Research article

An innovative algorithm based on weighted fuzzy soft multisets and its application in selecting optimal construction materials

  • Received: 26 July 2024 Revised: 03 September 2024 Accepted: 13 September 2024 Published: 23 September 2024
  • MSC : 03E70, 03E72, 03E75

  • Effective decision-making is critical across various domains, including technology, medicine, and engineering. To address the complexities of decision-making, particularly in scenarios involving both positive and negative parameters, this paper introduces an innovative algorithm based on weighted fuzzy soft multisets. This algorithm mitigates the issue of counterintuitive results often encountered in existing methods. By incorporating the concept of uniform fuzzy soft multisets and considering the conditional structure of these sets, our approach advances the theoretical framework of decision-making while providing a practical tool for complex scenarios. To demonstrate its practical applicability, we conduct a case study focused on selecting optimal construction materials for a building project, utilizing data from established engineering standards and a comprehensive wood properties database. The key findings of our sensitivity analysis highlight the algorithm's robustness to weight changes and adaptability to different decision sequences. These findings highlight the algorithm's potential to enhance decision support systems across various fields, such as engineering, healthcare, and environmental management. This potential is particularly valuable in complex, multi-criteria scenarios that demand nuanced, context-aware solutions.

    Citation: Esra Korkmaz. An innovative algorithm based on weighted fuzzy soft multisets and its application in selecting optimal construction materials[J]. AIMS Mathematics, 2024, 9(10): 27512-27534. doi: 10.3934/math.20241336

    Related Papers:

  • Effective decision-making is critical across various domains, including technology, medicine, and engineering. To address the complexities of decision-making, particularly in scenarios involving both positive and negative parameters, this paper introduces an innovative algorithm based on weighted fuzzy soft multisets. This algorithm mitigates the issue of counterintuitive results often encountered in existing methods. By incorporating the concept of uniform fuzzy soft multisets and considering the conditional structure of these sets, our approach advances the theoretical framework of decision-making while providing a practical tool for complex scenarios. To demonstrate its practical applicability, we conduct a case study focused on selecting optimal construction materials for a building project, utilizing data from established engineering standards and a comprehensive wood properties database. The key findings of our sensitivity analysis highlight the algorithm's robustness to weight changes and adaptability to different decision sequences. These findings highlight the algorithm's potential to enhance decision support systems across various fields, such as engineering, healthcare, and environmental management. This potential is particularly valuable in complex, multi-criteria scenarios that demand nuanced, context-aware solutions.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] S. Ashraf, M. N. Attaullah, A. Khan, N. Rehman, M. K. Pandit, Novel information measures for Fermatean fuzzy sets and their applications to pattern recognition and medical diagnosis, Comput. Intell. Neurosci., 2023 (2023), 9273239. https://doi.org/10.1155/2023/9273239 doi: 10.1155/2023/9273239
    [3] A. Makkar, U. Ghosh, P. K. Sharma, A. Javed, A fuzzy-based approach to enhance cyber defence security for next-generation IoT, IEEE Internet Things J., 10 (2023), 2079–2086. https://doi.org/10.1109/JIOT.2021.3053326 doi: 10.1109/JIOT.2021.3053326
    [4] S. Liu, S. Wang, X. Liu, J. Dai, K. Muhammad, A. Gandomi, W. Ding, M. Hijji, V. Albuquerque, Human inertial thinking strategy: A novel fuzzy reasoning mechanism for IoT-assisted visual monitoring, IEEE Internet Things J., 10 (2023), 3735–3748. https://doi.org/10.1109/JIOT.2022.3142115 doi: 10.1109/JIOT.2022.3142115
    [5] P. Sing, M. Rahaman, S. P. M. Sankar, Solution of fuzzy system of linear equation under different fuzzy difference ideology, Spect. Oper. Res., 1 (2024), 64–74. https://doi.org/10.31181/sor1120244 doi: 10.31181/sor1120244
    [6] R. Imran, K. Ullah, Z. Ali, M. Akram, A multi-criteria group decision-making approach for robot selection using interval-valued intuitionistic fuzzy information and Aczel-Alsina Bonferroni means, Spect. Decis. Mak. Appl., 1 (2024), 1–32. https://doi.org/10.31181/sdmap1120241 doi: 10.31181/sdmap1120241
    [7] D. A. Molodtsov, Soft set theory-First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [8] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001), 589–602. doi: 10.1016/S0898-1221(99)00056-5
    [9] J. G. Lee, G. Şenel, Y. B. Jun, F. Abbas, K. Hur, Topological structures via interval-valued soft sets, Ann. Fuzzy Math. Inform., 20 (2020), 273–295.
    [10] P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inform., 5 (2013), 157–168. doi: 10.1016/j.ins.2010.11.004
    [11] F. Feng, X. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sci., 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004
    [12] F. Ghasemzadeh, D. Pamučar, A fuzzy soft approach toward power influences in supply chain performance in electronics manufacturing industry, Decis. Anal. J., 4 (2022), 100124. https://doi.org/10.1016/j.dajour.2022.100124 doi: 10.1016/j.dajour.2022.100124
    [13] M. Sadiq, V. S. Devi, Fuzzy-soft set approach for ranking the functional requirements of software, Expert Syst. Appl., 193 (2022), 116452. https://doi.org/10.1016/j.eswa.2021.116452 doi: 10.1016/j.eswa.2021.116452
    [14] H. H. Sakr, S. A. Alyami, M. A. Abd Elgawad, Medical diagnosis under effective bipolar-valued multi-fuzzy soft settings, Mathematics, 11 (2023), 3747. https://doi.org/10.3390/math11173747 doi: 10.3390/math11173747
    [15] R. Hidayat, A. A. Ramli, M. F. M. Fudzee, I. T. R. Yanto, Fuzzy soft set based classification for rock dataset, In: Advances in visual informatics. IVIC 2023, Singapore: Springer, 14322 (2024), 641–647. https://doi.org/10.1007/978-981-99-7339-2_51
    [16] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412–418. https://doi.org/10.1016/j.cam.2006.04.008 doi: 10.1016/j.cam.2006.04.008
    [17] Z. Kong, L. Gao, L. Wang, Comment on "A fuzzy soft set theoretic approach to decision making problems", J. Comput. Appl. Math., 223 (2009), 540–-542. https://doi.org/10.1016/j.cam.2008.01.011 doi: 10.1016/j.cam.2008.01.011
    [18] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234 (2010), 10–20. https://doi.org/10.1016/j.cam.2009.11.055 doi: 10.1016/j.cam.2009.11.055
    [19] E. Korkmaz, C. Özcan, M. Korkmaz, An application of fuzzy soft sets to a real-life problem: Classification of wood materials to prevent fire-related injuries and deaths, Appl. Soft Comput., 132 (2023), 109875. https://doi.org/10.1016/j.asoc.2022.109875 doi: 10.1016/j.asoc.2022.109875
    [20] S. Alkhazaleh, A. R. Salleh, N. Hassan, Soft multisets theory, Appl. Math. Sci., 5 (2011), 3561–3573.
    [21] A. R. Salleh, S. Alkhazaleh, An application of soft multiset theory in decision making, In: Proceedings of the 5th Saudi science conference, 2012, 16–18.
    [22] S. Alkhazaleh, A. R. Salleh, Fuzzy soft multiset theory, Abs. Appl. Anal., 2012 (2012), 350603. https://doi.org/10.1155/2012/350603
    [23] C. Akın, An application of fuzzy soft multisets to algebra, Filomat, 34 (2020), 399–408. https://doi.org/10.2298/fil2002399a doi: 10.2298/fil2002399a
    [24] A. Mukherjee, A. K. Das, Application of fuzzy soft multi sets in decision-making problems, In: Proceedings of 3rd international conference on advanced computing, networking and informatics, New Delhi: Springer, 43 (2016), 21–28. https://doi.org/10.1007/978-81-322-2538-6_3
    [25] A. Kandil, S. A. El-Sheikh, M. Hosny, M. Raafat, Hesitant fuzzy soft multisets and their applications in decision-making problems, Soft Comput., 24 (2020), 4223–4232. https://doi.org/10.1007/S00500-019-04187-W doi: 10.1007/S00500-019-04187-W
    [26] A. Mukherjee, A. K. Das, Algebraic and topological structures on intuitionistic fuzzy soft multisets, In: Essentials of fuzzy soft multisets, Singapore: Springer, 2023,111–138. https://doi.org/10.1007/978-981-19-2760-7_9
    [27] A. K. Das, Weighted fuzzy soft multiset and decision-making, Int. J. Mach. Learn. Cyber., 9 (2018), 787–794. https://doi.org/10.1007/s13042-016-0607-y doi: 10.1007/s13042-016-0607-y
    [28] R. Obradović, D. Pamučar, Multi-criteria model for the selection of construction materials: An approach based on fuzzy logic, Technical Gazette, 27 (2020), 1531–1543. https://doi.org/10.17559/TV-20190426123437 doi: 10.17559/TV-20190426123437
    [29] M. M. A. Bhuiyan, A. Hammad, A hybrid multi-criteria decision support system for selecting the most sustainable structural material for a multistory building construction, Sustainability, 15 (2023), 3128. https://doi.org/10.3390/su15043128 doi: 10.3390/su15043128
    [30] E. A. Al-Atesh, Y. Rahmawati, N. A. W. A. Zawawi, C. Utomo, A decision-making model for supporting selection of green building materials, Int. J. Constr. Manag., 23 (2021), 922–933. https://doi.org/10.1080/15623599.2021.1944548 doi: 10.1080/15623599.2021.1944548
    [31] J. C. R. Alcantud, T. J. Mathew, Separable fuzzy soft sets and decision making with positive and negative attributes, Appl. Soft Comput., 59 (2017), 586–595. https://doi.org/10.1016/j.asoc.2017.06.010 doi: 10.1016/j.asoc.2017.06.010
    [32] The British Standards Institution, Eurocode 2—Design of concrete structures, 2024. https://doi.org/10.3403/BSEN1992
    [33] Eurocode 3—Design of steel structures. Available from: https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-3-design-steel-structures.
    [34] E. Meier, The wood database. Available from: https://www.wood-database.com/.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(392) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(22)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog