This paper deals with some identities on Banach $ ^* $-algebras that are equipped with linear generalized derivations. As an application of one of our results, we describe the structure of the underlying algebras. Precisely, we prove that for a linear generalized derivation $ F $ on a Banach $ ^* $-algebra $ A $, either we obtain the existence of a central idempotent element $ e\in Q $, for which $ F = 0 $ on $ eQ $ and $ (1-e)Q $ satisfies $ s_{4} $, or the set of elements $ u\in A $ such that the identity $ [F(u)^n, F(u^*)^nF(u)^n]\in Z(A) $ holds for no positive integer $ n $ turns out to be dense. In addition to this we consider an identity satisfied by a semisimple Banach $ ^* $-algebra and look for its commutativity. Moreover, some related results are also established.
Citation: Shakir Ali, Ali Yahya Hummdi, Mohammed Ayedh, Naira Noor Rafiquee. Linear generalized derivations on Banach $ ^* $-algebras[J]. AIMS Mathematics, 2024, 9(10): 27497-27511. doi: 10.3934/math.20241335
This paper deals with some identities on Banach $ ^* $-algebras that are equipped with linear generalized derivations. As an application of one of our results, we describe the structure of the underlying algebras. Precisely, we prove that for a linear generalized derivation $ F $ on a Banach $ ^* $-algebra $ A $, either we obtain the existence of a central idempotent element $ e\in Q $, for which $ F = 0 $ on $ eQ $ and $ (1-e)Q $ satisfies $ s_{4} $, or the set of elements $ u\in A $ such that the identity $ [F(u)^n, F(u^*)^nF(u)^n]\in Z(A) $ holds for no positive integer $ n $ turns out to be dense. In addition to this we consider an identity satisfied by a semisimple Banach $ ^* $-algebra and look for its commutativity. Moreover, some related results are also established.
[1] | H. Alhazmi, A. N. Khan, Linear derivations on Banach *-algebras, Math. Slovaca, 71 (2021), 27–32. https://doi.org/10.1515/ms-2017-0450 doi: 10.1515/ms-2017-0450 |
[2] | M. Ashraf, B. A. Wani, On Commutativity of rings and Banach algebras with generalized derivations, Adv. Pure Appl. Math., 10 (2019), 155–163. https://doi.org/10.1515/apam-2017-0024 doi: 10.1515/apam-2017-0024 |
[3] | K. I. Beidar, W. S. Martindale, A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, New York, 1995. |
[4] | F. F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, New York-Heidelberg, 1973. |
[5] | M. Bre$ \breve{\text{s}} $ar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385–394. https://doi.org/10.1006/jabr.1993.1080 doi: 10.1006/jabr.1993.1080 |
[6] | A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723–728. https://doi.org/10.2307/2032403 doi: 10.2307/2032403 |
[7] | L. Carini, V. De Filippis, Commutators with power central values on a Lie ideal, Pacific J. Math., 193 (2000), 269–278. https://doi.org/10.2140/pjm.2000.193.269 doi: 10.2140/pjm.2000.193.269 |
[8] | C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Am. Math. Soc., 103 (1988), 723–728. |
[9] | P. Civin, B. Yood, Involutions on Banach algebras, Pacific J. Math., 9 (1959), 415–436. |
[10] | B. Dhara, S. Ali, On n-centralizing generalized derivations in semiprime rings with applications to C $^*$-algebras, J. Algebra Appl., 11 (2012), 1–11. https://doi.org/10.1142/S0219498812501113 doi: 10.1142/S0219498812501113 |
[11] | Y. Q. Du, Y. Wang, Derivations in commutators with power central values in rings, Publ. Math. Debrecen, 77 (2010), 193–199. https://doi.org/10.5486/PMD.2010.4693 doi: 10.5486/PMD.2010.4693 |
[12] | I. N. Herstein, Non-commutative rings, Carus Math. Monograhphs, Wiley, New York, 1968. |
[13] | V. K. Kharchenko, Differential identities of semirprime rings, Algebra Log., 18 (1979), 86–119. https://doi.org/10.1007/BF01669313 doi: 10.1007/BF01669313 |
[14] | M. T. Kosan, T. K. Lee, Y. Zhou, Identities with Engel conditions on derivations, Monatsh. Math., 165 (2012), 543–556. https://doi.org/10.1007/s00605-010-0252-6 doi: 10.1007/s00605-010-0252-6 |
[15] | T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 (1999), 4057–4073. https://doi.org/10.1080/00927879908826682 doi: 10.1080/00927879908826682 |
[16] | W. S. Martindale Ⅲ, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576–584. https://doi.org/10.1016/0021-8693(69)90029-5 doi: 10.1016/0021-8693(69)90029-5 |
[17] | E. C. Posner, Derivation in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. https://doi.org/10.2307/2032686 |
[18] | N. Rehman, V. De Filippis, On n-commuting and n-skew commuting maps with generalized derivations in prime and semiprime rings, Siberian Math. J., 52 (2011), 516–523. https://doi.org/10.1134/S0037446611030141 doi: 10.1134/S0037446611030141 |
[19] | J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 109 (1990), 47–52. https://doi.org/10.1090/S0002-9939-1990-1007517-3 doi: 10.1090/S0002-9939-1990-1007517-3 |
[20] | Y. Wang, A generalization of Engel conditions with derivations in rings, Comm. Algebra, 39 (2011), 2690–2696. https://doi.org/10.1080/00927872.2010.489536 doi: 10.1080/00927872.2010.489536 |
[21] | B. Yood, Commutativity theorems for Banach algebras, Mich. J. Math., 37 (1990), 203–210. |
[22] | B. Yood, Dense subsets of Banach $^*$-algebras, Illinois J. Math., 43 (1999), 403–409. |