Citation: Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain. Admissible multivalued hybrid $\mathcal{Z}$-contractions with applications[J]. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
[1] | M. Alansari, S. S. Mohammed, A. Azam, N. Hussain, On Multivalued Hybrid Contractions with Applications. Journal of Function Spaces, J. Funct. Space., 2020 (2020), 1-12. |
[2] | A. S. Alharbi, H. H. Alsulami, E. Karapinar, On the power of simulation and admissible functions in metric fixed point theory, J. Funct. Space., 2017 (2017), 1-7. |
[3] | M. Arshad, A. Shoaib, M. Abbas, A. Azam, Fixed points of a pair of Kannan type mappings on a closed ball in ordered partial metric spaces, Miskolc Math. Notes, 14 (2013), 769-784. doi: 10.18514/MMN.2013.722 |
[4] | H. A. S. S. E. N. Aydi, A. Felhi, E. R. D. A. L. Karapinar, F. A. Alojail, Fixed points on quasi-metric spaces via simulation functions and consequences, J. Math. Anal., 9 (2018), 10-24. |
[5] | A. Azam, N. Mehmood, Multivalued fixed point theorems in tvs-cone metric spaces, Fixed Point Theory and Applications, 2013 (2013), 184. doi: 10.1186/1687-1812-2013-184 |
[6] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Functional Analysis, 30 (1989), 26-37. |
[7] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 3 (1993), 3-9. |
[9] | N. Bourbaki, Topologie Generale, Herman, Paris, France, 1974. |
[10] | M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Studia Universitatis Babes-Bolyai, Mathematica, 4 (2009), 126-132. |
[11] | A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, 29 (2002), 531-536. doi: 10.1155/S0161171202007524 |
[12] | I. C. Chifu, E. Karapınar, Admissible Hybrid Z-Contractions in b-Metric Spaces, Axioms, 9 (2020), 2. |
[13] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica Informatica Universitatis Ostraviensis, 1 (1993), 5-11. |
[14] | R. Espinola, W. A. Kirk, Fixed point theorems in R-trees with applications to graph theory, Topol. Appl., 153 (2006), 1046-1055. doi: 10.1016/j.topol.2005.03.001 |
[15] | N. Hussain, J. Ahmad, A. Azam, Generalized fixed point theorems for multi-valued α - ψ-contractive mappings, J. Inequal. Appl., 2014 (2014), 384. doi: 10.1186/1029-242X-2014-384 |
[16] | N. Hussain, G. Ali, I. Iqbal, B. Samet, The Existence of Solutions to Nonlinear Matrix Equations via Fixed Points of Multivalued F-Contractions, Mathematics, 8 (2020), 212. doi: 10.3390/math8020212 |
[17] | N. Hussain, Z. D. Mitrovic, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 3815-3823. doi: 10.22436/jnsa.010.07.35 |
[18] | N. Hussain, D. Doric, Z. Kadelburg, S. Radenovic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory and Applications, 2012 (2012), 126. doi: 10.1186/1687-1812-2012-126 |
[19] | N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued α - η - ψ-contractive mappings, Fixed Point Theory and Applications, 2013 (2013), 212. doi: 10.1186/1687-1812-2013-212 |
[20] | I. Iqbal, N. Hussain, M. A. Kutbi, Existence of the solution to variational inequality, optimization problem, and elliptic boundary value problem through revisited best proximity point results, J. Comput. Appl. Math., (2020), 112804. |
[21] | I. Iqbal, N. Hussain, N. Sultana, Fixed Points of Multivalued Non-Linear F-Contractions with Application to Solution of Matrix Equations, Filomat, 31 (2017), 3319-3333. doi: 10.2298/FIL1711319I |
[22] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, P. Am. Math. Soc., 136 (2008), 1359-1373. |
[23] | E. Karapınar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, Analele Universitatii" Ovidius" Constanta-Seria Matematica, 27 (2019), 137-152. doi: 10.2478/auom-2019-0038 |
[24] | E. Karapınar, A. Fulga, New Hybrid Contractions on b-Metric Spaces, Mathematics, 7 (2019), 578. doi: 10.3390/math7070578 |
[25] | E. Karapinar, A short survey on the recent fixed point results on b-metric spaces, Constructive mathematical Analysis, 1 (2018), 15-44. doi: 10.33205/cma.453034 |
[26] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189-1194. doi: 10.2298/FIL1506189K |
[27] | M. A. Kutbi, E. Karapınar, J. Ahmad, A. Azam, Some fixed point results for multi-valued mappings in b-metric spaces, J. Inequal. Appl., 2014 (2014), 126. doi: 10.1186/1029-242X-2014-126 |
[28] | S. B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475-488. doi: 10.2140/pjm.1969.30.475 |
[29] | J. J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Mathematica Sinica, English Series, 23 (2007), 2205-2212. |
[30] | A. C. Ran, M. C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., (2004), 1435-1443. |
[31] | B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods and Applications, 47 (2001), 2683-2693. doi: 10.1016/S0362-546X(01)00388-1 |
[32] | I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001. |
[33] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ-contractive type mappings, Nonlinear Analysis: Theory, Methods and Applications, 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |
[34] | S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (2008), 2512-2520. |