Research article Special Issues

Fredholm inversion around a singularity: Application to autoregressive time series in Banach space

  • Received: 17 May 2023 Revised: 21 June 2023 Accepted: 30 June 2023 Published: 12 July 2023
  • This paper considers inverting a holomorphic Fredholm operator pencil. Specifically, we provide necessary and sufficient conditions for the inverse of a holomorphic Fredholm operator pencil to have a simple pole and a second order pole. Based on these results, a closed-form expression of the Laurent expansion of the inverse around an isolated singularity is obtained in each case. As an application, we also obtain a suitable extension of the Granger-Johansen representation theorem for random sequences taking values in a separable Banach space. Due to our closed-form expression of the inverse, we may fully characterize solutions to a given autoregressive law of motion except a term that depends on initial values.

    Citation: Won-Ki Seo. Fredholm inversion around a singularity: Application to autoregressive time series in Banach space[J]. Electronic Research Archive, 2023, 31(8): 4925-4950. doi: 10.3934/era.2023252

    Related Papers:

  • This paper considers inverting a holomorphic Fredholm operator pencil. Specifically, we provide necessary and sufficient conditions for the inverse of a holomorphic Fredholm operator pencil to have a simple pole and a second order pole. Based on these results, a closed-form expression of the Laurent expansion of the inverse around an isolated singularity is obtained in each case. As an application, we also obtain a suitable extension of the Granger-Johansen representation theorem for random sequences taking values in a separable Banach space. Due to our closed-form expression of the inverse, we may fully characterize solutions to a given autoregressive law of motion except a term that depends on initial values.



    加载中


    [1] R. F. Engle, C. W. J. Granger, Co-integration and error correction: representation, estimation, and testing, Econometrica: J. Econom. Soc., 55 (1987), 251–276. https://doi.org/10.2307/1913236 doi: 10.2307/1913236
    [2] S. Johansen, Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, Econometrica: J. Econom. Soc., 59 (1991), 1551–1580. https://doi.org/10.2307/2938278 doi: 10.2307/2938278
    [3] S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, Oxford, 1995. https://doi.org/10.1093/0198774508.001.0001
    [4] J. M. Schumacher, System-theoretic trends in econometrics, in Mathematical System Theory (eds. A. C. Antoulas), Springer Berlin, (1991), 559–577. https://doi.org/10.1007/978-3-662-08546-2
    [5] M. Faliva, M. G. Zoia, Dynamic Model Analysis, Springer Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-540-85996-3
    [6] M. Franchi, P. Paruolo, Inverting a matrix function around a singularity via local rank factorization, SIAM J. Matrix Anal. Appl., 37 (2016), 774–797. https://doi.org/10.1137/140999839 doi: 10.1137/140999839
    [7] M. Franchi, P. Paruolo, A general inversion theorem for cointegration, Econom. Rev., 38 (2019), 1176–1201. https://doi.org/10.1080/07474938.2018.1536100 doi: 10.1080/07474938.2018.1536100
    [8] B. K. Beare, J. Seo, W. K. Seo, Cointegrated linear processes in Hilbert space, J. Time Ser. Anal., 38 (2017), 1010–1027. https://doi.org/10.1111/jtsa.12251 doi: 10.1111/jtsa.12251
    [9] B. K. Beare, W. K. Seo, Representation of I(1) and I(2) autoregressive Hilbertian processes, Econom. Theory, 36 (2020), 773–802. https://doi.org/10.1017/s0266466619000276 doi: 10.1017/s0266466619000276
    [10] M. Franchi, P. Paruolo, Cointegration in functional autoregressive processes, Econom. Theory, 36 (2020), 803–839. https://doi.org/10.1017/s0266466619000306 doi: 10.1017/s0266466619000306
    [11] W. K. Seo, Cointegrated density-valued linear processes, arXiv preprint, (2017), arXiv: 1710.07792v1. https://doi.org/10.48550/arXiv.1710.07792
    [12] W. K. Seo, Cointegration and representation of cointegrated autoregressive processes in Banch spaces, Econom. Theory, (2022), in press. https://doi.org/10.1017/s0266466622000172
    [13] A. R. Albrecht, A. Konstantin, B. K. Beare, J. Boland, M. Franchi, P. G. Howlett, The resolution and representation of time series in Banach space, arXiv preprint, (2021), arXiv: 2105.14393. https://doi.org/10.48550/arXiv.2105.14393
    [14] R. E. Megginson, Introduction to Banach Space Theory, Springer, New York, USA, 2012. https://doi.org/10.1007/978-1-4612-0603-3
    [15] Y. A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, American Mathematical Society, Providence, 2002. https://doi.org/10.1090/gsm/050
    [16] H. W. Engl, M. Z. Nashed, Generalized inverses of random linear operators in Banach spaces, J. Math. Anal. Appl., 83 (1981), 582 – 610. https://doi.org/10.1016/0022-247x(81)90143-8 doi: 10.1016/0022-247x(81)90143-8
    [17] E. Boasso, On the Moore–Penrose inverse, EP Banach space operators, and EP Banach algebra elements, J. Math. Anal. Appl., 339, (2008), 1003–1014. https://doi.org/10.1016/j.jmaa.2007.07.059 doi: 10.1016/j.jmaa.2007.07.059
    [18] I. Gohberg, S. Goldberg, M. Kaashoek, Classes of Linear Operators, Birkhäuser, Basel, 2013. https://doi.org/10.1007/978-3-0348-7509-7
    [19] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (Translations of Mathematical Monographs), American Mathematical Society, Providence, 2012. https://doi.org/10.1090/mmono/071
    [20] D. Bosq, Linear Processes in Function Spaces, Springer-Verlag, New York, USA, 2000. https://doi.org/10.1007/978-1-4612-1154-9
    [21] W. Kaballo, Meromorphic generalized inverses of operator functions, Indagationes Math., 23 (2012), 970–994. https://doi.org/10.1016/j.indag.2012.05.001 doi: 10.1016/j.indag.2012.05.001
    [22] M. Ø. Nielsen, W. K. Seo, D. Seong, Inference on the dimension of the nonstationary subspace in functional time series, Econom. Theory, 39 (2023), 443–480. https://doi.org/10.1017/s0266466622000111 doi: 10.1017/s0266466622000111
    [23] W. K. Seo, Functional principal component analysis for cointegrated functional time series, J. Time Ser. Anal., (2023), in press. https://doi.org/10.1111/jtsa.12707 doi: 10.1111/jtsa.12707
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1212) PDF downloads(62) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog