Research article Special Issues

An inevitable note on bipolar metric spaces

  • Received: 20 November 2023 Revised: 19 December 2023 Accepted: 26 December 2023 Published: 04 January 2024
  • MSC : 47H10, 54H25

  • Bipolar metric spaces and related fixed point theorems therein were introduced based on the motivation of measuring the distance between the elements of distinct sets. The question regarding the independence of these results from the analogous results on a fixed point of an induced mapping on a Cartesian product of two sets. We proved that bipolar metric space is metrizable and we presented two different approaches for defining a metric induced by a bipolar metric. Two obtained metric spaces demonstrated the lack of novelty of fixed point theorems for covariant and contravariant contraction.

    Citation: Erdal Karapınar, Marija Cvetković. An inevitable note on bipolar metric spaces[J]. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162

    Related Papers:

  • Bipolar metric spaces and related fixed point theorems therein were introduced based on the motivation of measuring the distance between the elements of distinct sets. The question regarding the independence of these results from the analogous results on a fixed point of an induced mapping on a Cartesian product of two sets. We proved that bipolar metric space is metrizable and we presented two different approaches for defining a metric induced by a bipolar metric. Two obtained metric spaces demonstrated the lack of novelty of fixed point theorems for covariant and contravariant contraction.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/FM-3-1-133-181 doi: 10.4064/FM-3-1-133-181
    [2] A. Bartwal, R. C. Dimri, G. Prasad, Some fixed point theorems in fuzzy bipolar metric spaces, J. Nonlinear Sci. Appl., 13 (2020), 196–204. https://doi.org/10.22436/jnsa.013.04.04 doi: 10.22436/jnsa.013.04.04
    [3] S. Bayramov, C. G. Aras, H. Posul, A study on bipolar soft metric spaces, Filomat, 37 (2023), 3217–3224. https://doi.org/10.2298/FIL2310217B doi: 10.2298/FIL2310217B
    [4] S. Chowdhury, T. Needham, E. Semrad, B. Wang, Y. Zhou, Hypergraph co-optimal transport: Metric and categorical properties, J. Appl. Comput. Topol., 2023, 1–60. https://doi.org/10.1007/s41468-023-00142-9 doi: 10.1007/s41468-023-00142-9
    [5] R. Kannan, Some results on fixed points Ⅱ, Am. Math. Mon., 76 (1968), 405–408. https://doi.org/10.2307/2316437 doi: 10.2307/2316437
    [6] G. Y. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. Y. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory A., 2018 (2018), 1–13. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z
    [7] A. Y. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, Volume I, Metric and Normed Spaces, Graylock Press, Rochester, New York, 1957.
    [8] G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljković, Z. M. Fadail, S. Radenović, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. https://doi.org/10.3934/math.2023168 doi: 10.3934/math.2023168
    [9] A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. https://doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
    [10] A. Mutlu, K. Özkan, U. Gürdal, Fixed point theorems for multivalued mappings on bipolar metric spaces, Fixed Point Theory, 21 (2020), 271–280. https://doi.org/10.24193/fpt-ro.2020.1.19 doi: 10.24193/fpt-ro.2020.1.19
    [11] A. Mutlu, K. Ozkan, U. Gürdal, Some common fixed point theorems in bipolar metric spaces, Turk. J. Math. Comput., 14 (2022), 346–354. https://doi.org/10.47000/tjmcs.1099118 doi: 10.47000/tjmcs.1099118
    [12] R. Ramaswamy, G. Mani, A. J. Gnanaprakasam, O. A. A. Abdelnaby, V. Stojiljković, S. Radojević, et al., Fixed points on covariant and contravariant maps with an application, Mathematics, 10 (2022), 4385. https://doi.org/10.3390/math10224385 doi: 10.3390/math10224385
    [13] K. Roy, M. Saha, R. George, L. Guran, Z. D. Mitrović, Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications, Filomat, 36 (2022), 1755–1767. https://doi.org/10.2298/FIL2205755R doi: 10.2298/FIL2205755R
    [14] H. H. Sakr, A. H. Muse, R. Aldallal, A generalized decision-making technique based on bipolar-valued multi-vague soft sets, J. Funct. Space., 2022 (2022), 9453172. https://doi.org/10.1155/2022/9453172 doi: 10.1155/2022/9453172
    [15] H. H. Sakr, S. A. Alyami, X. A. A. Elgawad, Medical diagnosis under effective bipolar-valued multi-fuzzy soft settings, Mathematics, 11 (2023), 3747. https://doi.org/10.3390/math11173747 doi: 10.3390/math11173747
    [16] H. H. Sakr, A. H. Muse, M. S. Mohamed, S. F. Ateya, Applications on bipolar vague soft sets, J. Math., 2023 (2023), 5467353. https://doi.org/10.1155/2023/5467353 doi: 10.1155/2023/5467353
    [17] M. S. Sezen, Some special functions in orthogonal fuzzy bipolar metric spaces and their fixed point applications, Numer. Meth. Part. D. E., 38 (2022), 794–802. https://doi.org/10.1002/num.22701 doi: 10.1002/num.22701
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(942) PDF downloads(135) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog