Bipolar metric spaces and related fixed point theorems therein were introduced based on the motivation of measuring the distance between the elements of distinct sets. The question regarding the independence of these results from the analogous results on a fixed point of an induced mapping on a Cartesian product of two sets. We proved that bipolar metric space is metrizable and we presented two different approaches for defining a metric induced by a bipolar metric. Two obtained metric spaces demonstrated the lack of novelty of fixed point theorems for covariant and contravariant contraction.
Citation: Erdal Karapınar, Marija Cvetković. An inevitable note on bipolar metric spaces[J]. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162
Bipolar metric spaces and related fixed point theorems therein were introduced based on the motivation of measuring the distance between the elements of distinct sets. The question regarding the independence of these results from the analogous results on a fixed point of an induced mapping on a Cartesian product of two sets. We proved that bipolar metric space is metrizable and we presented two different approaches for defining a metric induced by a bipolar metric. Two obtained metric spaces demonstrated the lack of novelty of fixed point theorems for covariant and contravariant contraction.
[1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181 |
[2] | A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204. https://doi.org/10.22436/jnsa.013.04.04 doi: 10.22436/jnsa.013.04.04 |
[3] | S. Bayramov, C. G. Aras, H. Posul, A study on bipolar soft metric spaces, Filomat, 37 (2023), 3217–3224. https://doi.org/10.2298/FIL2310217B doi: 10.2298/FIL2310217B |
[4] | S. Chowdhury, T. Needham, E. Semrad, B. Wang, Y. Zhou, Hypergraph co-optimal transport: Metric and categorical properties, J. Appl. Comput. Topol., 2023, 1–60. https://doi.org/10.1007/s41468-023-00142-9 doi: 10.1007/s41468-023-00142-9 |
[5] | R. Kannan, Some results on fixed points Ⅱ, Am. Math. Mon., 76 (1968), 405–408. https://doi.org/10.2307/2316437 doi: 10.2307/2316437 |
[6] | G. Y. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. Y. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory A., 2018 (2018), 1–13. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z |
[7] | A. Y. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957. |
[8] | G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljković, Z. M. Fadail, S. Radenović, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. https://doi.org/10.3934/math.2023168 doi: 10.3934/math.2023168 |
[9] | A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. https://doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05 |
[10] | A. Mutlu, K. Özkan, U. Gürdal, Fixed point theorems for multivalued mappings on bipolar metric spaces, Fixed Point Theory, 21 (2020), 271–280. https://doi.org/10.24193/fpt-ro.2020.1.19 doi: 10.24193/fpt-ro.2020.1.19 |
[11] | A. Mutlu, K. Ozkan, U. Gürdal, Some common fixed point theorems in bipolar metric spaces, Turk. J. Math. Comput., 14 (2022), 346–354. https://doi.org/10.47000/tjmcs.1099118 doi: 10.47000/tjmcs.1099118 |
[12] | R. Ramaswamy, G. Mani, A. J. Gnanaprakasam, O. A. A. Abdelnaby, V. Stojiljković, S. Radojević, et al., Fixed points on covariant and contravariant maps with an application, Mathematics, 10 (2022), 4385. https://doi.org/10.3390/math10224385 doi: 10.3390/math10224385 |
[13] | K. Roy, M. Saha, R. George, L. Guran, Z. D. Mitrović, Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications, Filomat, 36 (2022), 1755–1767. https://doi.org/10.2298/FIL2205755R doi: 10.2298/FIL2205755R |
[14] | H. H. Sakr, A. H. Muse, R. Aldallal, A generalized decision-making technique based on bipolar-valued multi-vague soft sets, J. Funct. Space., 2022 (2022), 9453172. https://doi.org/10.1155/2022/9453172 doi: 10.1155/2022/9453172 |
[15] | H. H. Sakr, S. A. Alyami, X. A. A. Elgawad, Medical diagnosis under effective bipolar-valued multi-fuzzy soft settings, Mathematics, 11 (2023), 3747. https://doi.org/10.3390/math11173747 doi: 10.3390/math11173747 |
[16] | H. H. Sakr, A. H. Muse, M. S. Mohamed, S. F. Ateya, Applications on bipolar vague soft sets, J. Math., 2023 (2023), 5467353. https://doi.org/10.1155/2023/5467353 doi: 10.1155/2023/5467353 |
[17] | M. S. Sezen, Some special functions in orthogonal fuzzy bipolar metric spaces and their fixed point applications, Numer. Meth. Part. D. E., 38 (2022), 794–802. https://doi.org/10.1002/num.22701 doi: 10.1002/num.22701 |