1, there exists k0 ∈ N such that

J(vm, vn) < ε < 1, for all n ≥ m ≥ k0. (3.9)

Then by (3.7), (3.6) and (3.9), we obtain

J(vm, vn) = q(vm, vn) = |vm − vn|
2 < ε < 1, for all n ≥ m ≥ k0, (3.10)

vm ∈ F =
[1
8
, 1

]
, for all m ≥ k0, (3.11)

and
vm = vm0 , for all, m0 ≥ k0 or vm ∈ B, for all m ≥ k0. (3.12)

From (3.12), we have two cases:

(i) If vm = vm0 for all m0 ≥ k0, then {vm : m ∈ N} represents a constant sequence and by (3.11), (3.7),
(3.6) and (3.12) the sequence {vm : m ∈ N} is Js;Ω-convergent to vm0 .

(ii) If vm ∈ B, for all m0 ≥ k0, let vk0+s ∈ B for all s ∈ N. This together with (3.10)–(3.12) imply that
vk0+s = 1

2 for all s ∈ N or vk0+s = 1
4 for all s ∈ N or vk0+s = 1

8 for all s ∈ N. Therefore, the sequence
{vm : m ∈ N} is Js;Ω-convergent to the point 1

2 or 1
4 or 1

8 , respectively.

Thus, we conclude that (U,Qs;Ω) is Js;Ω-sequential complete.

Remark 3.11. Let (U,Qs;Ω) be a b-gauge space and let Js;Ω = {Jβ : β ∈ Ω} be the Js;Ω-family on U.

(i) Example 3.10 indicates that there exists a b-gauge spaces (U,Qs;Ω) and Js;Ω-family on U with
Js;Ω , Qs;Ω such that (U,Qs;Ω) is Js;Ω-sequential complete, but not Qs;Ω-sequential complete.

(ii) For each subsequence (vm : m ∈ N) of (um : m ∈ N), where (um : m ∈ N) is Js;Ω-convergent in U,
we have S Js;Ω

(um:m∈N) ⊂ S Js;Ω
(vm:m∈N).
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Definition 3.12. Let (U,Qs;Ω) be a b-gauge space. The map T [k] : U → U (where k ∈ N) is called to
be a Qs;Ω-closed map on U if for each sequence (xm : m ∈ N) in T [k](U), which is Qs;Ω-converging in
U, i.e., S Qs;Ω

(xm:m∈N) , ∅ and its subsequences (vm : m ∈ N) and (um : m ∈ N) satisfy vm = T [k](um), for all

m ∈ N has the property that there exists w ∈ S Qs;Ω
(xm:m∈N) such that w ∈ T [k](w).

Now, we present some fixed and periodic point theorems in the b-gauge space (U,Qs;Ω), usingJs;Ω-
family of generalized pseudo-b-distances by incorporating the idea of Cosentino for the family Fs of
all functions F : (0,∞)→ R in the setting of b-metric spaces and F-contraction of Hardy-Rogers type.

Theorem 3.13. Let (U,Qs;Ω) be a b-gauge space. Let Js;Ω = {Jβ : β ∈ Ω}, where Jβ : U ×U → [0,∞),
be theJs;Ω-family of distances generated by Qs;Ω such that U0

Js;Ω
, ∅ and (U,Qs;Ω) isJs;Ω-sequentially

complete. Let T : U → U be a mapping such that T (U) ⊂ U0
Js;Ω

and we have F ∈ Fs and τ > 0 such
that:

α(u, v) ≥ 1⇒ τ + F(sβJβ(Tu,Tv)) ≤ F
(
aβJβ(u, v) + bβJβ(u,Tu) + cβJβ(v,Tv)

+eβJβ(u,Tv) + LβJβ(v,Tu)
)

(3.13)

for all β ∈ Ω and for any u, v ∈ U, whenever Jβ(Tu,Tv) , 0.
Further, aβ, bβ, cβ, eβ, Lβ ≥ 0 are such that aβ + bβ + cβ + (sβ + 1)eβ < 1 for each β ∈ Ω. Moreover,

assume that the following conditions hold:

(i) There exists z0 ∈ U such that α(z0, z1) ≥ 1.
(ii) If α(x, y) ≥ 1, then α(T x,Ty) ≥ 1.

(iii) If a sequence (zm : m ∈ N) in U is such that α(zm, zm+1) ≥ 1 and limJs;Ω
m→∞ zm = z, then α(zm, z) ≥ 1

and α(z, zm) ≥ 1.

Then the following statements hold:

(I) For each z0 ∈ U, (zm : m ∈ {0} ∪ N) is Qs;Ω-convergent sequence in U; thus, S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) Furthermore, assume that T [k] for some k ∈ N, is Qs;Ω-closed map on U and sβ{cβ + eβsβ} < 1, for
each β ∈ Ω. Then

(a1) Fix(T [k]) , ∅;
(a2) for all z0 ∈ U, there exists z ∈ Fix(T [k]) such that z ∈ S Qs;Ω

(zm:m∈{0}∪N); and
(a3) for all z ∈ Fix(T [k]), Jβ(z,T (z)) = Jβ(T (z), z) = 0, for all β ∈ Ω.

(III) Furthermore, let Fix(T [k]) , ∅ for some k ∈ N and (U,Qs;Ω) is a Hausdorff space. Then

(b1) Fix(T [k])=Fix(T );
(b2) for all z0 ∈ U, there exists z ∈ Fix(T ) such that z ∈ S L−Qs;Ω

(zm:m∈{0}∪N); and
(b3) for all z ∈ Fix(T [k]) = Fix(T ), Jβ(z, z) = 0, for all β ∈ Ω.

Proof. (I) We first show that (zm : m ∈ {0} ∪ N) is a Js;Ω-cauchy sequence in U.
Using assumption (i), there exists z0 ∈ U such that α(z0, z1) ≥ 1. Now, for each β ∈ Ω, using (3.13)

we can write

τ + F(sβJβ(z1, z2)) = τ + F(sβJβ(Tz0,Tz1))

≤ F
(
aβJβ(z0, z1) + bβJβ(z0,Tz0) + cβJβ(z1,Tz1)
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+eβJβ(z0,Tz1) + LβJβ(z1,Tz0)
)

≤ F
(
aβJβ(z0, z1) + bβJβ(z0, z1) + cβJβ(z1, z2)

+eβJβ(z0, z2) + Lβ.0
)

≤ F
(
aβJβ(z0, z1) + bβJβ(z0, z1) + cβJβ(z1, z2)

+eβsβ(Jβ(z0, z1) + Jβ(z1, z2))
)

= F
(
(aβ + bβ + eβsβ)Jβ(z0, z1) + (cβ + eβsβ)Jβ(z1, z2)

)
. (3.14)

As F is strictly increasing, we can write from above that

sβJβ(z1, z2) < (aβ + bβ + eβsβ)Jβ(z0, z1) + (cβ + eβsβ)Jβ(z1, z2), for all β ∈ Ω.

It is written as

(sβ − cβ − eβsβ)Jβ(z1, z2) < (aβ + bβ + eβsβ)Jβ(z0, z1), for all β ∈ Ω.

That is,
(1 −

cβ
sβ
− eβ)sβJβ(z1, z2) < (aβ + bβ + eβsβ)Jβ(z0, z1), for all β ∈ Ω.

Since aβ + bβ + cβ + (sβ + 1)eβ < 1, we get

1 −
cβ
sβ
− eβ ≥ 1 − cβ − eβ > aβ + bβ + sβeβ ≥ 0,

hence
sβJβ(z1, z2) < Jβ(z0, z1), for all β ∈ Ω.

Now, using (3.14), we can write

τ + F(sβJβ(z1, z2)) < F(Jβ(z0, z1)), for all β ∈ Ω.

Using assumption (ii), we have α(Tz0,Tz1) = α(z1, z2) ≥ 1. For each β ∈ Ω, using (3.13) we can write

τ + F(sβJβ(z2, z3)) = τ + F(sβJβ(Tz1,Tz2))

≤ F
(
aβJβ(z1, z2) + bβJβ(z1,Tz1) + cβJβ(z2,Tz2)

+eβJβ(z1,Tz2) + LβJβ(z2,Tz1)
)

≤ F
(
aβJβ(z1, z2) + bβJβ(z1, z2) + cβJβ(z2, z3)

+eβJβ(z1, z3) + Lβ.0
)

≤ F
(
aβJβ(z1, z2) + bβJβ(z1, z2) + cβJβ(z2, z3)

+eβsβ(Jβ(z1, z2) + Jβ(z2, z3))
)

= F
(
(aβ + bβ + eβsβ)Jβ(z1, z2) + (cβ + eβsβ)Jβ(z2, z3)

)
. (3.15)
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As F is strictly increasing, we can write from above that

sβJβ(z2, z3) < (aβ + bβ + eβsβ)Jβ(z1, z2) + (cβ + eβsβ)Jβ(z2, z3), for all β ∈ Ω.

We can also write it as

(sβ − cβ − eβsβ))Jβ(z2, z3) < (aβ + bβ + eβsβ)Jβ(z1, z2), for all β ∈ Ω.

Since aβ + bβ + cβ + (sβ + 1)eβ < 1, we get

1 −
cβ
sβ
− eβ ≥ 1 − cβ − eβ > aβ + bβ + sβeβ ≥ 0,

sβJβ(z2, z3) < Jβ(z1, z2), for all β ∈ Ω.

Now, using (3.15), we can write

τ + F(sβJβ(z2, z3)) < F(Jβ(z1, z2)), for all β ∈ Ω.

Proceeding in the above manner, we get a sequence (zm : m ∈ {0}∪N) ⊂ U such that zm = Tzm−1, zm−1 ,

zm and α(zm−1, zm) ≥ 1, for each m ∈ N. Furthermore,

τ + F(sβJβ(zm, zm+1)) < F(Jβ(zm−1, zm)), for all β ∈ Ω.

Using property (F4), for all m ∈ N, we can write

τ + F(sm
β Jβ(zm, zm+1)) < F(sm−1

β Jβ(zm−1, zm)), for all β ∈ Ω.

Thus,
F(sm

β Jβ(zm, zm+1)) < F(Jβ(z0, z1)) − mτ, for all β ∈ Ω and m ∈ N. (3.16)

Letting m → ∞, from (3.16) we get limm→∞ F(sm
β Jβ(zm, zm+1)) = −∞ for all β ∈ Ω. Hence, using

property (F2) we get limm→∞ sm
β Jβ(zm, zm+1) = 0. Let (Jβ)m = Jβ(zm, zm+1) for all β ∈ Ω and m ∈ N. From

(F3), there exists p ∈ (0, 1) such that

lim
m→∞

(sm
β (Jβ)m)pF(sm

β (Jβ)m) = 0, for all β ∈ Ω.

From (3.16), for all β ∈ Ω and m ∈ N, we can write

(sm
β (Jβ)m)pF((sm

β Jβ)m) − (sm
β (Jβ)m)pF((Jβ)0) ≤ −(sm

β (Jβ)m)pmτ ≤ 0. (3.17)

Applying m→ ∞, we have

lim
m→∞

m(sm
β (Jβ)m)p = 0, for all β ∈ Ω. (3.18)

This implies there exists m1 = m1(β) ∈ N such that m(sm
β (Jβ)m)p ≤ 1 for each m ≥ m1 and for all β ∈ Ω.

Hence, we can write

sm
β (Jβ)m ≤

1

m
1
p

, for all m ≥ m1 and β ∈ Ω . (3.19)
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Now, by repeated use of (J1) and (3.19) for all m, n ∈ N such that n > m > m1 and for all β ∈ Ω,
we get

Jβ(zm, zn) ≤
n−1∑
i=m

si
β(Jβ)i ≤

∞∑
i=m

si
β(Jβ)i ≤

∞∑
i=m

1

i
1
p

.

Since
∑∞

i=1
1

i
1
p

is a convergent series, we have

lim
m→∞

sup
n>m

Jβ(zm, zn) = 0, for all β ∈ Ω. (3.20)

Since (U,Qs;Ω) is a Js;Ω-sequentially complete b-gauge space, we have (zm : m ∈ {0} ∪ N) is Js;Ω-
convergent in U, thus for all z ∈ S Js;Ω

(zm:m∈{0}∪N), we can write

lim
m→∞

Jβ(z, zm) = 0, for all β ∈ Ω. (3.21)

Thus, from (3.20) and (3.21), fixing z ∈ S Js;Ω
(zm:m∈{0}∪N), defining (um = zm : m ∈ {0} ∪ N) and (vm = z :

m ∈ {0} ∪ N) and applying (J2) to these sequences, we get

lim
m→∞

qβ(z, zm) = 0, for all β ∈ Ω.

This implies S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) To prove (a1), let z0 ∈ U be arbitrary and fixed. Since S Qs;Ω
(zm:m∈{0}∪N) , ∅, we have

z(m+1)k = T [k](zmk), for m ∈ {0} ∪ N.

Thus, defining (zm = zm−1+k : m ∈ N), we can write

(zm : m ∈ N) ⊂ T [k](U),

S Qs;Ω
(zm:m∈{0}∪N) = S Qs;Ω

(zm:m∈{0}∪N) , ∅.

Also,
(ym = z(m+1)k : m ∈ N) ⊂ T [k](U)

and
(xm = zmk : m ∈ N) ⊂ T [k](U)

satisfy
ym = T [k](xm), for all m ∈ N

and are Qs;Ω-convergent to each point z ∈ S Qs;Ω
(zm:m∈{0}∪N). Now, using the fact below S Qs;Ω

(zm:m∈N) ⊂ S Qs;Ω
(ym:m∈N)

and S Qs;Ω
(zm:m∈N) ⊂ S Qs;Ω

(xm:m∈N) and the supposition that T [k] for some k ∈ N, is a Qs;Ω-closed map on U, there

exists z ∈ S Qs;Ω
(zm:m∈{0}∪N) = S Qs;Ω

(zm:m∈{0}∪N) such that z ∈ T [k](z). Thus, (a1) holds.

The assertion (a2) follows from (a1) and the fact that S Qs;Ω
(zm:m∈{0}∪N) , ∅.
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To prove (a3), on contrary suppose that Jβ(z,Tz) > 0 for some β ∈ Ω, there exists m0 ∈ N such that
Jβ(zm,Tz) > 0 for each m ≥ m0. Hence, for each m ≥ m0, use triangular inequality and inequality (3.13)
to obtain

Jβ(z,Tz) ≤ sβ{Jβ(z, zm+1) + Jβ(zm+1,Tz)}
= sβ{Jβ(z, zm+1) + Jβ(Tzm,Tz)}
≤ sβ{Jβ(z, zm+1) + aβJβ(zm, z) + bβJβ(zm,Tzm) + cβJβ(z,Tz)
+ eβJβ(zm,Tz) + LβJβ(z,Tzm)}
≤ sβ{Jβ(z, zm+1) + aβJβ(zm, z) + bβJβ(zm, zm+1) + cβJβ(z,Tz)
+ eβsβ{Jβ(zm, z) + Jβ(z,Tz)} + LβJβ(z, zm+1)}.

Letting m→ ∞, we have

Jβ(z,Tz) ≤ sβ{cβ + eβsβ}Jβ(z,Tz), ∀ β ∈ Ω.

We have assumed that sβ{cβ + eβsβ} < 1, so

Jβ(z,Tz) ≤ sβ{cβ + eβsβ}Jβ(z,Tz) < Jβ(z,Tz), ∀ β ∈ Ω.

It is absurd, thus Jβ(z,Tz) = 0 for all β ∈ Ω.
Next, we prove that Jβ(Tz, z) = 0 for all β ∈ Ω. On contrary suppose that Jβ(Tz, z) > 0 for some

β ∈ Ω, there exists m0 ∈ N such that Jβ(Tz, zm) > 0 for each m ≥ m0. Hence, for each m ≥ m0, use
triangular inequality and inequality (3.13) to obtain

Jβ(Tz, z) ≤ sβ{Jβ(Tz, zm+1) + Jβ(zm+1, z)}
= sβ{Jβ(Tz,Tzm) + Jβ(zm+1, z)}
≤ sβ{aβJβ(z, zm) + bβJβ(z,Tz) + cβJβ(zm,Tzm) + eβJβ(z,Tzm)
+ LβJβ(zm,Tz) + Jβ(zm+1, z)}
≤ sβ{aβJβ(z, zm) + bβJβ(z,Tz) + cβJβ(zm, zm+1) + eβJβ(z, zm+1)
+ Lβsβ{Jβ(zm, z) + Jβ(z,Tz)} + Jβ(zm+1, z)}.

Letting m→ ∞, we have

Jβ(Tz, z) ≤ sβ{bβ + Lβsβ}Jβ(z,Tz), ∀ β ∈ Ω.

We have proved that Jβ(z,Tz) = 0 for all β ∈ Ω, so Jβ(Tz, z) = 0 for all β ∈ Ω. Hence, the assertion (a3)
holds.

(III) Since (U,Qs;Ω) is a Hausdorff space, using Proposition (3.5), assertion (a3) suggests that for
z ∈ Fix(T [k]), we have z = T (z). This gives z ∈ Fix(T ). Hence, (b1) is true.

Assertions (a2) and (b1) imply (b2) . To prove assertion (b3), consider (J1) and use (a3) and (b1) to
have for all z ∈ Fix(T [k]) = Fix(T ),

Jβ(z, z) ≤ sβ{Jβ(z,T (z)) + Jβ(T (z), z)} = 0, for all β ∈ Ω.

�
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Theorem 3.14. Let (U,Qs;Ω) be a b-gauge space. Let Js;Ω = {Jβ : β ∈ Ω}, where Jβ : U ×U → [0,∞),
be theJs;Ω-family of distances generated by Qs;Ω such that U0

Js;Ω
, ∅ and (U,Qs;Ω) isJs;Ω-sequentially

complete. Let T : U → U be a mapping such that T (U) ⊂ U0
Js;Ω

and we have F ∈ Fs and τ > 0, so that

α(u, v) ≥1⇒ τ + F(sβJβ(Tu,Tv))

≤ F
(

max
{
Jβ(u, v), Jβ(u,Tu), Jβ(v,Tv),

Jβ(u,Tv) + Jβ(v,Tu)
2sβ

}
+ LβJβ(v,Tu)

)
(3.22)

for all β ∈ Ω and for any u, v ∈ U, whenever Jβ(Tu,Tv) , 0. Also, Lβ ≥ 0.
Assume, moreover that, the following conditions hold:

(i) There exists z0 ∈ U such that α(z0, z1) ≥ 1.
(ii) If α(u, v) ≥ 1, then α(Tu,Tv) ≥ 1.

Then the following statements hold:

(I) For any z0 ∈ U, (zm : m ∈ {0} ∪ N) is Qs;Ω-convergent sequence in U, thus S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) Furthermore, assume that T [k] for some k ∈ N, is a Qs;Ω-closed map on U. Then

(a1) Fix(T [k]) , ∅;
(a2) for all z0 ∈ U, there exists z ∈ Fix(T [k]) such that z ∈ S Qs;Ω

(zm:m∈{0}∪N).

(III) Furthermore, let Fix(T [k]) , ∅ for some k ∈ N and T be continuous. Then

(b1) Fix(T [k])=Fix(T );
(b2) for all z0 ∈ U, there exists z ∈ Fix(T ) such that z ∈ S L−Qs;Ω

(zm:m∈{0}∪N); and
(b3) for all z ∈ Fix(T [k]) = Fix(T ), Jβ(z, z) = 0, for all β ∈ Ω.

Proof. (I) We first show that (zm : m ∈ {0} ∪ N) is Js;Ω-cauchy sequence in U.
Using assumption (i) there exists z0 ∈ U such that α(z0, z1) ≥ 1. For each β ∈ Ω, using (3.22) we

can write
τ + F(sβJβ(z1, z2)) = τ + F(sβJβ(Tz0,Tz1))

≤ F
(

max
{
Jβ(z0, z1), Jβ(z0,Tz0), Jβ(z1,Tz1),

Jβ(z0,Tz1) + Jβ(z1,Tz0)
2sβ

}
+ LβJβ(z1,Tz0)

)
= F

(
max{Jβ(z0, z1), Jβ(z1, z2)}

)
.

We observe a contradiction if we choose max{Jβ(z0, z1), Jβ(z1, z2)} = Jβ(z1, z2). Hence, choosing
max{Jβ(z0, z1), Jβ(z1, z2)} = Jβ(z0, z1) for all β ∈ Ω, we get

τ + F(sβJβ(z1, z2)) < F(Jβ(z0, z1)), for all β ∈ Ω.

Using assumption (ii), we have α(Tz0,Tz1) = α(z1, z2) ≥ 1. For each β ∈ Ω, using (3.22) we can write

τ + F(sβJβ(z2, z3)) = τ + F(sβJβ(Tz1,Tz2))

≤ F
(

max
{
Jβ(z1, z2), Jβ(z1,Tz1), Jβ(z2,Tz2),

Jβ(z1,Tz2) + Jβ(z2,Tz1)
2sβ

}
+ LβJβ(z2,Tz1)

)
= F

(
max{Jβ(z1, z2), Jβ(z2, z3)}

)
.
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We observe a contradiction if we choose max{Jβ(z1, z2), Jβ(z2, z3)} = Jβ(z2, z3). Hence, choosing
max{Jβ(z1, z2), Jβ(z2, z3)} = Jβ(z1, z2) for all β ∈ Ω, we get

τ + F(sβJβ(z2, z3)) < F(Jβ(z1, z2)), for all β ∈ Ω.

Proceeding in the above manner, we get a sequence (zm : m ∈ {0}∪N) ⊂ U such that zm = Tzm−1, zm−1 ,

zm and α(zm−1, zm) ≥ 1, for each m ∈ N. Furthermore,

τ + F(sβJβ(zm, zm+1)) < F(Jβ(zm−1, zm)), for all β ∈ Ω.

Using property (F4), for all m ∈ N, we get

τ + F(sm
β Jβ(zm, zm+1)) < F(sm−1

β Jβ(zm−1, zm)), for all β ∈ Ω.

Furthermore,
F(sm

β Jβ(zm, zm+1)) < F(Jβ(z0, z1)) − mτ, for all β ∈ Ω and m ∈ N. (3.23)

Now, letting m → ∞, from (3.23) we get limm→∞ F(sm
β Jβ(zm, zm+1)) = −∞ for all β ∈ Ω. Hence, using

property (F2) we get limm→∞ sm
β Jβ(zm, zm+1) = 0. Let (Jβ)m = Jβ(zm, zm+1) for all β ∈ Ω and m ∈ N. From

(F3), there exists p ∈ (0, 1) such that

lim
m→∞

(sm
β (Jβ)m)pF(sm

β (Jβ)m) = 0, for all β ∈ Ω.

From (3.23), we can write

(sm
β (Jβ)m)pF((sm

β Jβ)m) − (sm
β (Jβ)m)pF((Jβ)0) ≤ −(sm

β (Jβ)m)pmτ ≤ 0, for all β ∈ Ω and m ∈ N. (3.24)

Applying m→ ∞, we have

lim
m→∞

m(sm
β (Jβ)m)p = 0, for all β ∈ Ω. (3.25)

This implies there exists m1 = m1(β) ∈ N such that m(sm
β (Jβ)m)p ≤ 1 for each m ≥ m1 and for all β ∈ Ω.

Hence, we can write

sm
β (Jβ)m ≤

1

m
1
p

, for all m ≥ m1 and β ∈ Ω . (3.26)

Now, by repeated use of (J1) and (3.26) for all m, n ∈ N such that n > m > m1 and for all β ∈ Ω,
we get

Jβ(zm, zn) ≤
n−1∑
i=m

si
β(Jβ)i ≤

∞∑
i=m

si
β(Jβ)i ≤

∞∑
i=m

1

i
1
p

.

Since
∑∞

i=1
1

i
1
p

is a convergent series, we have

lim
m→∞

sup
n>m

Jβ(zm, zn) = 0, for all β ∈ Ω. (3.27)

Now, since (U,Qs;Ω) is a Js;Ω-sequentially complete b-gauge space, we have (zm : m ∈ {0} ∪ N) is
Js;Ω-convergent in U. Thus for all z ∈ S Js;Ω

(zm:m∈{0}∪N), we can write

lim
m→∞

Jβ(z, zm) = 0, for all β ∈ Ω. (3.28)
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Thus, from (3.27) and (3.28), fixing z ∈ S Js;Ω
(zm:m∈{0}∪N), defining (um = zm : m ∈ {0} ∪ N) and (vm = z :

m ∈ {0} ∪ N) and applying (J2) to these sequences, we get

lim
m→∞

qβ(z, zm) = 0, for all β ∈ Ω.

This implies that S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) To prove (a1), let z0 ∈ U be arbitrary and fixed. Since S Qs;Ω
(zm:m∈{0}∪N) , ∅, and

z(m+1)k = T [k](zmk), for m ∈ {0} ∪ N

defining (zm = zm−1+k : m ∈ N), we can write

(zm : m ∈ N) ⊂ T [k](U),

S Qs;Ω
(zm:m∈{0}∪N) = S Qs;Ω

(zm:m∈{0}∪N) , ∅.

Also,
(ym = z(m+1)k : m ∈ N) ⊂ T [k](U)

and
(xm = zmk : m ∈ N) ⊂ T [k](U)

satisfy
ym = T [k](xm), for all m ∈ N

and are Qs;Ω-convergent to each point z ∈ S Qs;Ω
(zm:m∈{0}∪N). Now, using the fact below S Qs;Ω

(zm:m∈N) ⊂ S Qs;Ω
(ym:m∈N),

S Qs;Ω
(zm:m∈N) ⊂ S Qs;Ω

(xm:m∈N) and the supposition that T [k] for some k ∈ N, is a Qs;Ω-closed map on U, there

exists z ∈ S Qs;Ω
(zm:m∈{0}∪N) = S Qs;Ω

(zm:m∈{0}∪N) such that z ∈ T [k](z). Thus, (a1) holds.

The assertion (a2) follows from (a1) and the fact that S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(III) By (a2), for all z0 ∈ U, there exists z ∈ Fix(T [k]) such that z ∈ S Qs;Ω
(zm:m∈{0}∪N), and so we have

limm→∞ zm = z.
Now, if T is continuous, then z = limm→∞ zm+1 = limm→∞ Tzm = T (limm→∞ zm) = T (z). This gives

z ∈ Fix(T ). Hence, (b1) is true. Assertions (a2) and (b1) imply (b2). To prove assertion (b3), since
T (U) ⊂ U0

Js;Ω
, this implies that z = T (z) ∈ U0

Js;Ω
.

Therefore, Jβ(z, z) = 0, for all β ∈ Ω. �

Example 3.15. Let U = [0, 1] and B = { 1
2m : m ∈ N}.

Let Qs;Ω = {q}, where q : U × U → [0,∞) is a pseudo-b-metric on U defined for all x, y ∈ U by

q(x, y) =

|x − y|2 if x = y or {x, y} ∩ B = {x, y},

|x − y|2 + 1 if x , y and {x, y} ∩ B , {x, y}.
(3.29)

Let the set F = [ 1
8 , 1] ⊂ U and let J : U × U → [0,∞) for all x, y ∈ U be defined by

J(x, y) =

q(x, y) if F ∩ {x, y} = {x, y},

4 if F ∩ {x, y} , {x, y}.
(3.30)
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Define α : U × U → [0,∞) by

α(x, y) =

5 if x , y,

0 if x = y.

The single-valued map T is defined by

T (x) =
x + 1

5
, for all x ∈ U. (3.31)

Note that T (U) = [1
5 ,

2
5 ] ⊂ U0

Js;Ω
= [1

8 , 1]. Also, take F(x) = ln(x), then F ∈ Fs.

(I.1) (U,Qs;Ω) is a b-gauge space, which is also Hausdorff.
(I.2) The family Js;Ω = {J} is Js;Ω-family on U (see Example 3.2).
(I.3) (U,Qs;Ω) is Js;Ω-sequential complete (follows from Example 3.10).
(I.4) Next, applying F(x) = ln(x) to condition (3.13), we show that T satisfies the following condition.

α(x, y) ≥ 1⇒ J(T x,Ty) ≤ aJ(x, y) + bJ(x,T x) + cJ(y,Ty) + eJ(x,Ty) + LJ(y,T x)

for any x, y ∈ U whenever J(T x,Ty) , 0. It is obvious that above condition holds for a = b = c =
1
5 and e = L = 0.

(I.5) Assumptions (i)–(iii) of Theorem 3.13 hold. For z0 = 0 and z1 = Tz0 = 1
5 , we have α(z0,Tz0) > 1.

Also, α(T x,Ty) > 1 if α(x, y) > 1. Finally, if a sequence (zm : m ∈ N) in U is such that
α(zm, zm+1) ≥ 1 and limJs;Ω

m→∞ zm = z, then α(zm, z) ≥ 1 and α(z, zm) ≥ 1.
(I.6) Finally, we show that T is a Qs;Ω-closed map on U. For this, let (zm : m ∈ N) be a sequence in

T (U) = [ 1
5 ,

2
5 ] which is Qs;Ω-convergent to each point of S Qs;Ω

(zm:m∈{0}∪N) , ∅. Let the subsequences
(vm : m ∈ N) and (um : m ∈ N) satisfy vm = T (um), for all m ∈ N.
Let z ∈ S Qs;Ω

(zm:m∈{0}∪N), then without loosing generality we may assume that for all 0 < ε1 < 1 there
exists k ∈ N such that

q(z, zm) = |z − zm|
2 < ε1 < 1, for all m ≥ k.

As a result, for ε =
√
ε1, we can also write for all 0 < ε < 1 there exists k ∈ N such that

[| z − zm |< ε] ∧ [| z − um |< ε] ∧ [| z − vm |< ε] ∧ [vm = T (um)], for all m ≥ k.

In particular, this implies that

| z − um |=| z − 5vm + 1 |=| 5z − 4z − 5vm + 1 |=| 4(
1
4
− z) − 5(vm − z) |< ε

and we obtain

4 |
1
4
− z |< ε + 5 | vm − z |, for all m ≥ k.

Since | z−vm |→ 0, when m→ ∞, we get | 1
4 − z |< ε2 where ε2 = ε

4 <
1
4 . This gives S Qs;Ω

(zm:m∈N) = { 14 }

and so there exists z = 1
4 ∈ S Qs;Ω

(zm:m∈N) such that 1
4 = T ( 1

4 ). Hence, T is aQs;Ω-closed map on U.
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(I.7) As all the assumptions of Theorem 3.13 hold, we have

Fix(T ) =
{1
4

}
,

Qs;Ω

lim
m→∞

zm =
1
4
,

and
J(

1
4
,

1
4

) = 0.

Let (U,Qs;Ω) be a b-gauge space and G = (V, E) be a directed graph such that set of vertices V is
equal to U and set of edges E includes {(u, u) : u ∈ U}, but G includes no parallel edges. We obtain
the following corollaries from our theorems by defining α : U × U → [0,∞) for some κ ≥ 1 in the
following way.

α(u, v) =

κ if (u, v) ∈ E,

0 otherwise.
(3.32)

Corollary 3.16. Let (U,Qs;Ω) be a b-gauge space. LetJs;Ω = {Jβ : β ∈ Ω}, where Jβ : U ×U → [0,∞),
be theJs;Ω-family of distances generated by Qs;Ω such that U0

Js;Ω
, ∅ and (U,Qs;Ω) isJs;Ω-sequentially

complete. Let T : U → U be a mapping such that T (U) ⊂ U0
Js;Ω

and for which we have F ∈ Fs and
τ > 0 such that

(u, v) ∈ E ⇒ τ + F(sβJβ(Tu,Tv)) ≤F(aβJβ(u, v) + bβJβ(u,Tu) + cβJβ(v,Tv)
+ eβJβ(u,Tv) + LβJβ(v,Tu)) (3.33)

for all β ∈ Ω and for any u, v ∈ U whenever Jβ(Tu,Tv) , 0.
Further, aβ, bβ, cβ, eβ, Lβ ≥ 0 are such that aβ + bβ + cβ + (sβ + 1)eβ < 1 for each β ∈ Ω. Assume,

moreover that, the following conditions hold:

(i) There exists z0 ∈ U such that (z0, z1) ∈ E.
(ii) If (u, v) ∈ E, then (Tu,Tv) ∈ E.

(iii) If a sequence (zm : m ∈ N) in U is such that (zm, zm+1) ∈ E and limJs;Ω
m→∞ zm = z, then (zm, z) ∈ E

and (z, zm) ∈ E.

Then the following statements hold:

(I) For each z0 ∈ U, (zm : m ∈ {0} ∪ N) is Qs;Ω-convergent sequence in U; thus, S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) Furthermore, assume that T [k] for some k ∈ N, is a Qs;Ω-closed map on U and sβ{cβ + eβsβ} < 1,
for each β ∈ Ω. Then

(a1) Fix(T [k]) , ∅;
(a2) for all z0 ∈ U, there exists z ∈ Fix(T [k]) such that z ∈ S Qs;Ω

(zm:m∈{0}∪N); and
(a3) for all z ∈ Fix(T [k]), Jβ(z,T (z)) = Jβ(T (z), z) = 0, for all β ∈ Ω.

(III) Furthermore, let Fix(T [k]) , ∅ for some k ∈ N and (U,Qs;Ω) is a Hausdorff space. Then

(b1) Fix(T [k])=Fix(T );
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(b2) for all z0 ∈ U, there exists z ∈ Fix(T ) such that z ∈ S L−Qs;Ω
(zm:m∈{0}∪N); and

(b3) for all z ∈ Fix(T ) = Fix(T [k]), Jβ(z, z) = 0, for all β ∈ Ω.

Corollary 3.17. Let (U,Qs;Ω) be a b-gauge space. LetJs;Ω = {Jβ : β ∈ Ω}, where Jβ : U ×U → [0,∞),
is the Js;Ω-family of distances generated by Qs;Ω such that U0

Js;Ω
, ∅ and (U,Qs;Ω) is Js;Ω-sequentially

complete. Let T : U → U be a mapping such that T (U) ⊂ U0
Js;Ω

and for which we have F ∈ Fs and
τ > 0 such that

(u, v) ∈ E ⇒ τ + F(sβJβ(Tu,Tv)) ≤F
(

max
{
Jβ(u, v), Jβ(u,Tu), Jβ(v,Tv),

Jβ(u,Tv) + Jβ(v,Tu)
2sβ

}
+ LβJβ(v,Tu)

)
(3.34)

for all β ∈ Ω and for any u, v ∈ U, whenever Jβ(Tu,Tv) , 0. Also, Lβ ≥ 0.
Assume, moreover that, the following conditions hold:

(i) There exists z0 ∈ U such that (z0, z1) ∈ E.
(ii) If (u, v) ∈ E, then (Tu,Tv) ∈ E.

Then the following statements hold:

(I) For any z0 ∈ U, (zm : m ∈ {0} ∪ N) is Qs;Ω-convergent sequence in U; thus, S Qs;Ω
(zm:m∈{0}∪N) , ∅.

(II) Furthermore, assume that T [k] for some k ∈ N, is a Qs;Ω-closed map on U. Then

(a1) Fix(T [k]) , ∅;
(a2) for all z0 ∈ U, there exists z ∈ Fix(T [k]) such that z ∈ S Qs;Ω

(zm:m∈{0}∪N).

(III) Furthermore, let Fix(T [k]) , ∅ for some k ∈ N and T be continuous. Then

(b1) Fix(T [k])=Fix(T );
(b2) for all z0 ∈ U, there exists z ∈ Fix(T ) such that z ∈ S L−Qs;Ω

(zm:m∈{0}∪N); and
(b3) for all z ∈ Fix(T ) = Fix(T [k]), Jβ(z, z) = 0, for all β ∈ Ω.

4. Application

A volterra integral equation

u(t) = f (t) +

∫ g(t)

0
K(t, s)u(s)ds t, s ∈ [0,∞) (4.1)

is the integral equation located in the space C[0,∞) of all continuous functions defined on the interval
[0,∞), where K(t, s) : [0,∞) × [0,∞) → R and f , g : [0,∞) → R are continuous functions so that
g(t) ≥ 0 for all t ∈ [0,∞). Let U = (C[0,∞),R). Define the family of b-pseudo metrics by

qm(u, v) = max
t∈[0,m]

{|u(t) − v(t)|2e−|τt|}.

Obviously, Qs;Ω = {qm : m ∈ N} defines a complete Hausdorff b-gauge structure on U. Here, in
particular we consider the case when Qs;Ω = Js;Ω = {qm : m ∈ N}. Define the map α : U ×U → [0,∞)
for some κ ≥ 1 in the following way:

α(u, v) =

κ if u , v

0 otherwise.
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Theorem 4.1. Define the operator T : C[0,∞)→ C[0,∞) as follows:

Tu(t) = f (t) +

∫ g(t)

0
K(t, s)u(s)ds t, s ∈ [0,∞) (4.2)

where K(t, s) : [0,∞) × [0,∞)→ R and f , g : [0,∞)→ R are continuous functions so that g(t) ≥ 0 for
all t ∈ [0,∞).

Assume, moreover there exist γ : U → (0,∞) and α : U × U → (0,∞) such that the following
statements hold:

(i) There is τ > 0 such that

|K(t, s)u(s) − K(t, s)v(s)| ≤

√
e−τ

γ(u + v)
qm(u, v)

for each t, s ∈ [0,∞) and u, v ∈ U. Also,∣∣∣∣ ∫ g(t)

0

1√
γ(u(s) + v(s))

ds
∣∣∣∣2 ≤ e|τt|.

(ii) There exists z0 ∈ U such that α(z0,Tz0) ≥ 1.
(iii) For x, y ∈ U with α(x, y) ≥ 1 we have α(T x,Ty) ≥ 1.
(iv) If a sequence (zm : m ∈ N) in U is such that α(zm, zm+1) ≥ 1 and limJs;Ω

m→∞ zm = z, then α(zm, z) ≥ 1
and α(z, zm) ≥ 1.

(v) T is Qs;Ω-closed map.

Then there exists at least one solution of the integral equation (4.1).

Proof. We first prove that T satisfies condition (3.13). For any u, v ∈ U with α(u, v) ≥ 1, we have

|Tu(t) − Tv(t)|2 =
∣∣∣∣ f (t) +

∫ g(t)

0
K(t, s)u(s)ds − ( f (t) +

∫ g(t)

0
K(t, s)v(s)ds)

∣∣∣∣2
=

∣∣∣∣ ∫ g(t)

0
K(t, s)u(s)ds −

∫ g(t)

0
K(t, s)v(s)ds

∣∣∣∣2
≤

( ∫ g(t)

0

∣∣∣∣K(t, s)u(s)ds − K(t, s)v(s)
∣∣∣∣ds

)2

≤ e−τqm(u, v)
( ∫ g(t)

0

1√
γ(u(s) + v(s))

ds
)2

≤ e|τt|e−τqm(u, v).

From here we can write
|Tu(t) − Tv(t)|2e−|τt| ≤ e−τqm(u, v).

This can be written as
qm(Tu − Tv) ≤ e−τqm(u, v).
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Obviously, natural logarithm belong to the family Fs, therefore, taking logarithm on both sides, we
have

ln(qm(Tu − Tv)) ≤ ln(e−τqm(u, v)).

A simplification leads to the following

τ + ln(qm(Tu − Tv)) ≤ ln(qm(u, v)).

This implies that (3.13) holds for am = 1 and bm = cm = em = Lm = 0, for all m ∈ N and F(u) = ln u.
Hence, Theorem 3.13 ensures the existence of a fixed point of the operator T , thus, there is at least one
solution of the integral equation (4.1). �

5. Concluding remarks

Remark 5.1. The fixed point results concerning F-type-contractions in a gauge space in [17] require
the completeness of the space (U, d). Therefore, our theorems and corollaries for F-type-contractions
in the b-gauge space are new generalizations of the results in [17] in which assumptions are weaker
and assertions are stronger.

Remark 5.2. Our results for F-type-contractions in b-gauge spaces deal with about periodic points as
well. Hence, they improve the results in [17].

Remark 5.3. Theorems 3.13 and 3.14 generalize Theorems 4.2 and 5.2, respectively in [29].
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