In this work, sums of fuzzy soft topological spaces are defined with free union of a pairwise disjoint non-empty family of fuzzy soft topological spaces. Firstly, we give general information of fuzzy soft topological spaces. Then, we define free union of fuzzy soft topological spaces and disjoint union topology of fuzzy soft topological spaces. We call the free union of a pairwise disjoint non-empty family of fuzzy soft topological spaces the sum of fuzzy soft topological spaces. We show what are the interchangeable properties between fuzzy soft topological spaces and the sum of fuzzy soft topological spaces. For example, there are fuzzy soft interior, fuzzy soft closure, fuzzy soft limit points. Also, we provide some properties showing the relationships between fuzzy soft topological spaces and their sums. Some of these are fuzzy soft base, fuzzy soft sequences, fuzzy soft connected-disconnected, fuzzy soft compact spaces. Also, part of the research for this article is work on fuzzy soft convergence on fuzzy soft topological sum. With this paper, some results, theorems and definitions for fuzzy soft topological sum have been acquired with the help of results, theorems and definitions given in previous studies about fuzzy soft topological spaces.
Citation: Arife Atay. Disjoint union of fuzzy soft topological spaces[J]. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
In this work, sums of fuzzy soft topological spaces are defined with free union of a pairwise disjoint non-empty family of fuzzy soft topological spaces. Firstly, we give general information of fuzzy soft topological spaces. Then, we define free union of fuzzy soft topological spaces and disjoint union topology of fuzzy soft topological spaces. We call the free union of a pairwise disjoint non-empty family of fuzzy soft topological spaces the sum of fuzzy soft topological spaces. We show what are the interchangeable properties between fuzzy soft topological spaces and the sum of fuzzy soft topological spaces. For example, there are fuzzy soft interior, fuzzy soft closure, fuzzy soft limit points. Also, we provide some properties showing the relationships between fuzzy soft topological spaces and their sums. Some of these are fuzzy soft base, fuzzy soft sequences, fuzzy soft connected-disconnected, fuzzy soft compact spaces. Also, part of the research for this article is work on fuzzy soft convergence on fuzzy soft topological sum. With this paper, some results, theorems and definitions for fuzzy soft topological sum have been acquired with the help of results, theorems and definitions given in previous studies about fuzzy soft topological spaces.
[1] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[2] | D. Molodtsov, Soft set theory-first result, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5 |
[3] | C. L. Chang, Fuzzy topological spaces, J. Math. Appl., 24 (1968), 182–193. https://doi.org/10.1016/0022-247X(68)90057-7 doi: 10.1016/0022-247X(68)90057-7 |
[4] | R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56 (1976), 621–633. https://doi.org/10.1016/0022-247X(76)90029-9 doi: 10.1016/0022-247X(76)90029-9 |
[5] | T. M. Al-shami, A. Mhemdi, Generalized frame for orthopair fuzzy sets: (m, n)-fuzzy sets and their applications to multi-criteria decision-making methods, Information, 14 (2023), 56. https://doi.org/10.3390/info14010056 doi: 10.3390/info14010056 |
[6] | P. K. Maji, R. Biswas, R. Roy, An application of soft sets in a decision-making problem, Comput. Math. Appl., 44 (2002), 1077–1083. |
[7] | P. K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6 |
[8] | M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009 |
[9] | M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006 |
[10] | T. M. Al-shami, Corrigendum to "on soft topological space via semi-open and semi-closed soft sets", Kyungpook Math. J., 58 (2018), 583–588. |
[11] | O. Tantawy, S. A. El-Sheikh, S.Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform., 11 (2016), 511–525. |
[12] | T. M. Al-shami, Comments on "soft mappings spaces", Sci. World J., 2019, 903809. |
[13] | M. E. El-Shafei, M. Abo-Elhamayel, T. M. Al-shami, Two notes on "on soft Hausdorff spaces", Ann. Fuzzy Math. Inform., 16 (2018), 333–336. |
[14] | A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025 doi: 10.1142/S1793005711002025 |
[15] | I. Zorlutuna, H. Çakir, On continuity of soft mappings, Appl. Math. Inf. Sci., 9 (2015), 403–409. |
[16] | T. Y. Öztürk, S. Bayramov, Topology on soft continuous function spaces, Math. Comput. Appl., 22 (2017), 32. https://doi.org/10.3390/mca22020032 doi: 10.3390/mca22020032 |
[17] | T. M. Al-shami, Z. A. Ameen, A. A. Azzam, M. E. El-Shafei, Soft separation axioms via soft topological operators, AIMS Math., 7 (2022), 15107–15119. https://doi.org/10.3934/math.2022828 doi: 10.3934/math.2022828 |
[18] | P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. |
[19] | B. Ahmat, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 586507. https://doi.org/10.1155/2009/586507 doi: 10.1155/2009/586507 |
[20] | B. Tanay, M. B. Kandemir, Topological structures of fuzzy soft sets, Comput. Math. Appl., 61 (2011), 412–418. https://doi.org/10.1016/j.camwa.2011.03.056 doi: 10.1016/j.camwa.2011.03.056 |
[21] | B. P. Varol, H. Aygün, Fuzzy soft topology, Hacettepe J. Math. Stat., 41 (2012), 407–419. |
[22] | T. Şimşekler, S. Yüksel, Fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 5 (2013), 87–96. |
[23] | T. M. Al-shami, J. C. R. Alcantud, A. Mhemdi, New generalization of fuzzy soft sets: (a, b)-fuzzy soft sets, AIMS Math., 8 (2023), 2995–3025. http://dx.doi.org/10.3934/math.2023155 doi: 10.3934/math.2023155 |
[24] | J. C. R. Alcantud, The relationship between fuzzy soft and soft topologies, Int. J. Fuzzy Syst., 24 (2022), 1653–1668. https://doi.org/10.1007/s40815-021-01225-4 doi: 10.1007/s40815-021-01225-4 |
[25] | A. Atay, H. I. Tutalar, Some special conditions in topological summed, Int. Adv. Res. J. Sci. Eng. Technol., 2 (2015), 129–130. https://doi.org/10.17148/IARJSET.2015.21027 doi: 10.17148/IARJSET.2015.21027 |
[26] | T. M. Al-shami, L. D. R. Kočinac, B. A. Asaad, Sum of soft topological spaces, Mathematics, 8 (2020), 990. https://doi.org/10.3390/math8060990 doi: 10.3390/math8060990 |
[27] | J. Mahanta, P. K. Das, Results on fuzzy soft topological spaces, preprint paper, 2012. https://doi.org/10.48550/arXiv.1203.0634 |
[28] | P. K. Gain, R. P. Chakraborty, M. Pal, On compact and semicompact fuzzy soft topological spaces, J. Math. Comput. Sci., 4 (2014), 425–445. |
[29] | S. Atmaca, Zorlutuna, On fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 5 (2013), 377–386. |
[30] | M. Matejdes, Soft homogeneity of soft topological sum, Soft Comput., 25 (2021), 8875–8881. https://doi.org/10.1007/s00500-021-05924-w doi: 10.1007/s00500-021-05924-w |