Research article

The image of polynomials in one variable on $ 2\times 2 $ upper triangular matrix algebras

  • Received: 26 December 2021 Revised: 19 February 2022 Accepted: 27 February 2022 Published: 18 March 2022
  • MSC : 16S50, 16R10, 15A54

  • In the present paper, we give a description of the image of polynomials in one variable on $ 2\times 2 $ upper triangular matrix algebras over an algebraically closed field. As consequences, we give concrete descriptions of the images of polynomials of degrees up to $ 4 $ in one variable on $ 2\times 2 $ upper triangular matrix algebras over an algebraically closed field.

    Citation: Lan Lu, Yu Wang, Huihui Wang, Haoliang Zhao. The image of polynomials in one variable on $ 2\times 2 $ upper triangular matrix algebras[J]. AIMS Mathematics, 2022, 7(6): 9884-9893. doi: 10.3934/math.2022551

    Related Papers:

  • In the present paper, we give a description of the image of polynomials in one variable on $ 2\times 2 $ upper triangular matrix algebras over an algebraically closed field. As consequences, we give concrete descriptions of the images of polynomials of degrees up to $ 4 $ in one variable on $ 2\times 2 $ upper triangular matrix algebras over an algebraically closed field.



    加载中


    [1] B. E. Anzis, Z. M. Emrich, K. G. Valiveti, On the images of Lie polynomials evaluated on Lie algebras, Linear Algebra Appl., 469 (2015), 51–75. https://doi.org/10.1016/j.laa.2014.11.015 doi: 10.1016/j.laa.2014.11.015
    [2] A. Borel, On free subgroups of semisimple groups, Enseign. Math., 29 (1983), 151–164.
    [3] P. S. Fagundes, The images of multilinear polynomials on strictly upper triangular matrices, Linear Algebra Appl., 563 (2019), 287–301. https://doi.org/10.1016/j.laa.2018.11.014 doi: 10.1016/j.laa.2018.11.014
    [4] P. S. Fagundes, T. C. de Mello, Images of multilinear polynomials of degree up to four on upper triangular matrices, Oper. Matrices, 13 (2019), 283–292. https://doi.org/10.7153/oam-2019-13-18 doi: 10.7153/oam-2019-13-18
    [5] I. G. Gagate, T. C. de Mello, Images of multilinear polynomials on $n\times n$ upper triangular matrices over infinite fields, arXiv Preprint, 2021. https://doi.org/10.48550/arXiv.2106.12726
    [6] A. Kanel-Belov, S. Malev, L. Rowen, The images of non-commutative polynomials evaluated on $2\times 2$ matrices, Proc. Amer. Math. Soc., 140 (2012), 465–478. https://doi.org/10.1090/S0002-9939-2011-10963-8 doi: 10.1090/S0002-9939-2011-10963-8
    [7] A. Kanel-Belov, S. Malev, L. Rowen, The images of multilinear polynomials evaluated on $3\times 3$ matrices, Proc. Amer. Math. Soc., 144 (2016), 7–19. https://doi.org/10.1090/proc/12478 doi: 10.1090/proc/12478
    [8] A. Kanel-Belov, S. Malev, L. Rowen, Power-central polynomials on matrices, J. Pure Appl. Algebra, 220 (2016), 2164–2176. https://doi.org/10.1016/j.jpaa.2015.11.001 doi: 10.1016/j.jpaa.2015.11.001
    [9] A. Kanel-Belov, S. Malev, L. Rowen, The images of Lie polynomials evaluated on matrices, Commun. Algebra, 45 (2017), 4801–4808. https://doi.org/10.1080/00927872.2017.1282959 doi: 10.1080/00927872.2017.1282959
    [10] Y. Y. Luo, Y. Wang, On Fagundes-Mello conjecture, J. Algebra, 592 (2022), 118–152. https://doi.org/10.1016/j.jalgebra.2021.11.008 doi: 10.1016/j.jalgebra.2021.11.008
    [11] A. Ma, J. Oliva, On the images of Jordan polynomials evaluated over symmetric matrices, Linear Algebra Appl., 492 (2016), 13–25. https://doi.org/10.1016/j.laa.2015.11.015 doi: 10.1016/j.laa.2015.11.015
    [12] S. Malev, The images of non-commutative polynomials evaluated on $2\times 2$ matrices over an arbitrary field, J. Algebra Appl., 13 (2014), 1450004. https://doi.org/10.1142/S0219498814500042 doi: 10.1142/S0219498814500042
    [13] Š. Špenko, On the image of a noncommutative polynomial, J. Algebra, 377 (2013), 298–311. https://doi.org/10.1016/j.jalgebra.2012.12.006 doi: 10.1016/j.jalgebra.2012.12.006
    [14] Y. Wang, The images of multilinear polynomials on $2\times 2$ upper triangular matrix algebras, Linear Multilinear Algebra, 67 (2019), 2366–2372. https://doi.org/10.1080/03081087.2019.1614519 doi: 10.1080/03081087.2019.1614519
    [15] Y. Wang, P. P. Liu, J. Bai, The images of multilinear polynomials on $2\times 2$ upper triangular matrix algebras, Linear Multilinear Algebra, 67 (2019), i–vi. https://doi.org/10.1080/03081087.2019.1656706 doi: 10.1080/03081087.2019.1656706
    [16] Y. Wang, J. Zhou, Y. Y. Luo, The images of polynomials on $2\times 2$ upper triangular matrix algebras, Linear Algebra Appl., 610 (2021), 560–570. https://doi.org/10.1016/j.laa.2020.10.009 doi: 10.1016/j.laa.2020.10.009
    [17] E. Zelmanov, Infinite algebras and pro-$p$ groups, In: Infinite groups: Geometric, combinatorial and dynamical aspects, Progress in Mathematics, Vol. 248, Basel: Birkhäuser, 2005,403–413. https://doi.org/10.1007/3-7643-7447-0_11
    [18] J. Zhou, Y. Wang, The images of completely homogeneous polynomials on $2\times 2$ upper triangular matrix algebras, Algebra. Represent. Theory, 24 (2021), 1221–1229. https://doi.org/10.1007/s10468-020-09986-6 doi: 10.1007/s10468-020-09986-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1516) PDF downloads(90) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog