Research article

Supercommuting maps on unital algebras with idempotents

  • Received: 29 June 2024 Revised: 10 August 2024 Accepted: 13 August 2024 Published: 22 August 2024
  • MSC : 15A78, 16W25, 17A70

  • Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. Finally, we proved that every supercommuting map on triangular algebras is a commuting map.

    Citation: Yingyu Luo, Yu Wang. Supercommuting maps on unital algebras with idempotents[J]. AIMS Mathematics, 2024, 9(9): 24636-24653. doi: 10.3934/math.20241200

    Related Papers:

  • Let $ \mathcal{A} $ be a unital algebra with nontrivial idempotents. We considered $ \mathcal{A} $ as a superalgebra according to Ghahramani and Zadeh's method. We provided a description of supercommuting maps on $ \mathcal{A} $. As a consequence, we gave a description of supercommuting maps on matrix algebras, which is different from the result on commuting maps of matrix algebras. Finally, we proved that every supercommuting map on triangular algebras is a commuting map.



    加载中


    [1] M. Brešar, Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc., 111 (1991), 501–510. https://doi.org/10.1090/s0002-9939-1991-1028283-2 doi: 10.1090/s0002-9939-1991-1028283-2
    [2] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385–394. https://doi.org/10.1006/jabr.1993.1080 doi: 10.1006/jabr.1993.1080
    [3] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc., 335 (1993), 525–546. https://doi.org/10.1090/S0002-9947-1993-1069746-X doi: 10.1090/S0002-9947-1993-1069746-X
    [4] H. Y. Jia, Z. K. Xiao, Commuting maps on certain incidence algebras, Bull. Iran. Math. Soc., 46 (2020), 755–765. https://doi.org/10.1007/s41980-019-00289-1 doi: 10.1007/s41980-019-00289-1
    [5] M. Brešar, Commuting maps: a survey, Taiwanese J. Math., 8 (2004), 361–397. https://doi.org/10.11650/twjm/1500407660 doi: 10.11650/twjm/1500407660
    [6] Q. Ding, Commuting Toeplitz operators and $H$-Toeplitz operators on Bergman space, AIMS Math., 9 (2024), 2530–2548. https://doi.org/10.3934/math.2024125 doi: 10.3934/math.2024125
    [7] B. L. M. Ferreira, I. Kaygorodov, Commuting maps on alternative rings, Ricerche Mate., 71 (2022), 67–78. https://doi.org/10.1007/S11587-020-00547-Z doi: 10.1007/S11587-020-00547-Z
    [8] M. Brešar, M. A. Chebotar, W. S. Martindale, Functional identities, Basel: Birkh$\ddot{a}$user, 2007. https://doi.org/10.1007/978-3-7643-7796-0
    [9] K. I. Beidar, T. S. Chen, Y. Fong, W. F. Ke, On graded polynomial identities with an antiautomorphism, J. Algebra, 256 (2002), 542–555. https://doi.org/10.1016/S0021-8693(02)00140-0 doi: 10.1016/S0021-8693(02)00140-0
    [10] K. I. Beidar, M. Brešar, M. A. Chebotar, Jordan superhomomorphism, Commun. Algebra, 31 (2003), 633–644. https://doi.org/10.1081/AGB-120017336 doi: 10.1081/AGB-120017336
    [11] Y. Wang, On skew-supercommuting maps in superalgebras, Bull. Austral. Math. Soc., 78 (2008), 397–409. https://doi.org/10.1017/S0004972708000762 doi: 10.1017/S0004972708000762
    [12] Y. Wang, Supercentralizing superautomorphisms on prime superalgebras, Taiwanese J. Math., 13 (2009), 1441–1449. https://doi.org/10.11650/twjm/1500405551 doi: 10.11650/twjm/1500405551
    [13] P. H. Lee, Y. Wang, Supercentralizing maps on prime superalgebras, Commun. Algebra, 37 (2009), 840–854. https://doi.org/10.1080/00927870802271672 doi: 10.1080/00927870802271672
    [14] G. Z. Fan, X. S. Dai, Super-biderivations of Lie superalgebras, Linear Multilinear A., 65 (2017), 58–66. https://doi.org/10.1080/03081087.2016.1167815 doi: 10.1080/03081087.2016.1167815
    [15] X. Cheng, J. C. Sun, Super-biderivations and linear super-commuting maps on the super-BMS3 algebra, Sǎo Paulo J. Math. Sci., 13 (2019), 615–627. https://doi.org/10.1007/s40863-018-0106-z doi: 10.1007/s40863-018-0106-z
    [16] Z. K. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178–2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002
    [17] D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear Multilinear A., 63 (2015), 141–165. https://doi.org/10.1080/03081087.2013.851200 doi: 10.1080/03081087.2013.851200
    [18] W.-S. Cheung, Commuting maps of triangular algebras, J. Lond. Math. Soc., 63 (2001), 117–127. https://doi.org/10.1112/S0024610700001642 doi: 10.1112/S0024610700001642
    [19] Y. B. Li, F. Wei, A. Fošner, $k$-commuting mappings of generalized matrix algebras, Period. Math. Hung., 79 (2019), 50–77. https://doi.org/10.1007/s10998-018-0260-1 doi: 10.1007/s10998-018-0260-1
    [20] Y. Q. Du, Y. Wang, $k$-commuting maps on triangular algebras, Linear Algebra Appl., 436 (2012), 1367–1375. https://doi.org/10.1016/j.laa.2011.08.024 doi: 10.1016/j.laa.2011.08.024
    [21] Y. Q. Du, Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437 (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013 doi: 10.1016/j.laa.2012.06.013
    [22] D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, Oper. Matrices, 12 (2018), 357–367. https://doi.org/10.7153/OAM-2018-12-23 doi: 10.7153/OAM-2018-12-23
    [23] P. A. Krylov, Isomorphism of generalized matrix rings, Algebra Logic., 47 (2008), 258–262. https://doi.org/10.1007/s10469-008-9016-y doi: 10.1007/s10469-008-9016-y
    [24] D. Liu, J. H. Zhang, M. L. Song, Local Lie derivations of generalized matrix algebras, AIMS Math., 8 (2023), 6900–6912. https://doi.org/10.3934/math.2023349 doi: 10.3934/math.2023349
    [25] Y. Wang, Y. Wang, Multiplicative Lie $n$-derivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 2599–2616. https://doi.org/10.1016/j.laa.2012.10.052 doi: 10.1016/j.laa.2012.10.052
    [26] H. Ghahramani, L. H. Zadeh, Lie superderivations on unital algebras with idempotents, Commun. Algebra, in press. https://doi.org/10.1080/00927872.2024.2360174
    [27] Q. Chen, Jordan superderivations on unital algebras with idempotents, unpublished work.
    [28] W.-S. Cheung, Lie derivations of triangular algebras, Linear Multilinear A., 51 (2003), 299–310. https://doi.org/10.1080/0308108031000096993 doi: 10.1080/0308108031000096993
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog