Citation: Fahima Hebhoub, Khaled Zennir, Tosiya Miyasita, Mohamed Biomy. Blow up at well defined time for a coupled system of one spatial variable Emden-Fowler type in viscoelasticities with strong nonlinear sources[J]. AIMS Mathematics, 2021, 6(1): 442-455. doi: 10.3934/math.2021027
[1] | A. Benaissa, D. Ouchenane, Kh. Zennir, Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonl. Stud., 19 (2012), 523-535. |
[2] | S. Chandrasekhar, An introduction to the study of stellar structure, New York: Dover Publications, Inc., 1957. |
[3] | R. Emden, Gaskugeln: Anwendungen der mechanischen wärmetheorie auf kosmologie und meteorologische probleme, Berlin: B. G. Teubner, 1907. |
[4] | R. H. Fowler, The form near infinity of real, continuous solutions of a certain differential equation of the second order, Quart. J. Math., 45 (1914), 289-350. |
[5] | R. H. Fowler, The solution of Emden's and similar differential equations, Mon. Not. Roy. Astron. Soc., 91 (1930), 63-91. doi: 10.1093/mnras/91.1.63 |
[6] | R. H. Fowler, Some results on the form near infinity of real continuous solutions of a certain type of second order differential equation, P. London Math. Soc., 13 (1914), 341-371. |
[7] | R. H. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math., 2 (1931), 259-288. |
[8] | M. R. Li, Nonexistence of global solutions of Emden-Fowler type semilinear wave equations with non-positive energy, Electron. J. Diff. Equ., 93 (2016), 1-10. |
[9] | M. R. Li, Existence and uniqueness of local weak solutions for the Emden-Fowler wave equation in one dimension, Electron. J. Diff. Equ., 145 (2015), 1-10. |
[10] | S. A. Messaoudi, B. Said-Houari, Global nonexistence of positive initial-energy solutions of a systemof nonlinear viscoelastic wave equations with damping and source terms, J. Math. Anal. Appl., 365 (2010), 277-287. |
[11] | D. Ouchenane, Kh. Zennir, M. Bayoud, Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian Math. J., 65 (2013), 723-739. doi: 10.1007/s11253-013-0809-3 |
[12] | M. A. Rammaha, S. Sakuntasathien, Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms, Nonlinear Anal. Theor., 72 (2010), 2658-2683. doi: 10.1016/j.na.2009.11.013 |
[13] | M. Reed, Abstract non-linear wave equations, Berlin-New York: Springer-Verlag, 1976. |
[14] | A. Ritter, Untersuchungen über die Höhe der Atmosphäre und die Constitution gasformiger Weltkörper, Wiedemann Annalen der Physik, 249 (1881), 360-377. doi: 10.1002/andp.18812490616 |
[15] | W. Thomson, On the convective equilibrium of temperature in the atmosphere, In: Memoirs of the literary and philosophical society of Manchester, Vol. 2, Manchester: The Society, 1865,125-131. |
[16] | Kh. Zennir, A. Guesmia, Existence of solutions to nonlinear κth-order coupled Klein-Gordon equations with nonlinear sources and memory terms, Appl. Math. E-Notes, 15 (2015), 121-136. |
[17] | Kh. Zennir, Growth of solutions with positive initial energy to system of degeneratly damped wave equations with memory, Lobachevskii J. Math., 35 (2014), 147-156. |